Skip to content
2000
image of Tumor Image Segmentation: A Bibliometric Analysis from 2003 to Now

Abstract

Background

Bibliometrics has been applied to the study of tumor image segmentation, which can indicate the current research hotspots and trends.

Methods

In this study, bibliometric analyses were performed on data retrieved from the Web of Science database. A total of 3,377 articles on the application of tumor image segmentation from January 1, 2003, to October 9, 2024, were analyzed for the characteristics of the articles, including the number of yearly publications, country/region, institution, journal, author, keywords, and references. Visualising co-authorship, co-citation, and co-occurrence analysis with VOSviewer.

Results

The annual publication volume of tumor image segmentation literature shows that from the first time of more than 100 articles in 2016, the publication volume of literature in this field has surged, reaching 576 articles by 2023. Mainland China is ranked first in terms of publication volume (n=1,356). Saudi Arabia ranks first in average publication year (n=2021.96). IEEE Transactions on Medical Imaging was the journal with the highest average number of citations. The Chinese Academy of Sciences (n=78) was the most prolific institution, while Harvard University was the most prestigious, with a total number of citations and an average number of citations of 3,190 and 213, respectively. In terms of keywords, co-occurrence analysis of 107 keywords with a frequency of more than 30 times produced four clusters: (1) methods of image segmentation, (2) applications of image segmentation, (3) image segmentation modelled on CT, (4) image segmentation modelled on MRI. Transformer, Attention Mechanism, and U-Net are the latest keywords. The analysis of keywords helps scholars understand and identify the current research hotspots and research directions.

Conclusion

Within the last 20 years, the number of articles on the application of tumor image segmentation has increased steadily. From U-Net to MAMBA, many methods for tumor image segmentation have been proposed, and the limitations of models and algorithms are becoming increasingly smaller, which demonstrates the importance of advances in tumor image segmentation technology for disease prevention and monitoring. It presents a strong connection between countries/regions and authors, which reflects the global interest and labelport for the development of this field. This study shows global trends, research hotspots, and emerging topics in this field and reviews some of the knowledge about tumor image segmentation applications from past studies. And it will provide good research guidelines for researchers in this field.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010325620250312082433
2025-03-19
2025-10-08
Loading full text...

Full text loading...

References

  1. Jiang H. Diao Z. Yao Y.D. Deep learning techniques for tumor segmentation: A review. J. Supercomput. 2022 78 2 1807 1851 10.1007/s11227‑021‑03901‑6
    [Google Scholar]
  2. Narayan V. Faiz M. Mall P.K. Srivastava S. A comprehensive review of various approach for medical image segmentation and disease prediction. Wirel. Pers. Commun. 2023 132 3 1819 1848 10.1007/s11277‑023‑10682‑z
    [Google Scholar]
  3. Liu X. Li K.W. Yang R. Geng L.S. Review of deep learning based automatic segmentation for lung cancer radiotherapy. Front. Oncol. 2021 11 717039 10.3389/fonc.2021.717039
    [Google Scholar]
  4. Shen Y. Dong W. Gulati R. Ryser M.D. Etzioni R. Estimating the frequency of indolent breast cancer in screening trials. Stat. Methods Med. Res. 2019 28 4 1261 1271 10.1177/0962280217754232
    [Google Scholar]
  5. Lee A. Mavaddat N. Wilcox A.N. Cunningham A.P. Carver T. Hartley S. Babb de Villiers C. Izquierdo A. Simard J. Schmidt M.K. Walter F.M. Chatterjee N. Garcia-Closas M. Tischkowitz M. Pharoah P. Easton D.F. Antoniou A.C. BOADICEA: A comprehensive breast cancer risk prediction model incorporating genetic and nongenetic risk factors. Genet. Med. 2019 21 8 1708 1718 10.1038/s41436‑018‑0406‑9
    [Google Scholar]
  6. Hesamian M.H. Jia W. He X. Kennedy P. Deep learning techniques for medical image segmentation: Achievements and challenges. J. Digit. Imaging 2019 32 4 582 596 10.1007/s10278‑019‑00227‑x
    [Google Scholar]
  7. Moeskops P. Viergever M.A. Mendrik A.M. de Vries L.S. Benders M.J.N.L. Isgum I. Automatic segmentation of MR brain images with a convolutional neural network. IEEE Trans. Med. Imaging 2016 35 5 1252 1261 10.1109/TMI.2016.2548501
    [Google Scholar]
  8. Hussein S. Kandel P. Bolan C.W. Wallace M.B. Bagci U. Lung and pancreatic tumor characterization in the deep learning era: Novel supervised and unsupervised learning approaches. IEEE Trans. Med. Imaging 2019 38 8 1777 1787 10.1109/TMI.2019.2894349
    [Google Scholar]
  9. Singh R.P. Gupta S. Acharya U.R. Segmentation of prostate contours for automated diagnosis using ultrasound images: A survey. J. Comput. Sci. 2017 21 223 231 10.1016/j.jocs.2017.04.016
    [Google Scholar]
  10. Ranjbarzadeh R. Bagherian Kasgari A. Jafarzadeh Ghoushchi S. Anari S. Naseri M. Bendechache M. Brain tumor segmentation based on deep learning and an attention mechanism using MRI multi-modalities brain images. Sci. Rep. 2021 11 1 10930 10.1038/s41598‑021‑90428‑8
    [Google Scholar]
  11. Ramesh K.K. Xu K.M. Trivedi A.G. Huang V. Sharghi V.K. Kleinberg L.R. Mellon E.A. Shu H.K.G. Shim H. Weinberg B.D. A fully automated post-surgical brain tumor segmentation model for radiation treatment planning and longitudinal tracking. Cancers 2023 15 15 3956 10.3390/cancers15153956
    [Google Scholar]
  12. Garfield E. Citation analysis as a tool in journal evaluation. Science 1972 178 4060 471 479 10.1126/science.178.4060.471
    [Google Scholar]
  13. Moed H.F. Citation Analysis in Research Evaluation. Springer 2005
    [Google Scholar]
  14. Bornmann L. Daniel H.D. What do citation counts measure? A review of studies on citing behavior. J. Doc. 2008 64 1 45 80 10.1108/00220410810844150
    [Google Scholar]
  15. Meho L.I. Yang K. Impact of data sources on citation counts and rankings of LIS faculty: Web of science versus scopus and google scholar. J. Am. Soc. Inf. Sci. Technol. 2007 58 13 2105 2125 10.1002/asi.20677
    [Google Scholar]
  16. Liu W. The data source of this study is web of science core collection? Not enough. Scientometrics 2019 121 3 1815 1824 [10.1007/s11192-019-03238-1]. 10.1007/s11192‑019‑03238‑1
    [Google Scholar]
  17. Lyu P. Wang Y. Meng Q.X. Fan P. Ma K. Xiao S. Cao X. Lin G.X. Dong S. Mapping intellectual structures and research hotspots in the application of artificial intelligence in cancer: A bibliometric analysis. Front. Oncol. 2022 12 955668 10.3389/fonc.2022.955668
    [Google Scholar]
  18. Wang J. Li S. Applications of rare earth elements in cancer: Evidence mapping and scientometric analysis. Front. Med. 2022 9 946100 10.3389/fmed.2022.946100
    [Google Scholar]
  19. Liu X. Zhou Q. Yang Y. Chen E. Application of hydrogels in cancer immunotherapy: A bibliometric analysis. Front. Immunol. 2024 15 1433050 10.3389/fimmu.2024.1433050
    [Google Scholar]
  20. Waltman L. van Eck N.J. Noyons E.C.M. A unified approach to mapping and clustering of bibliometric networks. J. Informetrics 2010 4 4 629 635 10.1016/j.joi.2010.07.002
    [Google Scholar]
  21. van Eck N.J. Waltman L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010 84 2 523 538 10.1007/s11192‑009‑0146‑3
    [Google Scholar]
  22. Boyack K.W. Klavans R. Co‐citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? J. Am. Soc. Inf. Sci. Technol. 2010 61 12 2389 2404 10.1002/asi.21419
    [Google Scholar]
  23. Callon M. Courtial J.P. Turner W.A. Bauin S. From translations to problematic networks: An introduction to co-word analysis. Soc. Sci. Inf. 1983 22 2 191 235 10.1177/053901883022002003
    [Google Scholar]
  24. Ronneberger O. Fischer P. Brox T. U-net: Convolutional networks for biomedical image segmentation. MICCAI 2015. MICCAI 2015. Lecture Notes in Computer Science(). Navab N. Hornegger J. Wells W. Frangi A. Medical Image Computing and Computer-Assisted Intervention 9351 Cham Springer 2015 10.1007/978‑3‑319‑24574‑4_28
    [Google Scholar]
  25. Otsu N. A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. 1979 9 1 62 66 10.1109/TSMC.1979.4310076
    [Google Scholar]
  26. Cenek M. Hu M. York G. Dahl S. Survey of image processing techniques for brain pathology diagnosis: Challenges and opportunities. Front. Robot. AI 2018 5 120 10.3389/frobt.2018.00120
    [Google Scholar]
  27. Balasubramanian P.K. Lai W.C. Seng G.H. C K. Selvaraj J. APESTNet with mask R-CNN for liver tumor segmentation and classification. Cancers 2023 15 2 330 [10.3390/cancers15020330]. 10.3390/cancers15020330
    [Google Scholar]
  28. Ghulam R. Fatima S. Ali T. Zafar N.A. Asiri A.A. A U-Net-based CNN model for detection and segmentation of brain tumor. Comput. Mater. Continua 2023 74 1 1333 1349 10.32604/cmc.2023.031695
    [Google Scholar]
  29. Ma J. Yuan G. Guo C. Gang X. Zheng M. SW-UNet: A U-Net fusing sliding window transformer block with CNN for segmentation of lung nodules. Front. Med. 2023 10 1273441 10.3389/fmed.2023.1273441
    [Google Scholar]
  30. Fonollà R. van der Zander Q.E.W. Schreuder R.M. Masclee A.A.M. Schoon E.J. van der Sommen F. de With P.H.N. A CNN CADx system for multimodal classification of colorectal polyps combining WL, BLI, and LCI modalities. Appl. Sci. 2020 10 15 5040 [10.3390/app10155040]. 10.3390/app10155040
    [Google Scholar]
  31. Havaei M. Davy A. Warde-Farley D. Biard A. Courville A. Bengio Y. Pal C. Jodoin P-M. Larochelle H. Brain tumor segmentation with deep neural networks. Med. Image Anal. 2017 35 18 31 10.1016/j.media.2016.05.004
    [Google Scholar]
  32. Zhou Z. Siddiquee M.M.R. Tajbakhsh N. Liang J. UNet++: A nested u-net architecture for medical image segmentation. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support. Lecture Notes in Computer Science. Springer Cham 2018 10.1007/978‑3‑030‑00889‑5_1
    [Google Scholar]
  33. Diakogiannis F.I. Waldner F. Caccetta P. Wu C. ResUNet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS J. Photogramm. Remote Sens. 2020 162 94 114 10.1016/j.isprsjprs.2020.01.013
    [Google Scholar]
  34. Zhou Y. Chang H. Lu X. Lu Y. DenseUNet: Improved image classification method using standard convolution and dense transposed convolution. Knowl. Base. Syst. 2022 254 109658 10.1016/j.knosys.2022.109658
    [Google Scholar]
  35. Milletari F. V-net: Fully convolutional neural networks for volumetric medical image segmentation. 2016 Fourth International Conference on 3D Vision (3DV) Oct. 2016. 10.1109/3DV.2016.79
    [Google Scholar]
  36. Özgün C. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016: 19th International Conference Athens, Greece, October 17-21, 2016, pp. 424–432.
    [Google Scholar]
  37. Wang C. Guo Y. Chen W. Yu Z. Fully automatic intervertebral disc segmentation using multimodal 3D U-Net. Proceedings of the IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) United States (USA), 2019, pp. 730-739. 10.1109/COMPSAC.2019.00109
    [Google Scholar]
  38. Liu P. Dou Q. Wang Q. Heng P.A. An encoder-decoder neural network with 3D squeeze-and-excitation and deep supervision for brain tumor segmentation. IEEE Access 2020 8 34029 34037 10.1109/ACCESS.2020.2973707
    [Google Scholar]
  39. Dodia S. Basava A. Padukudru Anand M. A novel receptive field‐regularized V‐net and nodule classification network for lung nodule detection. Int. J. Imaging Syst. Technol. 2022 32 1 88 101 10.1002/ima.22636
    [Google Scholar]
  40. Zhao C. Han J. Jia Y. Gou F. Lung nodule detection via 3D U-Net and contextual convolutional neural network. Proceedings of the International Conference on Network and Network Applications (NaNA) October 2018, pp. 356-361. 10.1109/NANA.2018.8648753
    [Google Scholar]
  41. Owler J. Irving B. Ridgeway G. Comparison of multi-atlas segmentation and U-Net approaches for automated 3D liver delineation in MRI. Proceedings of the Annual Conference on Medical Image Understanding and Analysis January 2020, pp. 478-488.
    [Google Scholar]
  42. Yu W. Fang B. Liu Y. Gao M. Zheng S. Wang Y. Liver vessels segmentation based on 3d residual U-Net. Proceedings of the IEEE International Conference on Image Processing (ICIP) September 2019, pp. 250-254. 10.1109/ICIP.2019.8802951
    [Google Scholar]
  43. Senthilvelan J. Jamshidi N. A pipeline for automated deep learning liver segmentation (PADLLS) from contrast enhanced CT exams. Sci. Rep. 2022 12 1 15794 10.1038/s41598‑022‑20108‑8
    [Google Scholar]
  44. Han T. Ivo R.F. Rodrigues D.A. Peixoto S.A. de Albuquerque V.H.C. Rebouças Filho P.P. Cascaded volumetric fully convolutional networks for whole-heart and great vessel 3D segmentation. Future Gener. Comput. Syst. 2020 108 198 209 10.1016/j.future.2020.02.055
    [Google Scholar]
  45. Li J. Chen H. Zhu F. Automatic pulmonary vein and left atrium segmentation for TAPVC preoperative evaluation using V-net with grouped attention. Annu Int Conf IEEE Eng Med Biol Soc. 2020 2020 1207 1210 10.1109/EMBC44109.2020.9175907
    [Google Scholar]
  46. Wang C. MacGillivray T. Macnaught G. Yang G. Newby D. A two-stage U-Net model for 3D multi-class segmentation on full-resolution cardiac data. Proceedings of the International Workshop on Statistical Atlases and Computational Models of the Heart Springer, Cham, 14 February 2019, pp 191–199.
    [Google Scholar]
  47. Ravichandran S.R. Nataraj B. Huang S. 3D inception U-Net for aorta segmentation using computed tomography cardiac angiography. Proceedings of the IEEE EMBS International Conference on Biomedical & Health Informatics (BHI) 2019, pp. 1-4. 10.1109/BHI.2019.8834582
    [Google Scholar]
  48. Wu J. Zhang Y. Tang X. Simultaneous tissue classification and lateral ventricle segmentation via a 2D U-Net driven by a 3D fully convolutional neural network. Proceedings of the 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) July 2019, pp. 5928-5931. 10.1109/EMBC.2019.8856668
    [Google Scholar]
  49. Türk F. Lüy M. Barışçı N. Kidney and renal tumor segmentation using a hybrid V-Net-based model. Mathematics 2020 8 10 1772 10.3390/math8101772
    [Google Scholar]
  50. Karimi D. Deep learning with attention to detail: Automated segmentation of organ anatomy and pathology in medical images. Med. Image Anal. 2021 65 101794
    [Google Scholar]
  51. Chen L.C. TransUNet: Transformers make strong encoders for medical image segmentation. arXiv preprint :2102.04306. 2021
    [Google Scholar]
  52. Xiao H. Ran Z. Mabu S. Li Y. Li L. SAUNet++: An automatic segmentation model of COVID-19 lesion from CT slices. Vis. Comput. 2023 39 6 2291 2304 10.1007/s00371‑022‑02414‑4
    [Google Scholar]
  53. Chang Y. Hu M. Zhai G. Zhang X. Transclaw U-Net: Claw U-net with transformers for medical image segmentation. 2022 5th International Conference on Information Communication and Signal Processing (ICICSP) July 2021, pp. 280-284.
    [Google Scholar]
  54. Schlemper J. Oktay O. Schaap M. Heinrich M. Kainz B. Glocker B. Rueckert D. Attention gated networks: Learning to leverage salient regions in medical images. Med. Image Anal. 2019 53 197 207 10.1016/j.media.2019.01.012
    [Google Scholar]
  55. Jiang H. Shi T. Bai Z. Huang L. AHCNet: An application of attention mechanism and hybrid connection for liver tumor segmentation in CT volumes. IEEE Access 2019 7 24898 24909 10.1109/ACCESS.2019.2899608
    [Google Scholar]
  56. Xu H. Xie H. Liu Y. Cheng C. Niu C. Zhang Y. Deep cascaded attention network for multi-task brain tumor segmentation. Medical Image Computing and Computer Assisted Intervention—MICCAI Springer Cham 2019 420 428 10.1007/978‑3‑030‑32248‑9_47
    [Google Scholar]
  57. Sabarinathan D Beham MP Roomi SMMM Hyper vision net: Kidney tumor segmentation using coordinate convolutional layer and attention unit. Computer Vision, Pattern Recognition, Image Processing, and Graphics. Springer Singapore 2019 609 618
    [Google Scholar]
  58. Chen T. Kornblith S. Norouzi M. Hinton G. A simple framework for contrastive learning of visual representations. arXiv 2020
    [Google Scholar]
  59. He K. Fan H. Wu Y. Xie S. Girshick R. Momentum contrast for unsupervised visual representation learning. arXiv 2020 10.1109/CVPR42600.2020.00975
    [Google Scholar]
  60. Han K. Sheng V.S. Song Y. Liu Y. Qiu C. Ma S. Liu Z. Deep semi-supervised learning for medical image segmentation: A review. Expert Syst. Appl. 2024 245 123052 10.1016/j.eswa.2023.123052
    [Google Scholar]
  61. Shi Z. Jiang M. Li Y. Wei B. Wang Z. Wu Y. Tan T. Yang G. MLC: Multi-level consistency learning for semi-supervised left atrium segmentation. Expert Syst. Appl. 2024 244 122903 10.1016/j.eswa.2023.122903
    [Google Scholar]
  62. Xie Y. Zhang J. Xia Y. Semi-supervised adversarial model for benign–malignant lung nodule classification on chest CT. Med. Image Anal. 2019 57 237 248 10.1016/j.media.2019.07.004
    [Google Scholar]
  63. Ge C. Gu I.Y.H. Jakola A.S. Yang J. Deep semi-supervised learning for brain tumor classification. BMC Med. Imaging 2020 20 1 87 10.1186/s12880‑020‑00485‑0
    [Google Scholar]
  64. Liu Y. Mu F. Shi Y. Chen X. SF-Net: A multi-task model for brain tumor segmentation in multimodal MRI via image fusion. IEEE Signal Process. Lett. 2022 29 1799 1803 10.1109/LSP.2022.3198594
    [Google Scholar]
  65. Yang A. Xu L. Qin N. Huang D. Liu Z. Shu J. MFU-Net: A deep multimodal fusion network for breast cancer segmentation with dual-layer spectral detector CT. Appl. Intell. 2024 54 5 3808 3824 10.1007/s10489‑023‑05090‑6
    [Google Scholar]
  66. Gu A. Dao T. Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint :2312.00752 2023
    [Google Scholar]
  67. Zhu L. Liao B. Zhang Q. Wang X. Liu W. Wang X. Vision Mamba: Efficient visual representation learning with bidirectional state space model. arXiv preprint :2401.09417 2024
    [Google Scholar]
  68. Wang Z. Zheng J.Q. Zhang Y. Cui G. Li L. Mamba-UNet: UNet-like pure visual Mamba for medical image segmentation. arXiv preprint :2402.05079 2024
    [Google Scholar]
  69. Ruan J. Xiang S. VM-UNet: Vision mamba unet for medical image segmentation. arXiv preprint :2402.02491 2024
    [Google Scholar]
  70. Xing Z. Ye T. Yang Y. Liu G. Zhu L. SegMamba: Long-range sequential modeling Mamba for 3D medical image segmentation. International Conference on Medical Image Computing and Computer-Assisted Intervention Cham: Springer Nature Switzerland, 2024, October, pp. 578-588. 10.1007/978‑3‑031‑72111‑3_54
    [Google Scholar]
  71. Mehta R. Arbel T. 3D U-Net for brain tumor segmentation. Proceedings of the International MICCAI Brainlesion Workshop 2018:254-266.
    [Google Scholar]
  72. Liu H. Shen X. Shang F. Ge F. Wang F. CU-Net: Cascaded U-Net with loss weighted sampling for brain tumor segmentation. Multimodal Brain Image Analysis and Mathematical Foundations of Computational Anatomy. Cham Springer 2019 102 111 10.1007/978‑3‑030‑33226‑6_12
    [Google Scholar]
  73. Kermi A. Mahmoudi I. Khadir M.T. Deep convolutional neural networks using U-Net for automatic brain tumor segmentation in multimodal MRI volumes. Proceedings of the International MICCAI Brainlesion Workshop 2018, pp. 37-48.
    [Google Scholar]
  74. Piantadosi G. Marrone S. Galli A. Sansone M. Sansone C. DCE-MRI breast lesions segmentation with a 3TP U-Net deep convolutional neural network. Proceedings of the IEEE 32nd International Symposium on Computer-Based Medical Systems (CBMS) 2019 628 633 10.1109/CBMS.2019.00130
    [Google Scholar]
  75. Wang Y. Song Y. Wang F. Sun J. Gao X. Han Z. Shi L. Shao G. Fan M. Yang G. A two-step automated quality assessment for liver MR images based on convolutional neural network. Eur. J. Radiol. 2020 124 108822 10.1016/j.ejrad.2020.108822
    [Google Scholar]
  76. Zhang R. Huang L. Xia W. Zhang B. Qiu B. Gao X. Multiple supervised residual network for osteosarcoma segmentation in CT images. Comput. Med. Imaging Graph. 2018 63 1 8 10.1016/j.compmedimag.2018.01.006
    [Google Scholar]
  77. Azad R. Asadi-Aghbolaghi M. Fathy M. Escalera S. Bi-directional ConvLSTM U-Net with densley connected convolutions. Proceedings of the IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) 2019, pp. 1-10. 10.1109/ICCVW.2019.00052
    [Google Scholar]
  78. Zhang Z. Fu H. Dai H. ET-Net: A generic edge-attention guidance network for medical image segmentation. Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention 2019, pp. 442-450. 10.1007/978‑3‑030‑32239‑7_49
    [Google Scholar]
  79. Tan W. Liu Y. Liu H. Yang J. Yin X. Zhang Y. A segmentation method of lung parenchyma from chest CT images based on dual U-Net. Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine (BIBM) 2019, pp. 1649-1656. 10.1109/BIBM47256.2019.8983381
    [Google Scholar]
  80. Shaziya H. Shyamala K. Zaheer R. Automatic lung segmentation on thoracic CT scans using U-Net convolutional network. Proceedings of the International Conference on Communication and Signal Processing (ICCSP) 2018, pp. 643-647. 10.1109/ICCSP.2018.8524484
    [Google Scholar]
  81. Paing May Phu Automatic detection of pulmonary nodules using three-dimensional chain coding and optimized random forest. Appl. Sci. 2020 10 7 2346 10.3390/app10072346
    [Google Scholar]
  82. Said Y. Alsheikhy A.A. Shawly T. Lahza H. Medical images segmentation for lung cancer diagnosis based on deep learning architectures. Diagnostics 2023 13 3 546 10.3390/diagnostics13030546
    [Google Scholar]
  83. Li S. Tso G.K.F. He K. Bottleneck feature supervised U-Net for pixel-wise liver and tumor segmentation. Expert Syst. Appl. 2020 145 113131 10.1016/j.eswa.2019.113131
    [Google Scholar]
  84. Zhang L. Xu L. An automatic liver segmentation algorithm for CT images U-Net with separated paths of feature extraction. Proceedings of the IEEE 3rd International Conference on Image, Vision and Computing (ICIVC) 2018, pp. 294-298. 10.1109/ICIVC.2018.8492721
    [Google Scholar]
  85. Liu Z. Song Y.Q. Sheng V.S. Wang L. Jiang R. Zhang X. Yuan D. Liver CT sequence segmentation based with improved U-Net and graph cut. Expert Syst. Appl. 2019 126 54 63 10.1016/j.eswa.2019.01.055
    [Google Scholar]
  86. Su T-Y. Fang Y-H. Automatic liver and spleen segmentation with CT images using multi-channel U-Net deep learning approach. Proceedings of the International Conference on Biomedical and Health Informatics 2019, pp. 33-41.
    [Google Scholar]
  87. Hu Y. Guo Y. Wang Y. Yu J. Li J. Zhou S. Chang C. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model. Med. Phys. 2019 46 1 215 228 10.1002/mp.13268
    [Google Scholar]
  88. Liang Y. He R. Li Y. Wang Z. Simultaneous segmentation and classification of breast lesions from ultrasound images using mask R-CNN. 2019 IEEE International Ultrasonics Symposium (IUS) 2019, pp. 1470-1472. 10.1109/ULTSYM.2019.8926185
    [Google Scholar]
  89. Jiang J. Guo Y. Bi Z. Huang Z. Yu G. Wang J. Segmentation of prostate ultrasound images: The state of the art and the future directions of segmentation algorithms. Artif. Intell. Rev. 2023 56 1 615 651 10.1007/s10462‑022‑10179‑4
    [Google Scholar]
  90. Vasanthselvakumar R. Balasubramanian M. Sathiya S. Automatic detection and classification of chronic kidney diseases using CNN architecture. Data Engineering and Communication Technology. Advances in Intelligent Systems and Computing. Raju K.S. Senkerik R. Lanka S.P. Rajagopal V. Singapore Springer 2020 1079 10.1007/978‑981‑15‑1097‑7_62
    [Google Scholar]
  91. Guo Z. Li X. Huang H. Guo N. Li Q. Deep learning-based image segmentation on multimodal medical imaging. IEEE Trans. Radiat. Plasma Med. Sci. 2019 3 2 162 169 10.1109/TRPMS.2018.2890359
    [Google Scholar]
  92. Wu Z. Li X. Zuo J. RAD-UNet: Research on an improved lung nodule semantic segmentation algorithm based on deep learning. Front. Oncol. 2023 13 1084096 10.3389/fonc.2023.1084096
    [Google Scholar]
  93. Iqbal A. Sharif M. BTS-ST: Swin transformer network for segmentation and classification of multimodality breast cancer images. Knowl-Based Syst 2023 267 110393 10.1016/j.knosys.2023.110393
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010325620250312082433
Loading
/content/journals/cpb/10.2174/0113892010325620250312082433
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: MAMBA ; U-Net ; Image Segmentation ; Bibliometrics ; Tumor Image ; VOSviewer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test