Skip to content
2000
image of Optimization and Characterization of Khellin Loaded Nanogels for the Potential Use in Psoriasis Management

Abstract

Background

Psoriasis is a chronic skin disease that affects patients' quality of life. Treating psoriasis remains a significant challenge due to various factors, including individual response variability, drug resistance, and the range of side effects associated with currently available medications. Nowadays, numerous research efforts are being made aiming at overcoming the obstacles of the available psoriasis treatments are still taking place.

Objective

This research aims to develop and evaluate a nanogel formulation loaded with khellin for the effective treatment of psoriasis.

Methods

Khellin nanogel was prepared using the self-assembly method with a synthesized gelatin-pluronic copolymer. The novel formulation was characterized via size, size distribution, encapsulation efficiency, release, and skin deposition.

Results

The final nanogel formulation had an average size of 119.6 nm, a polydispersity index of 0.248 and an excellent encapsulation efficiency of 88%. drug release study demonstrated that nanogels showed a great accelerated drug release profile by releasing khellin within 2 hours, which is suitable for photochemotherapy applications. In addition, khellin-loaded nanogel formulation had 1.7 times better skin deposition potential than the control gel formulation.

Conclusion

The prepared nanogel formulation provides a high potential to be an ideal drug delivery system of khellin in combination with phototherapy for more efficient psoriasis treatment.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010375509250429052937
2025-05-05
2025-10-30
Loading full text...

Full text loading...

/deliver/fulltext/cpb/10.2174/0113892010375509250429052937/BMS-CPB-2024-637.html?itemId=/content/journals/cpb/10.2174/0113892010375509250429052937&mimeType=html&fmt=ahah

References

  1. Kim W.B. Jerome D. Yeung J. Diagnosis and management of psoriasis. Can. Fam. Physic. 2017 63 278 285
    [Google Scholar]
  2. Wang F. Lee E. Lowes M.A. Haider A.S. Fuentes-Duculan J. Abello M.V. Chamian F. Cardinale I. Krueger J.G. Prominent production of IL-20 by CD68+/CD11c+ myeloid-derived cells in psoriasis: Gene regulation and cellular effects. J. Invest. Dermatol. 2006 126 7 1590 1599 10.1038/sj.jid.5700310 16645593
    [Google Scholar]
  3. Radi G. Campanati A. Diotallevi F. Bianchelli T. Offidani A. Novel therapeutic approaches and targets for treatment of psoriasis. Curr. Pharm. Biotechnol. 2021 22 1 7 31 10.2174/18734316MTA35NzY65 32598253
    [Google Scholar]
  4. Rousset L. Halioua B. Stress and psoriasis. Int. J. Dermatol. 2018 57 10 1165 1172 10.1111/ijd.14032 29729012
    [Google Scholar]
  5. Russo P.A.J. Ilchef R. Cooper A.J. Psychiatric morbidity in psoriasis: A review. Australas. J. Dermatol. 2004 45 3 155 161 10.1111/j.1440‑0960.2004.00078.x 15250891
    [Google Scholar]
  6. Iversen L. Dauden E. Segaert S. Freeman K. Magina S. Rigopoulos D. Thaci D. Reformulations of well‐known active ingredients in the topical treatment of psoriasis vulgaris can improve clinical outcomes for patients. J. Eur. Acad. Dermatol. Venereol. 2017 31 8 1271 1284 10.1111/jdv.14277 28419600
    [Google Scholar]
  7. Law R.M. Gulliver W.P. Psoriasis. Pharmacotherapy: A Pathophysiologic Approach. DiPiro J. Yee G. Posey L. Haines S. Nolin T. Ellingrod V. New York, US McGraw Hill 2020 1 6
    [Google Scholar]
  8. Bakshi H. Nagpal M. Singh M. Dhingra G.A. Aggarwal G. Treatment of psoriasis: A comprehensive review of entire therapies. Curr. Drug Saf. 2020 15 2 82 104 10.2174/22123911MTAziOTU84 31994468
    [Google Scholar]
  9. Luo Y. Chen J. Kuai L. Zhang Y. Ding X. Luo Y. Ru Y. Xing M. Li H. Sun X. Li B. Li X. Chinese herbal medicine for psoriasis: Evidence from 11 high-quality randomized controlled trials. Front. Pharmacol. 2021 11 599433 10.3389/fphar.2020.599433 33551804
    [Google Scholar]
  10. Chen H. Su Z. Pan X. Zheng X. Li H. Ye Z. Tang B. Lu Y. Zheng G. Lu C. Phytochemicals: Targeting autophagy to treat psoriasis. Phytomedicine 2023 120 155041 10.1016/j.phymed.2023.155041 37678054
    [Google Scholar]
  11. Khalil N. Bishr M. Desouky S. Salama O. Ammi Visnaga L., a potential medicinal plant: A review. Molecules 2020 25 2 301 10.3390/molecules25020301 31940874
    [Google Scholar]
  12. Franchi G.G. Ferri S. Bovalini L. Martelli P. Ammi Visnaga (L.) Lam.: Occurrence of khellin and visnagin in primary rib channels and endosperm, and emptiness of vittae, revealed by u.v. microscopy. Int. J. Crude Drug Res. 1987 25 3 137 144 10.3109/13880208709060918
    [Google Scholar]
  13. Vedaldi D. Caffieri S. Miolo G. Dall’Acqua F. Arslan P. Dark and photohemolysis of erythrocytes by furocoumarins. Z. Naturforsch. C J. Biosci. 1988 43 11-12 888 892 10.1515/znc‑1988‑11‑1215 3245878
    [Google Scholar]
  14. Abu-Hashem A.A. El-Shazly M. Synthesis, reactions and biological activities of furochromones: A review. Eur. J. Med. Chem. 2015 90 633 665 10.1016/j.ejmech.2014.12.001 25499986
    [Google Scholar]
  15. Abdel-Fattah A. Aboul-Enein N. Wassel G. El-Menshawi B. Preliminary report on the therapeutic effect of khellin in psoriasis. Dermatology 1983 167 2 109 110 10.1159/000249760 6628802
    [Google Scholar]
  16. Katare O.P. Garg B.J. Saraswat A. Bhatia A. Topical treatment in vitiligo and the potential uses of new drug delivery systems. Indian J. Dermatol. Venereol. Leprol. 2010 76 3 231 238 10.4103/0378‑6323.62961 20445292
    [Google Scholar]
  17. Cohen B.E. Elbuluk N. Mu E.W. Orlow S.J. Alternative systemic treatments for vitiligo: A review. Am. J. Clin. Dermatol. 2015 16 6 463 474 10.1007/s40257‑015‑0153‑5 26329814
    [Google Scholar]
  18. Risaliti L. Ambrosi M. Calamante M. Bergonzi M.C. Lo Nostro P. Bilia A.R. Preparation and characterization of ascosome vesicles loaded with khellin. J. Pharm. Sci. 2020 109 10 3114 3124 10.1016/j.xphs.2020.06.017 32565350
    [Google Scholar]
  19. Marconi B. Mancini F. Colombo P. Allegra F. Giordano F. Gazzaniga A. Orecchia G. Santi P. Distribution of khellin in excised human skin following iontophoresis and passive dermal transport. J. Cont. Rel. 1999 60 2-3 261 268 10.1016/S0168‑3659(99)00080‑2 10425331
    [Google Scholar]
  20. Capella G.L. Topical khellin and natural sunlight in the outpatient treatment of recalcitrant palmoplantar pompholyx: Report of an open pilot study. Dermatology 2005 211 4 381 383 10.1159/000088517 16286756
    [Google Scholar]
  21. Kemény L. Varga E. Novak Z. Advances in phototherapy for psoriasis and atopic dermatitis. Expert Rev. Clin. Immunol. 2019 15 11 1205 1214 10.1080/1744666X.2020.1672537 31575297
    [Google Scholar]
  22. Morliere P. Hönigsmann H. Averbeck D. Dardalhon M. Hüppe G. Ortel B. Santus R. Dubertret L. Phototherapeutic, photobiologic, and photosensitizing properties of khellin. J. Invest. Dermatol. 1988 90 5 720 724 10.1111/1523‑1747.ep13083852 3283251
    [Google Scholar]
  23. Hönigsmann H. Ortel B. Khellin photochemotherapy of vitiligo. Photodermatology 1985 2 4 193 194 4059075
    [Google Scholar]
  24. Rehman M.U. Tariq L. Arafah A. Ali S. Beigh S. Dar M.A. Dar T.H. Dar A.I. Alsaffar R.M. Masoodi M.H. Nanogel-based transdermal drug delivery system: A therapeutic strategy with under discussed potential. Curr. Top. Med. Chem. 2023 23 1 44 61 10.2174/1568026622666220818112728 35984019
    [Google Scholar]
  25. Lestari U. Muhaimin M. Chaerunisaa A.Y. Sujarwo W. Improved solubility and activity of natural product in nanohydrogel. Pharmaceuticals (Basel) 2023 16 12 1701 10.3390/ph16121701 38139827
    [Google Scholar]
  26. Sivaram A.J. Rajitha P. Maya S. Jayakumar R. Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015 7 4 509 533 10.1002/wnan.1328 25581024
    [Google Scholar]
  27. Sultana F. Manirujjaman M. Haque M.I-U. Arafat M. Sharmin S. An overview of nanogel drug delivery system. J. Appl. Pharm. Sci. 2013 3 8 95 105 10.7324/JAPS.2013.38.S15
    [Google Scholar]
  28. Foox M. Zilberman M. Drug delivery from gelatin-based systems. Expert Opin. Drug Deliv. 2015 12 9 1547 1563 10.1517/17425247.2015.1037272 25943722
    [Google Scholar]
  29. Kass L.E. Nguyen J. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 e1756 10.1002/wnan.1756 34532989
    [Google Scholar]
  30. Wang H. Deng H. Gao M. Zhang W. Self-assembled nanogels based on ionic gelation of natural polysaccharides for drug delivery. Front. Bioeng. Biotechnol. 2021 9 703559 10.3389/fbioe.2021.703559 34336811
    [Google Scholar]
  31. Wiradharma N. Zhang Y. Venkataraman S. Hedrick J.L. Yang Y.Y. Self-assembled polymer nanostructures for delivery of anticancer therapeutics. Nano Today 2009 4 4 302 317 10.1016/j.nantod.2009.06.001
    [Google Scholar]
  32. Naharros-Molinero A. Caballo-González M.Á. de la Mata F.J. García-Gallego S. Direct and reverse pluronic micelles: Design and characterization of promising drug delivery nanosystems. Pharmaceutics 2022 14 12 2628 10.3390/pharmaceutics14122628 36559122
    [Google Scholar]
  33. Singla P. Garg S. McClements J. Jamieson O. Peeters M. Mahajan R.K. Advances in the therapeutic delivery and applications of functionalized Pluronics: A critical review. Adv. Colloid Interface Sci. 2022 299 102563 10.1016/j.cis.2021.102563 34826745
    [Google Scholar]
  34. Lee C.F. Yang C.H. Lin T.L. Bahadur P. Chen L.J. Role of molecular weight and hydrophobicity of amphiphilic tri-block copolymers in temperature-dependent co-micellization process and drug solubility. Coll. Surf. B Biointerf. 2019 183 110461 10.1016/j.colsurfb.2019.110461 31479972
    [Google Scholar]
  35. Lee E.S. Oh Y.T. Youn Y.S. Nam M. Park B. Yun J. Kim J.H. Song H.T. Oh K.T. Binary mixing of micelles using Pluronics for a nano-sized drug delivery system. Coll. Surf. B Biointerf. 2011 82 1 190 195 10.1016/j.colsurfb.2010.08.033 20850281
    [Google Scholar]
  36. Kim S. Shi Y. Kim J.Y. Park K. Cheng J.X. Overcoming the barriers in micellar drug delivery: Loading efficiency, in vivo stability, and micelle–cell interaction. Expert Opin. Drug Deliv. 2010 7 1 49 62 10.1517/17425240903380446 20017660
    [Google Scholar]
  37. Batrakova E.V. Kabanov A.V. Pluronic block copolymers: Evolution of drug delivery concept from inert nanocarriers to biological response modifiers. J. Cont. Rel. 2008 130 2 98 106 10.1016/j.jconrel.2008.04.013 18534704
    [Google Scholar]
  38. Pepić I. Lovrić J. Hafner A. Filipović-Grčić J. Powder form and stability of Pluronic mixed micelle dispersions for drug delivery applications. Drug Dev. Ind. Pharm. 2014 40 7 944 951 10.3109/03639045.2013.791831 23627442
    [Google Scholar]
  39. Parmar A. Singh K. Bahadur A. Marangoni G. Bahadur P. Interaction and solubilization of some phenolic antioxidants in Pluronic® micelles. Coll. Surf. B Biointerf. 2011 86 2 319 326 10.1016/j.colsurfb.2011.04.015 21561746
    [Google Scholar]
  40. Kadam Y. Yerramilli U. Bahadur A. Bahadur P. Micelles from PEO–PPO–PEO block copolymers as nanocontainers for solubilization of a poorly water soluble drug hydrochlorothiazide. Coll. Surf. B Biointerf. 2011 83 1 49 57 10.1016/j.colsurfb.2010.10.041 21123038
    [Google Scholar]
  41. Nguyen V.T. Nguyen T.H. Dang L.H. Vu-Quang H. Tran N.Q. Folate-Conjugated Chitosan-Pluronic P123 Nanogels: Synthesis and Characterizations towards Dual Drug Delivery. J. Nanomater. 2019 2019 1 14 10.1155/2019/1067821
    [Google Scholar]
  42. Van Thoai D. Nguyen D.T. Dang L.H. Nguyen N.H. Nguyen V.T. Doan P. Nguyen B.T. Le Van Thu Tung N.N. Quyen T.N. Lipophilic effect of various pluronic-grafted gelatin copolymers on the quercetin delivery efficiency in these self-assembly nanogels. J. Polym. Res. 2020 27 12 369 10.1007/s10965‑020‑02216‑z
    [Google Scholar]
  43. Kim Y.T. Hong Y.S. Kimmel R.M. Rho J.H. Lee C.H. New approach for characterization of gelatin biopolymer films using proton behavior determined by low field 1H NMR spectrometry. J. Agric. Food Chem. 2007 55 26 10678 10684 10.1021/jf071092f 18052122
    [Google Scholar]
  44. Nguyen D.T. Dinh V.T. Dang L.H. Nguyen D.N. Giang B.L. Nguyen C.T. Nguyen T.B.T. Thu L.V. Tran N.Q. Dual interactions of amphiphilic gelatin copolymer and nanocurcumin improving the delivery efficiency of the nanogels. Polymers (Basel) 2019 11 5 814 10.3390/polym11050814 31067644
    [Google Scholar]
  45. Abdo L. Esenturk-Guzel I. Topuzoglu S. Yurtsever A. Development of herbal bioactive loaded nanoparticles for topical application in vitiligo. Farmacia 2023 71 6 1305 1315 10.31925/farmacia.2023.6.22
    [Google Scholar]
  46. Sahle F.F. Gerecke C. Kleuser B. Bodmeier R. Formulation and comparative in vitro evaluation of various dexamethasone-loaded pH-sensitive polymeric nanoparticles intended for dermal applications. Int. J. Pharm. 2017 516 1-2 21 31 10.1016/j.ijpharm.2016.11.029 27845215
    [Google Scholar]
  47. Khan T.A. Azad A.K. Fuloria S. Nawaz A. Subramaniyan V. Akhlaq M. Safdar M. Sathasivam K.V. Sekar M. Porwal O. Meenakshi D.U. Malviya R. Miret M.M. Mendiratta A. Fuloria N.K. Chitosan-coated 5-fluorouracil incorporated emulsions as transdermal drug delivery matrices. Polymers (Basel) 2021 13 19 3345 10.3390/polym13193345 34641162
    [Google Scholar]
  48. Jatana S. Callahan L. Pentland A. DeLouise L. Impact of cosmetic lotions on nanoparticle penetration through ex vivo C57BL/6 hairless mouse and human skin: A comparison study. Cosmetics 2016 3 1 6 10.3390/cosmetics3010006 27453793
    [Google Scholar]
  49. Ge S. Lin Y. Lu H. Li Q. He J. Chen B. Wu C. Xu Y. Percutaneous delivery of econazole using microemulsion as vehicle: Formulation, evaluation and vesicle-skin interaction. Int. J. Pharm. 2014 465 1-2 120 131 10.1016/j.ijpharm.2014.02.012 24530389
    [Google Scholar]
  50. Hathout R.M. Mansour S. Mortada N.D. Geneidi A.S. Guy R.H. Uptake of microemulsion components into the stratum corneum and their molecular effects on skin barrier function. Mol. Pharm. 2010 7 4 1266 1273 10.1021/mp100068s 20545350
    [Google Scholar]
  51. Qurt M.S. Esentürk İ. Birteksöz Tan S. Erdal M.S. Araman A. Güngör S. Voriconazole and sertaconazole loaded colloidal nano-carriers for enhanced skin deposition and improved topical fungal treatment. J. Drug Deliv. Sci. Technol. 2018 48 215 222 10.1016/j.jddst.2018.09.020
    [Google Scholar]
  52. Badr J.M. Hadad G.M. Nahriry K. Hassanean H.A. Validated HPLC method for simultaneous estimation of khellol glucoside, khellin and visnagin in Ammi visnaga L. fruits and pharmaceutical preparations. Nat. Prod. Res. 2015 29 7 593 601 10.1080/14786419.2014.945170 25111086
    [Google Scholar]
  53. Teixeira M.I. Lopes C.M. Gonçalves H. Catita J. Silva A.M. Rodrigues F. Amaral M.H. Costa P.C. Formulation, characterization, and cytotoxicity evaluation of lactoferrin functionalized lipid nanoparticles for riluzole delivery to the brain. Pharmaceutics 2022 14 1 185 185 10.3390/pharmaceutics14010185 35057079
    [Google Scholar]
  54. Turmezei J. Jávorszky E. Szabó E. Dredán J. Kállai-Szabó B. Zelkó R. Effect of storage temperature on the stability of total parenteral nutrition admixtures prepared for infants. Acta Pol. Pharm. 2015 72 5 843 849 26665390
    [Google Scholar]
  55. Fox C.B. Baldwin S.L. Duthie M.S. Reed S.G. Vedvick T.S. Immunomodulatory and physical effects of phospholipid composition in vaccine adjuvant emulsions. AAPS PharmSciTech 2012 13 2 498 506 10.1208/s12249‑012‑9771‑x 22415641
    [Google Scholar]
  56. Nguyen T.B.T. Dang L.H. Nguyen T.T.T. Tran D.L. Nguyen D.H. Nguyen V.T. Nguyen C.K. Nguyen T.H. Le V.T. Tran N.Q. Green processing of thermosensitive nanocurcumin-encapsulated chitosan hydrogel towards biomedical application. Green Process. Synth. 2016 5 6 511 520 10.1515/gps‑2016‑0062
    [Google Scholar]
  57. Kim M.S. Song H.S. Park H.J. Hwang S.J. Effect of solvent type on the nanoparticle formation of atorvastatin calcium by the supercritical antisolvent process. Chem. Pharm. Bull. (Tokyo) 2012 60 4 543 547 10.1248/cpb.60.543 22466739
    [Google Scholar]
  58. López R.R. G Font de Rubinat P. Sánchez L.M. Tsering T. Alazzam A. Bergeron K.F. Mounier C. Burnier J.V. Stiharu I. Nerguizian V. The effect of different organic solvents in liposome properties produced in a periodic disturbance mixer: Transcutol®, a potential organic solvent replacement. Coll. Surf. B Biointerf. 2021 198 111447 111447 10.1016/j.colsurfb.2020.111447 33223347
    [Google Scholar]
  59. Gacem N. Diao P. Effect of solvent polarity on the assembly behavior of PVP coated rhodium nanoparticles. Coll. Surf. A Physicochem. Eng. Asp. 2013 417 32 38 10.1016/j.colsurfa.2012.10.055
    [Google Scholar]
  60. Liu H. Zhang H. Wang J. Wei J. Effect of temperature on the size of biosynthesized silver nanoparticle: Deep insight into microscopic kinetics analysis. Arab. J. Chem. 2020 13 1 1011 1019 10.1016/j.arabjc.2017.09.004
    [Google Scholar]
  61. Gola A. Niżniowska A. Musiał W. The influence of initiator concentration on selected properties on poly-N-vinylcaprolactam nanoparticles. Nanomaterials (Basel) 2019 9 11 1577 10.3390/nano9111577 31703338
    [Google Scholar]
  62. Tuyen Dao T.P. Nguyen T.H. To V.V. Ho T.H. Nguyen T.A. Dang M.C. A new formulation of curcumin using poly (lactic-co-glycolic acid)—polyethylene glycol diblock copolymer as carrier material. Adv. Nat. Sci.: Nanosci. Nanotechnol. 2014 5 3 035013 035013 10.1088/2043‑6262/5/3/035013
    [Google Scholar]
  63. Badri W. Miladi K. Eddabra R. Fessi H. Elaissari A. Elaboration of nanoparticles containing indomethacin: Argan oil for transdermal local and cosmetic application. J. Nanomater. 2015 2015 1 935439 10.1155/2015/935439
    [Google Scholar]
  64. Homs M. Calderó G. Monge M. Morales D. Solans C. Influence of polymer concentration on the properties of nano-emulsions and nanoparticles obtained by a low-energy method. Coll. Surf. A Physicochem. Eng. Asp. 2018 536 204 212 10.1016/j.colsurfa.2017.06.009
    [Google Scholar]
  65. Pilaniya U. Pilaniya K. Chandrawanshi H.K. Gupta N. Rajput M.S. Formulation and evaluation of verapamil hydrochloride loaded solid lipid microparticles. Pharmazie 2011 66 1 24 30 10.1691/ph.2011.0061 21391431
    [Google Scholar]
  66. Gou M. Zheng X. Men K. Zhang J. Wang B. Lv L. Wang X. Zhao Y. Luo F. Chen L. Zhao X. Wei Y. Qian Z. Self-assembled hydrophobic honokiol loaded MPEG-PCL diblock copolymer micelles. Pharm. Res. 2009 26 9 2164 2173 10.1007/s11095‑009‑9929‑8 19568695
    [Google Scholar]
  67. Liu J. Xiao Y. Allen C. Polymer–drug compatibility: A guide to the development of delivery systems for the anticancer agent, ellipticine. J. Pharm. Sci. 2004 93 1 132 143 10.1002/jps.10533 14648643
    [Google Scholar]
  68. Kohli S. Pal A. Jain S. Preparation, characterization and evaluation of poly (lactide –co –glycolide) microspheres for the controlled release of zidovudine. Int. J. Pharm. Pharm. Sci. 2017 9 12 70 10.22159/ijpps.2017v9i12.18377
    [Google Scholar]
  69. Görner T. Gref R. Michenot D. Sommer F. Tran M.N. Dellacherie E. Lidocaine-loaded biodegradable nanospheres. I. Optimization Of the drug incorporation into the polymer matrix. J. Cont. Rel. 1999 57 3 259 268 10.1016/S0168‑3659(98)00121‑7 9895413
    [Google Scholar]
  70. Gyun Shin I.L. Yeon Kim S. Moo Lee Y. Soo Cho C. Sung Y.K. Methoxy poly(ethylene glycol)/ϵ-caprolactone amphiphilic block copolymeric micelle containing indomethacin. J. Cont. Rel. 1998 51 1 1 11 10.1016/S0168‑3659(97)00164‑8 9685899
    [Google Scholar]
  71. Hussein Y.H.A. Youssry M. Polymeric micelles of biodegradable diblock copolymers: Enhanced encapsulation of hydrophobic drugs. Materials (Basel) 2018 11 5 688 10.3390/ma11050688 29702593
    [Google Scholar]
  72. Liu X. Shen B. Shen C. Zhong R. Wang X. Yuan H. Nanoparticle-loaded gels for topical delivery of nitrofurazone: Effect of particle size on skin permeation and retention. J. Drug Deliv. Sci. Technol. 2018 45 April 367 372 10.1016/j.jddst.2018.04.005
    [Google Scholar]
  73. Yokota J. Kyotani S. Influence of nanoparticle size on the skin penetration, skin retention and anti-inflammatory activity of non-steroidal anti-inflammatory drugs. J. Chin. Med. Assoc. 2018 81 6 511 519 10.1016/j.jcma.2018.01.008 29555445
    [Google Scholar]
  74. Mardhiah Adib Z. Ghanbarzadeh S. Kouhsoltani M. Yari Khosroshahi A. Hamishehkar H. The effect of particle size on the deposition of solid lipid nanoparticles in different skin layers: A histological study. Adv. Pharm. Bull. 2016 6 1 31 36 10.15171/apb.2016.06 27123415
    [Google Scholar]
  75. Neamtu I. Rusu A.G. Diaconu A. Nita L.E. Chiriac A.P. Basic concepts and recent advances in nanogels as carriers for medical applications. Drug Deliv. 2017 24 1 539 557 10.1080/10717544.2016.1276232 28181831
    [Google Scholar]
  76. Radeva L. Zaharieva M.M. Spassova I. Kovacheva D. Pencheva-El Tibi I. Najdenski H. Yoncheva K. Biopolymeric nanogel as a drug delivery system for doxorubicin—improved drug stability and enhanced antineoplastic activity in skin cancer cells. Pharmaceuticals (Basel) 2024 17 2 186 10.3390/ph17020186 38399401
    [Google Scholar]
  77. Franchi G.G. Bovalini L. Martelli P. Ferri S. Sbardellati E. High performance liquid chromatography analysis of the furanochromones khellin and visnagin in various organs of Ammi visnaga (L.) Lam. at different developmental stages. J. Ethnopharmacol. 1985 14 2-3 203 212 10.1016/0378‑8741(85)90088‑1 4094467
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010375509250429052937
Loading
/content/journals/cpb/10.2174/0113892010375509250429052937
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: drug delivery ; khellin ; psoriasis ; topical ; Ammi visnaga L. ; nanogel
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test