Skip to content
2000
image of Sirtuins in Osteosarcoma: Cracking the Code and Opening Up New Treatment Options

Abstract

Osteosarcoma (OS) is a frequent primary malignant bone tumor that primarily affects adolescents and the elderly, and it is prone to metastasis and recurrence. The prognostic status of metastatic and recurrent OS has remained stagnant over the past decades despite the availability of an extensive range of chemotherapy drugs in the clinic. To increase the overall survival and quality of life of patients with osteosarcoma, new therapeutic approaches must be developed immediately. In recent years, sirtuins (SIRT1–7) have garnered a lot of attention as researchers investigate the mechanisms underlying OS development and look for efficient treatment approaches. The nicotinamide adenine dinucleotide (NAD+)-dependent histone deacetylases (HDACs) that make up the sirtuin family are engaged in several biologically controlled processes, including proliferation, invasion, metastasis, apoptosis, autophagy, and chemotherapy resistance. Despite their significance in cancer having been avidly studied for decades, their specific functions and mechanisms of action are not yet clear due to limited reports. This review will summarize the current research status and look forward to the directions and prospects of its application in osteosarcoma research, aiming to open up new avenues for the treatment and study of osteosarcoma.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010374421250419163509
2025-04-25
2025-09-06
Loading full text...

Full text loading...

References

  1. Ceballos M.P. Decándido G. Quiroga A.D. Comanzo C.G. Livore V.I. Lorenzetti F. Lambertucci F. Chazarreta-Cifre L. Banchio C. Alvarez M.L. Mottino A.D. Carrillo M.C. Inhibition of sirtuins 1 and 2 impairs cell survival and migration and modulates the expression of P-glycoprotein and MRP3 in hepatocellular carcinoma cell lines. Toxicol. Lett. 2018 289 63 74 10.1016/j.toxlet.2018.03.011 29545174
    [Google Scholar]
  2. Pingping B. Yuhong Z. Weiqi L. Chunxiao W. Chunfang W. Yuanjue S. Chenping Z. Jianru X. Jiade L. Lin K. Zhengdong C. Weibin Z. Chen F. Yang Y. Incidence and mortality of sarcomas in Shanghai, China, during 2002-2014. Front Oncol., 2019, 9, 662. Kansara, M.; Teng, M. W.; Smyth, M. J.; Thomas, D. M. Rranslational biology of osteosarcoma. Nat. Rev. Cancer 2014 14 11 722 735 25319867
    [Google Scholar]
  3. Liu J. Yang L. Fu Q. Liu S. Emerging roles and potential biological value of CircRNA in osteosarcoma. Front. Oncol. 2020 10 552236 10.3389/fonc.2020.552236 33251132
    [Google Scholar]
  4. Ji Z. Liu G.H. Qu J. Mitochondrial sirtuins, metabolism, and aging. J. Genet. Genomics 2022 49 4 287 298 10.1016/j.jgg.2021.11.005 34856390
    [Google Scholar]
  5. Lin L. Zheng X. Qiu C. Dongol S. Lv Q. Jiang J. Kong B. Wang C. SIRT1 promotes endometrial tumor growth by targeting SREBP1 and lipogenesis. Oncol. Rep. 2014 32 6 2831 2835 10.3892/or.2014.3521 25270091
    [Google Scholar]
  6. Jin X. Wei Y. Xu F. Zhao M. Dai K. Shen R. Yang S. Zhang N. SIRT1 promotes formation of breast cancer through modulating Akt activity. J. Cancer 2018 9 11 2012 2023 10.7150/jca.24275 29896286
    [Google Scholar]
  7. Simmons G.E. Pandey S. Nedeljkovic-Kurepa A. Saxena M. Wang A. Pruitt K. Frizzled 7 expression is positively regulated by SIRT1 and β-catenin in breast cancer cells. PLoS One 2014 9 6 e98861 10.1371/journal.pone.0098861 24897117
    [Google Scholar]
  8. Park Y. Lee H.J. Sim D.Y. Park J.E. Ahn C.H. Park S.Y. Lee Y.C. Shim B.S. Kim B. Kim S.H. Inhibition of glycolysis and SIRT1/GLUT1 signaling ameliorates the apoptotic effect of Leptosidin in prostate cancer cells. Phytother. Res. 2024 38 3 1235 1244 10.1002/ptr.8115 38176954
    [Google Scholar]
  9. Chen I.C. Chiang W.F. Huang H.H. Chen P.F. Shen Y.Y. Chiang H.C. Role of SIRT1 in regulation of epithelial-to-mesenchymal transition in oral squamous cell carcinoma metastasis. Mol. Cancer 2014 13 1 254 10.1186/1476‑4598‑13‑254 25424420
    [Google Scholar]
  10. Kuo S.J. Lin H.Y. Chien S.Y. Chen D.R. SIRT1 suppresses breast cancer growth through downregulation of the Bcl-2 protein. Oncol. Rep. 2013 30 1 125 130 10.3892/or.2013.2470 23673452
    [Google Scholar]
  11. Huang S. Zhao Z. Tang D. Zhou Q. Li Y. Zhou L. Yin Y. Wang Y. Pan Y. Dorfman R.G. Ling T. Zhang M. Downregulation of SIRT2 inhibits invasion of hepatocellular carcinoma by inhibiting energy metabolism. Transl. Oncol. 2017 10 6 917 927 10.1016/j.tranon.2017.09.006 28992545
    [Google Scholar]
  12. Park S.H. Ozden O. Liu G. Song H.Y. Zhu Y. Yan Y. Zou X. Kang H.J. Jiang H. Principe D.R. Cha Y.I. Roh M. Vassilopoulos A. Gius D. SIRT2-mediated deacetylation and tetramerization of pyruvate kinase directs glycolysis and tumor growth. Cancer Res. 2016 76 13 3802 3812 10.1158/0008‑5472.CAN‑15‑2498 27197174
    [Google Scholar]
  13. Piracha Z.Z. Saeed U. Piracha I.E. Noor S. Noor E. Decoding the multifaceted interventions between human sirtuin 2 and dynamic hepatitis B viral proteins to confirm their roles in HBV replication. Front. Cell. Infect. Microbiol. 2024 13 1234903 10.3389/fcimb.2023.1234903 38239506
    [Google Scholar]
  14. Zhao D. Mo Y. Li M.T. Zou S.W. Cheng Z.L. Sun Y.P. Xiong Y. Guan K.L. Lei Q.Y. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. J. Clin. Invest. 2014 124 12 5453 5465 10.1172/JCI76611 25384215
    [Google Scholar]
  15. Du Y. Wu J. Zhang H. Li S. Sun H. Reduced expression of SIRT2 in serous ovarian carcinoma promotes cell proliferation through disinhibition of CDK4 expression. Mol. Med. Rep. 2017 15 4 1638 1646 10.3892/mmr.2017.6183 28259910
    [Google Scholar]
  16. Xu H. Li Y. Chen L. Wang C. Wang Q. Zhang H. Lin Y. Li Q. Pang T. SIRT2 mediates multidrug resistance in acute myelogenous leukemia cells via ERK1/2 signaling pathway. Int. J. Oncol. 2016 48 2 613 623 10.3892/ijo.2015.3275 26647771
    [Google Scholar]
  17. Wei Z. Song J. Wang G. Cui X. Zheng J. Tang Y. Chen X. Li J. Cui L. Liu C.Y. Yu W. Deacetylation of serine hydroxymethyl-transferase 2 by SIRT3 promotes colorectal carcinogenesis. Nat. Commun. 2018 9 1 4468 10.1038/s41467‑018‑06812‑y 30367038
    [Google Scholar]
  18. Zou X. Zhu Y. Park S.H. Liu G. O’Brien J. Jiang H. Gius D. SIRT3-mediated dimerization of IDH2 directs cancer cell metabolism and tumor growth. Cancer Res. 2017 77 15 3990 3999 10.1158/0008‑5472.CAN‑16‑2393 28536275
    [Google Scholar]
  19. Liu R. Zeng L.W. Gong R. Yuan F. Shu H.B. Li S. mTORC1 activity regulates post-translational modifications of glycine decarboxylase to modulate glycine metabolism and tumorigenesis. Nat. Commun. 2021 12 1 4227 10.1038/s41467‑021‑24321‑3 34244482
    [Google Scholar]
  20. Neeli P.K. Gollavilli P.N. Mallappa S. Hari S.G. Kotamraju S. A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis. Oncogene 2020 39 10 2088 2102 10.1038/s41388‑019‑1126‑6 31806873
    [Google Scholar]
  21. Ozden O. Park S.H. Wagner B.A. Song Y. H.; Zhu, Y.; Vassilopoulos, A.; Jung, B.; Buettner, G.R.; Gius, D. SIRT3 deacetylates and increases pyruvate dehydrogenase activity in cancer cells. Free Radic. Biol. Med. 2014 76 163 172 10.1016/j.freeradbiomed.2014.08.001 25152236
    [Google Scholar]
  22. Yang H. Zhou L. Shi Q. Zhao Y. Lin H. Zhang M. Zhao S. Yang Y. Ling Z.Q. Guan K.L. Xiong Y. Ye D. SIRT 3-dependent GOT 2 acetylation status affects the malate–aspartate NADH shuttle activity and pancreatic tumor growth. EMBO J. 2015 34 8 1110 1125 10.15252/embj.201591041 25755250
    [Google Scholar]
  23. Jin J. Bai L. Wang D. Ding W. Cao Z. Yan P. Li Y. Xi L. Wang Y. Zheng X. Wei H. Ding C. Wang Y. SIRT3 -dependent delactylation of cyclin E2 prevents hepatocellular carcinoma growth. EMBO Rep. 2023 24 5 e56052 10.15252/embr.202256052 36896611
    [Google Scholar]
  24. Liu M. Wang Z. Ren M. Yang X. Liu B. Qi H. Yu M. Song S. Chen S. Liu L. Zhang Y. Zou J. Zhu W.G. Yin Y. Luo J. SIRT4 regulates PTEN stability through IDE in response to cellular stresses. FASEB J. 2019 33 4 5535 5547 10.1096/fj.201801987R 30649986
    [Google Scholar]
  25. Sun H. Huang D. Liu G. Jian F. Zhu J. Zhang L. SIRT4 acts as a tumor suppressor in gastric cancer by inhibiting cell proliferation, migration, and invasion. OncoTargets Ther. 2018 11 3959 3968 10.2147/OTT.S156143 30022839
    [Google Scholar]
  26. Gu L. Zhu Y. Lin X. Tan X. Lu B. Li Y. Stabilization of FASN by ACAT1-mediated GNPAT acetylation promotes lipid metabolism and hepatocarcinogenesis. Oncogene 2020 39 11 2437 2449 10.1038/s41388‑020‑1156‑0 31974474
    [Google Scholar]
  27. Zhao L. Su H. Liu X. Wang H. Feng Y. Wang Y. Chen H. Dai L. Lai S. Xu S. Li C. Hao J. Tang B. mTORC1-c-Myc pathway rewires methionine metabolism for HCC progression through suppressing SIRT4 mediated ADP ribosylation of MAT2A. Cell Biosci. 2022 12 1 183 10.1186/s13578‑022‑00919‑y 36371321
    [Google Scholar]
  28. Li Z. Li H. Zhao Z.B. Zhu W. Feng P.P. Zhu X.W. Gong J.P. SIRT4 silencing in tumor-associated macrophages promotes HCC development via PPARδ signalling-mediated alternative activation of macrophages. J. Exp. Clin. Cancer Res. 2019 38 1 469 10.1186/s13046‑019‑1456‑9 31744516
    [Google Scholar]
  29. Shi L. Yan H. An S. Shen M. Jia W. Zhang R. Zhao L. Huang G. Liu J. SIRT 5-mediated deacetylation of LDHB promotes autophagy and tumorigenesis in colorectal cancer. Mol. Oncol. 2019 13 2 358 375 10.1002/1878‑0261.12408 30443978
    [Google Scholar]
  30. Yang X. Wang Z. Li X. Liu B. Liu M. Liu L. Chen S. Ren M. Wang Y. Yu M. Wang B. Zou J. Zhu W.G. Yin Y. Gu W. Luo J. SHMT2 desuccinylation by SIRT5 drives cancer cell proliferation. Cancer Res. 2018 78 2 372 386 10.1158/0008‑5472.CAN‑17‑1912 29180469
    [Google Scholar]
  31. Chang L. Xi L. Liu Y. Liu R. Wu Z. Jian Z. SIRT5 promotes cell proliferation and invasion in hepatocellular carcinoma by targeting E2F1. Mol. Med. Rep. 2018 17 1 342 349 29115436
    [Google Scholar]
  32. Choi S.Y. Jeon J.M. Na A.Y. Kwon O.K. Bang I.H. Ha Y.S. Bae E.J. Park B.H. Lee E.H. Kwon T.G. Lee J.N. Lee S. SIRT5 directly inhibits the PI3K/AKT pathway in prostate cancer cell lines. Cancer Genomics Proteomics 2022 19 1 50 59 10.21873/cgp.20303 34949659
    [Google Scholar]
  33. Sun R. Zhang Z. Bao R. Guo X. Gu Y. Yang W. Wei J. Chen X. Tong L. Meng J. Zhong C. Zhang C. Zhang J. Sun Y. Ling C. Tong X. Yu F.X. Yu H. Qu W. Zhao B. Guo W. Qian M. Saiyin H. Liu Y. Liu R.H. Xie C. Liu W. Xiong Y. Guan K.L. Shi Y. Wang P. Ye D. Loss of SIRT5 promotes bile acid-induced immunosuppressive microenvironment and hepatocarcinogenesis. J. Hepatol. 2022 77 2 453 466 10.1016/j.jhep.2022.02.030 35292350
    [Google Scholar]
  34. Polletta L. Vernucci E. Carnevale I. Arcangeli T. Rotili D. Palmerio S. Steegborn C. Nowak T. Schutkowski M. Pellegrini L. Sansone L. Villanova L. Runci A. Pucci B. Morgante E. Fini M. Mai A. Russo M.A. Tafani M. SIRT5 regulation of ammonia-induced autophagy and mitophagy. Autophagy 2015 11 2 253 270 10.1080/15548627.2015.1009778 25700560
    [Google Scholar]
  35. Han L.L. Jia L. Wu F. Huang C. Sirtuin6 (SIRT6) promotes the EMT of hepatocellular carcinoma by stimulating autophagic degradation of E-cadherin. Mol. Cancer Res. 2019 17 11 2267 2280 10.1158/1541‑7786.MCR‑19‑0321 31551254
    [Google Scholar]
  36. Zhang C. Yu Y. Huang Q. Tang K. SIRT6 regulates the proliferation and apoptosis of hepatocellular carcinoma via the ERK1/2 signaling pathway. Mol. Med. Rep. 2019 20 2 1575 1582 10.3892/mmr.2019.10398 31257493
    [Google Scholar]
  37. Zhou H.Z. Zeng H.Q. Yuan D. Ren J.H. Cheng S.T. Yu H.B. Ren F. Wang Q. Qin Y.P. Huang A.L. Chen J. NQO1 potentiates apoptosis evasion and upregulates XIAP via inhibiting proteasome-mediated degradation SIRT6 in hepatocellular carcinoma. Cell Commun. Signal. 2019 17 1 168 10.1186/s12964‑019‑0491‑7 31842909
    [Google Scholar]
  38. Chen X. Hao B. Liu Y. Dai D. Han G. Li Y. Wu X. Zhou X. Yue Z. Wang L. Cao Y. Liu J. The histone deacetylase SIRT6 suppresses the expression of the RNA-binding protein PCBP2 in glioma. Biochem. Biophys. Res. Commun. 2014 446 1 364 369 10.1016/j.bbrc.2014.02.116 24607900
    [Google Scholar]
  39. Bhardwaj A. Das S. SIRT6 deacetylates PKM2 to suppress its nuclear localization and oncogenic functions. Proc. Natl. Acad. Sci. USA 2016 113 5 E538 E547 10.1073/pnas.1520045113 26787900
    [Google Scholar]
  40. Yang Z. Yu W. Huang R. Ye M. Min Z. SIRT6/HIF-1α axis promotes papillary thyroid cancer progression by inducing epithelial–mesenchymal transition. Cancer Cell Int. 2019 19 1 17 10.1186/s12935‑019‑0730‑4 30675128
    [Google Scholar]
  41. Ding M. Jiang C.Y. Zhang Y. Zhao J. Han B.M. Xia S.J. SIRT7 depletion inhibits cell proliferation and androgen-induced autophagy by suppressing the AR signaling in prostate cancer. J. Exp. Clin. Cancer Res. 2020 39 1 28 10.1186/s13046‑019‑1516‑1 32019578
    [Google Scholar]
  42. Xiang J. Zhang N. Sun H. Su L. Zhang C. Xu H. Feng J. Wang M. Chen J. Liu L. Shan J. Shen J. Yang Z. Wang G. Zhou H. Prieto J. Ávila M.A. Liu C. Qian C. Disruption of SIRT7 increases the efficacy of checkpoint inhibitor via MEF2D regulation of programmed cell death 1 ligand 1 in hepatocellular carcinoma cells. Gastroenterology 2020 158 3 664 678.e24 10.1053/j.gastro.2019.10.025 31678303
    [Google Scholar]
  43. Barber M.F. Michishita-Kioi E. Xi Y. Tasselli L. Kioi M. Moqtaderi Z. Tennen R.I. Paredes S. Young N.L. Chen K. Struhl K. Garcia B.A. Gozani O. Li W. Chua K.F. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 2012 487 7405 114 118 10.1038/nature11043 22722849
    [Google Scholar]
  44. Fang Q. Liu Q. Song Z. Zhang X. Du Y.A. NAD(P)H oxidase mimic for catalytic tumor therapy via a deacetylase SIRT7-mediated AKT/GSK3β pathway. Nanoscale 2024 16 13 6585 6595 10.1039/D3NR06538C 38465774
    [Google Scholar]
  45. Chen K. Li T. Diao H. Wang Q. Zhou X. Huang Z. Wang M. Mao Z. Yang Y. Yu W. SIRT7 knockdown promotes gemcitabine sensitivity of pancreatic cancer cell via upregulation of GLUT3 expression. Cancer Lett. 2024 598 217109 10.1016/j.canlet.2024.217109 39002692
    [Google Scholar]
  46. Tang X. Shi L. Xie N. Liu Z. Qian M. Meng F. Xu Q. Zhou M. Cao X. Zhu W.G. Liu B. SIRT7 antagonizes TGF-β signaling and inhibits breast cancer metastasis. Nat. Commun. 2017 8 1 318 10.1038/s41467‑017‑00396‑9 28827661
    [Google Scholar]
  47. Zhao E. Hou J. Ke X. Abbas M.N. Kausar S. Zhang L. Cui H. The roles of sirtuin family proteins in cancer progression. Cancers (Basel) 2019 11 12 1949 10.3390/cancers11121949 31817470
    [Google Scholar]
  48. Brandl L. Hartmann D. Kirchner T. Menssen A. Expression of n-MYC, NAMPT and SIRT1 in basal cell carcinomas and their cells of origin. Acta Derm. Venereol. 2019 99 1 63 71 30182136
    [Google Scholar]
  49. Abraham A. Qiu S. Chacko B.K. Li H. Paterson A. He J. Agarwal P. Shah M. Welner R. Darley-Usmar V.M. Bhatia R. SIRT1 regulates metabolism and leukemogenic potential in CML stem cells. J. Clin. Invest. 2019 129 7 2685 2701 10.1172/JCI127080 31180336
    [Google Scholar]
  50. Byrnes K. Blessinger S. Bailey N.T. Scaife R. Liu G. Khambu B. Therapeutic regulation of autophagy in hepatic metabolism. Acta Pharm. Sin. B 2022 12 1 33 49 10.1016/j.apsb.2021.07.021 35127371
    [Google Scholar]
  51. Costa-Machado L.F. Martín-Hernández R. Sanchez-Luengo M.Á. Hess K. Vales-Villamarin C. Barradas M. Lynch C. de la Nava D. Diaz-Ruiz A. de Cabo R. Cañamero M. Martinez L. Sanchez-Carbayo M. Herranz D. Serrano M. Fernandez-Marcos P.J. Sirt1 protects from K-Ras-driven lung carcinogenesis. EMBO Rep. 2018 19 9 e43879 10.15252/embr.201643879 30021836
    [Google Scholar]
  52. Fang Z. Gong C. Yu S. Zhou W. Hassan W. Li H. Wang X. Hu Y. Gu K. Chen X. Hong B. Bao Y. Chen X. Zhang X. Liu H. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 2018 415 58 72 10.1016/j.canlet.2017.11.040 29203250
    [Google Scholar]
  53. Jia D. Niu Y. Li D. Liu Z. lncRNA C2dat1 promotes cell proliferation, migration, and invasion by targeting miR-34a-5p in osteosarcoma cells. Oncol. Res. 2018 26 5 753 764 10.3727/096504017X15024946480113 28810936
    [Google Scholar]
  54. Yu X.J. Guo X.Z. Li C. Chong Y. Song T.N. Pang J.F. Shao M. SIRT1-ZEB1-positive feedback promotes epithelial-mesenchymal transition process and metastasis of osteosarcoma. J. Cell. Biochem. 2019 120 3 3727 3735 10.1002/jcb.27653 30304565
    [Google Scholar]
  55. Ma L. Maruwge W. Strambi A. D’Arcy P. Pellegrini P. Kis L. de Milito A. Lain S. Brodin B. SIRT1 and SIRT2 inhibition impairs pediatric soft tissue sarcoma growth. Cell Death Dis. 2014 5 10 e1483 10.1038/cddis.2014.385 25341037
    [Google Scholar]
  56. Ying H. Ying B. Zhang J. Kong D. Sirt1 modulates H3 phosphorylation and facilitates osteosarcoma cell autophagy. Artif. Cells Nanomed. Biotechnol. 2019 47 1 3374 3381 10.1080/21691401.2019.1648280 31390921
    [Google Scholar]
  57. Feng H. Guo P. Wang J. Xu J. Xie C. Gao F. Expression of Leptin and Sirtuin-1 is associated with poor prognosis in patients with osteosarcoma. Pathol. Res. Pract. 2016 212 4 319 324 10.1016/j.prp.2016.02.002 26936024
    [Google Scholar]
  58. Zhang N. Xie T. Xian M. Wang Y.J. Li H.Y. Ying M.D. Ye Z.M. SIRT1 promotes metastasis of human osteosarcoma cells. Oncotarget 2016 7 48 79654 79669 10.18632/oncotarget.12916 27793039
    [Google Scholar]
  59. He S. Wang Z. Tang H. Dong J. Qu Y. Lv J. MiR-217 inhibits proliferation, migration, and invasion by targeting SIRT1 in osteosarcoma. Cancer Biother. Radiopharm. 2019 34 4 264 270 10.1089/cbr.2017.2394 31070483
    [Google Scholar]
  60. Tian Y. Liu R. Hou X. Gao Z. Liu X. Zhang W. SIRT2 promotes the viability, invasion and metastasis of osteosarcoma cells by inhibiting the degradation of Snail. Cell Death Dis. 2022 13 11 935 10.1038/s41419‑022‑05388‑2 36344502
    [Google Scholar]
  61. Garva R. Thepmalee C. Yasamut U. Sudsaward S. Guazzelli A. Rajendran R. Tongmuang N. Khunchai S. Meysami P. Limjindaporn T. Yenchitsomanus P. Mutti L. Krstic-Demonacos M. Demonacos C. Sirtuin family members selectively regulate autophagy in osteosarcoma and mesothelioma cells in response to cellular stress. Front. Oncol. 2019 9 949 10.3389/fonc.2019.00949 31608237
    [Google Scholar]
  62. Gao Y. Qu Y. Zhou Q. Ma Y. SIRT6 inhibits proliferation and invasion in osteosarcoma cells by targeting N-cadherin. Oncol. Lett. 2019 17 1 1237 1244 30655890
    [Google Scholar]
  63. Xue W. Ma L. Wang Z. Zhang W. Zhang X. FOXN3 is downregulated in osteosarcoma and transcriptionally regulates SIRT6, and suppresses migration and invasion in osteosarcoma. Oncol. Rep. 2019 41 2 1404 1414 30483801
    [Google Scholar]
  64. Wei W. Jing Z.X. Ke Z. Yi P. Sirtuin 7 plays an oncogenic role in human osteosarcoma via downregulating CDC4 expression. Am. J. Cancer Res. 2017 7 9 1788 1803 28979804
    [Google Scholar]
  65. Kiran S. Oddi V. Ramakrishna G. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response. Exp. Cell Res. 2015 331 1 123 141 10.1016/j.yexcr.2014.11.001 25445786
    [Google Scholar]
  66. Kim H.S. Vassilopoulos A. Wang R.H. Lahusen T. Xiao Z. Xu X. Li C. Veenstra T.D. Li B. Yu H. Ji J. Wang X.W. Park S.H. Cha Y.I. Gius D. Deng C.X. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 2011 20 4 487 499 10.1016/j.ccr.2011.09.004 22014574
    [Google Scholar]
  67. Nguyen P. Lee S. Lorang-Leins D. Trepel J. Smart D.K. SIRT2 interacts with β-catenin to inhibit Wnt signaling output in response to radiation-induced stress. Mol. Cancer Res. 2014 12 9 1244 1253 10.1158/1541‑7786.MCR‑14‑0223‑T 24866770
    [Google Scholar]
  68. Malgulwar P.B. Danussi C. Dharmaiah S. Johnson W. Singh A. Rai K. Rao A. Huse J.T. Sirtuin 2 inhibition modulates chromatin landscapes genome-wide to induce senescence in ATRX-deficient malignant glioma. Neuro-oncol. 2024 26 1 55 67 10.1093/neuonc/noad155 37625115
    [Google Scholar]
  69. Chen J. Chan A.W.H. To K.F. Chen W. Zhang Z. Ren J. Song C. Cheung Y.S. Lai P.B.S. Cheng S.H. Ng M.H.L. Huang A. Ko B.C.B. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3β/β-catenin signaling. Hepatology 2013 57 6 2287 2298 10.1002/hep.26278 23348706
    [Google Scholar]
  70. Seo K-S. Park J-H. Heo J-Y. Jing K. Han J. Min K-N. Kim C. Koh G.Y. Lim K. Kang G-Y. Uee Lee J. Yim Y-H. Shong M. Kwak T-H. Kweon G.R. SIRT2 regulates tumour hypoxia response by promoting HIF-1α hydroxylation. Oncogene 2015 34 11 1354 1362 10.1038/onc.2014.76 24681946
    [Google Scholar]
  71. Desouki M.M. Doubinskaia I. Gius D. Abdulkadir S.A. Decreased mitochondrial SIRT3 expression is a potential molecular biomarker associated with poor outcome in breast cancer. Hum. Pathol. 2014 45 5 1071 1077 10.1016/j.humpath.2014.01.004 24746213
    [Google Scholar]
  72. Li R. Quan Y. Xia W. SIRT3 inhibits prostate cancer metastasis through regulation of FOXO3A by suppressing Wnt/β-catenin pathway. Exp. Cell Res. 2018 364 2 143 151 10.1016/j.yexcr.2018.01.036 29421536
    [Google Scholar]
  73. Li X. Zhang W. Xing Z. Hu S. Zhang G. Wang T. Wang T. Fan Q. Chen G. Cheng J. Jiang X. Cai R. Targeting SIRT3 sensitizes glioblastoma to ferroptosis by promoting mitophagy and inhibiting SLC7A11. Cell Death Dis. 2024 15 2 168 10.1038/s41419‑024‑06558‑0 38395990
    [Google Scholar]
  74. Cai G. Ge Z. Xu Y. Cai L. Sun P. Huang G. SIRT4 functions as a tumor suppressor during prostate cancer by inducing apoptosis and inhibiting glutamine metabolism. Sci. Rep. 2022 12 1 12208 10.1038/s41598‑022‑16610‑8 35842463
    [Google Scholar]
  75. Fu L. Dong Q. He J. Wang X. Xing J. Wang E. Qiu X. Li Q. SIRT4 inhibits malignancy progression of NSCLCs, through mitochondrial dynamics mediated by the ERK-Drp1 pathway. Oncogene 2017 36 19 2724 2736 10.1038/onc.2016.425 27941873
    [Google Scholar]
  76. Wang Y.S. Du L. Liang X. Meng P. Bi L. Wang Y. Wang C. Tang B. Sirtuin 4 depletion promotes hepatocellular carcinoma tumorigenesis through regulating adenosine-monophosphate-activated protein kinase alpha/mammalian target of rapamycin axis in mice. Hepatology 2019 69 4 1614 1631 10.1002/hep.30421 30552782
    [Google Scholar]
  77. Hu Y. Lin J. Lin Y. Chen X. Zhu G. Huang G. Overexpression of SIRT4 inhibits the proliferation of gastric cancer cells through cell cycle arrest. Oncol. Lett. 2019 17 2 2171 2176 30745932
    [Google Scholar]
  78. Jeong S.M. Xiao C. Finley L.W.S. Lahusen T. Souza A.L. Pierce K. Li Y.H. Wang X. Laurent G. German N.J. Xu X. Li C. Wang R.H. Lee J. Csibi A. Cerione R. Blenis J. Clish C.B. Kimmelman A. Deng C.X. Haigis M.C. SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 2013 23 4 450 463 10.1016/j.ccr.2013.02.024 23562301
    [Google Scholar]
  79. Guan J. Jiang X. Gai J. Sun X. Zhao J. Li J. Li Y. Cheng M. Du T. Fu L. Li Q. Sirtuin 5 regulates the proliferation, invasion and migration of prostate cancer cells through acetyl-CoA acetyltransferase 1. J. Cell. Mol. Med. 2020 24 23 14039 14049 10.1111/jcmm.16016 33103371
    [Google Scholar]
  80. Wang Y.Q. Wang H.L. Xu J. Tan J. Fu L.N. Wang J.L. Zou T.H. Sun D.F. Gao Q.Y. Chen Y.X. Fang J.Y. Sirtuin5 contributes to colorectal carcinogenesis by enhancing glutaminolysis in a deglutarylation-dependent manner. Nat. Commun. 2018 9 1 545 10.1038/s41467‑018‑02951‑4 29416026
    [Google Scholar]
  81. Xu L. Che X. Wu Y. Song N. Shi S. Wang S. Li C. Zhang L. Zhang X. Qu X. Teng Y. SIRT5 as a biomarker for response to anthracycline-taxane-based neoadjuvant chemotherapy in triple-negative breast cancer. Oncol. Rep. 2018 39 5 2315 2323 10.3892/or.2018.6319 29565454
    [Google Scholar]
  82. Tan M. Peng C. Anderson K.A. Chhoy P. Xie Z. Dai L. Park J. Chen Y. Huang H. Zhang Y. Ro J. Wagner G.R. Green M.F. Madsen A.S. Schmiesing J. Peterson B.S. Xu G. Ilkayeva O.R. Muehlbauer M.J. Braulke T. Mühlhausen C. Backos D.S. Olsen C.A. McGuire P.J. Pletcher S.D. Lombard D.B. Hirschey M.D. Zhao Y. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metab. 2014 19 4 605 617 10.1016/j.cmet.2014.03.014 24703693
    [Google Scholar]
  83. Zhang Z.G. Qin C.Y. Sirt6 suppresses hepatocellular carcinoma cell growth via inhibiting the extracellular signal-regulated kinase signaling pathway. Mol. Med. Rep. 2014 9 3 882 888 10.3892/mmr.2013.1879 24366394
    [Google Scholar]
  84. Garcia-Peterson L.M. Ndiaye M.A. Singh C.K. Chhabra G. Huang W. Ahmad N. SIRT6 histone deacetylase functions as a potential oncogene in human melanoma. Genes Cancer 2017 8 9-10 701 712 10.18632/genesandcancer.153 29234488
    [Google Scholar]
  85. Ming M. Han W. Zhao B. Sundaresan N.R. Deng C.X. Gupta M.P. He Y.Y. SIRT6 promotes COX-2 expression and acts as an oncogene in skin cancer. Cancer Res. 2014 74 20 5925 5933 10.1158/0008‑5472.CAN‑14‑1308 25320180
    [Google Scholar]
  86. Zhang Z. Ha S.H. Moon Y.J. Hussein U.K. Song Y. Kim K.M. Park S.H. Park H.S. Park B.H. Ahn A.R. Lee S.A. Ahn S.J. Kim J.R. Jang K.Y. Inhibition of SIRT6 potentiates the anti-tumor effect of doxorubicin through suppression of the DNA damage repair pathway in osteosarcoma. J. Exp. Clin. Cancer Res. 2020 39 1 247 10.1186/s13046‑020‑01759‑9 33198792
    [Google Scholar]
  87. Blank M.F. Chen S. Poetz F. Schnölzer M. Voit R. Grummt I. SIRT7-dependent deacetylation of CDK9 activates RNA polymerase II transcription. Nucleic Acids Res. 2017 45 5 2675 2686 10.1093/nar/gkx053 28426094
    [Google Scholar]
  88. Hubbi M.E. Hu H. Kshitiz; Gilkes, D.M.; Semenza, G.L. Sirtuin-7 inhibits the activity of hypoxia-inducible factors. J. Biol. Chem. 2013 288 29 20768 20775 10.1074/jbc.M113.476903 23750001
    [Google Scholar]
  89. Yu H. Ye W. Wu J. Meng X. Liu R. Ying X. Zhou Y. Wang H. Pan C. Huang W. Overexpression of sirt7 exhibits oncogenic property and serves as a prognostic factor in colorectal cancer. Clin. Cancer Res. 2014 20 13 3434 3445 10.1158/1078‑0432.CCR‑13‑2952 24771643
    [Google Scholar]
  90. Kim W. Kim J.E. SIRT7 an emerging sirtuin: Deciphering newer roles. J. Physiol. Pharmacol. 2013 64 5 531 534 24304566
    [Google Scholar]
  91. Hamaidi I. Zhang L. Kim N. Wang M.H. Iclozan C. Fang B. Liu M. Koomen J.M. Berglund A.E. Yoder S.J. Yao J. Engelman R.W. Creelan B.C. Conejo-Garcia J.R. Antonia S.J. Mulé J.J. Kim S. Sirt2 inhibition enhances metabolic fitness and effector functions of tumor-reactive T cells. Cell Metab. 2020 32 3 420 436.e12 10.1016/j.cmet.2020.07.008 32768387
    [Google Scholar]
  92. Hashimoto K. Nishimura S. Ito T. Kakinoki R. Akagi M. Immunohistochemical expression and clinicopathological assessment of PD-1, PD-L1, NY-ESO-1, and MAGE-A4 expression in highly aggressive soft tissue sarcomas. Eur. J. Histochem. 2022 66 2 3393 10.4081/ejh.2022.3393 35448937
    [Google Scholar]
  93. Tao F. Gu C. Li N. Ying Y. Feng Y. Ni D. Zhang Q. Xiao Q. SIRT3 acts as a novel biomarker for the diagnosis of lung cancer. Medicine 2021 100 27 e26580 10.1097/MD.0000000000026580 34232204
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010374421250419163509
Loading
/content/journals/cpb/10.2174/0113892010374421250419163509
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: prognosis ; sirtuins ; treatment ; therapeutic approaches ; osteosarcoma ; Biological roles
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test