Skip to content
2000
image of Essential Oils from Olea europaea and Cyperus esculentus Exhibit Promising Therapeutic Effect against Alzheimer's Disease in a Rat Model

Abstract

Background

Alzheimer's disease poses a major challenge as a widespread and fatal neurodegenerative disorder, primarily affecting the elderly population worldwide.

Objective

This study aimed to assess the potential protective and therapeutic effects of virgin olive oil and tiger nut essential oil on Alzheimer's dementia in male rats while also analyzing serum biomarker gene expression profiles in both Alzheimer's and control groups.

Methods

Rats were fed basal diets supplemented with 5% virgin olive oil or tiger nut essential oil, along with high-fat meals containing trans fats, butter (25%), margarine (25%), and hydrogenated shorten oils (25%) to evaluate lipid profiles and serum biomarkers. Gene expression analysis revealed a significant upregulation of acetylcholinesterase, P53, BCL2, Mouse ICAM-1, PSEN, and BACE genes in the Alzheimer's disease group compared to controls. Real-time PCR analysis also identified inflammatory biomarkers and Alzheimer's disease-associated risk factors in high-fat diet-treated, virgin olive oil-treated, and control samples.

Results

The study found significant correlations between serum biomarker levels, lipid profiles, and dietary treatments. The activities of acetylcholinesterase, glutathione, catalase, and superoxide dismutase differed notably between virgin olive oil and tiger nut essential oil treatments. High-fat dietary treatments resulted in substantial increases in serum lipid profiles due to trans-fat intake compared to the control group. Overall, both virgin olive oil and tiger nut essential oil demonstrated cognitive enhancement and potential therapeutic effects against Alzheimer's disease symptoms induced by trans-fat feeding, including inhibition of acetylcholines-terase activity, reduction of amyloid-beta accumulation, and mitigation of inflammation.

Conclusion

The study suggests that serum biomarker gene expression profiles could serve as valuable indicators for differentiating between Alzheimer’s disease, virgin olive oil, and dietary treatments. Both virgin olive oil and tiger nut essential oil demonstrated protective effects, enhancing cognitive function and offering therapeutic potential against AD symptoms. These effects were achieved through the reduction of inflammation, the inhibition of AChE activity, and the reduction of amyloid-beta accumulation.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010343085250226111914
2025-04-25
2025-12-25
Loading full text...

Full text loading...

References

  1. Klimova B. Dziuba S. Emerych C.A. The effect of healthy diet on cognitive performance among healthy seniors – A mini review. Front. Hum. Neurosci. 2020 14 325 10.3389/fnhum.2020.00325 32848680
    [Google Scholar]
  2. Rai A.S. Taylor T.K.F. Smith G.H.H. Cumming R.G. Cole P.M. Congenital abnormalities of the urogenital tract in association with congenital vertebral malformations. J. Bone Joint Surg. British 2002 84 6 891 895 10.1302/0301‑620X.84B6.0840891
    [Google Scholar]
  3. Lopez O.L. Kuller L.H. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer’s disease and other dementias. Handb. Clin. Neurol. 2019 167 139 148 10.1016/B978‑0‑12‑804766‑8.00009‑1 31753130
    [Google Scholar]
  4. Klimova B. Novotný M. Kuca K. Valis M. Effect of an extra-virgin olive oil intake on the delay of cognitive decline: Role of secoiridoid oleuropein. Neuropsychiatr. Dis. Treat. 2019 15 3033 3040 10.2147/NDT.S218238 31754302
    [Google Scholar]
  5. Martins R.N. Villemagne V. Sohrabi H.R. Chatterjee P. Shah T.M. Verdile G. Fraser P. Taddei K. Gupta V.B. Smith R.S.R. Hone E. Pedrini S. Lim W.L. Martins I. Frost S. Gupta S. O’Bryant S. Rembach A. Ames D. Ellis K. Fuller S.J. Brown B. Gardener S.L. Fernando B. Bharadwaj P. Burnham S. Laws S.M. Barron A.M. Goozee K. Wahjoepramono E.J. Asih P.R. Doecke J.D. Salvado O. Bush A.I. Rowe C.C. Gandy S.E. Masters C.L. Alzheimer’s disease: A journey from amyloid peptides and oxidative stress, to biomarker technologies and disease prevention strategies—gains from AIBL and DIAN cohort studies. J. Alzheimers Dis. 2018 62 3 965 992 10.3233/JAD‑171145 29562546
    [Google Scholar]
  6. Sozio F. Rossi A. Weber E. Abraham D.J. Nicholson A.G. Wells A.U. Renzoni E.A. Sestini P. Morphometric analysis of intralobular, interlobular and pleural lymphatics in normal human lung. J. Anat. 2012 220 4 396 404 10.1111/j.1469‑7580.2011.01473.x 22283705
    [Google Scholar]
  7. Demetrius L.A. Driver J. Alzheimer’s as a metabolic disease. Biogerontology 2013 14 6 641 649 10.1007/s10522‑013‑9479‑7 24249045
    [Google Scholar]
  8. Moore K. Hughes C.F. Ward M. Hoey L. McNulty H. Diet, nutrition and the ageing brain: Current evidence and new directions. Proc. Nutr. Soc. 2018 77 2 152 163 10.1017/S0029665117004177 29316987
    [Google Scholar]
  9. Ngandu T. Lehtisalo J. Solomon A. Levälahti E. Ahtiluoto S. Antikainen R. Bäckman L. Hänninen T. Jula A. Laatikainen T. Lindström J. Mangialasche F. Paajanen T. Pajala S. Peltonen M. Rauramaa R. Neely S.A. Strandberg T. Tuomilehto J. Soininen H. Kivipelto M. A 2 year multidomain intervention of diet, exercise, cognitive training, and vascular risk monitoring versus control to prevent cognitive decline in at-risk elderly people (FINGER): A randomised controlled trial. Lancet 2015 385 9984 2255 2263 10.1016/S0140‑6736(15)60461‑5 25771249
    [Google Scholar]
  10. Román G.C. Jackson R.E. Reis J. Román A.N. Toledo J.B. Toledo E. Extra-virgin olive oil for potential prevention of Alzheimer disease. Rev. Neurol. 2019 175 10 705 723 10.1016/j.neurol.2019.07.017 31521394
    [Google Scholar]
  11. Olabiyi A. In vitro inhibitory effects of Cyperus esculentus L. (Tiger Nut) tubers on some enzymes associated with neurodegeneration and iron- induced lipid peroxidation in Rats’ brain tissue homogenate. Nigerian J. Neurosci. 2020 11 2 81 87 10.47081/njn2020.11.2/004
    [Google Scholar]
  12. Hamied E.A. Girgis W.A. Allam M.H. Effect of extraction systems on quality characteristics of extra virgin olive oil. Arab Univ. J. Agricul. Sci. 2019 27 4 2167 2176
    [Google Scholar]
  13. Oboh G. Puntel R.L. Rocha J.B.T. Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+-induced lipid peroxidation in brain – in vitro. Food Chem. 2007 102 1 178 185 10.1016/j.foodchem.2006.05.048
    [Google Scholar]
  14. Group A.A.R. Guide for the care and use of laboratory animals (8th edn). Lab. Anim. 2012 46 267 268
    [Google Scholar]
  15. Bushuty E.L. Effect of natural herbs of marjoram and ginger on hypercholesterolemic rats. Annual Conference 2012
    [Google Scholar]
  16. Nishikimi M. Rao A.N. Yagi K. The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun. 1972 46 2 849 854 10.1016/S0006‑291X(72)80218‑3 4400444
    [Google Scholar]
  17. Aebi H. Catalase in vitro. Methods Enzymol. 1984 105 121 126 10.1016/S0076‑6879(84)05016‑3 6727660
    [Google Scholar]
  18. Ellman G.L. Tissue sulfhydryl groups. Arch. Biochem. Biophys. 1959 82 1 70 77 10.1016/0003‑9861(59)90090‑6 13650640
    [Google Scholar]
  19. Goldberg D.M. Spooner R. Methods of enzymatic analysis 3rd Ed. Bergmeyen H. Verlog Chemie 1983
    [Google Scholar]
  20. Beutler E. Duron O. Red cell metabolism a manual of biochem. Methods grune and straiton, New York donepezil on the treatment of Alzheimer’s disease. Neuropsychiatr. Dis. Treat. 1963 8 361 368
    [Google Scholar]
  21. Livak K.J. Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Δ Δ C(T)) method. Methods 2001 25 4 402 408 10.1006/meth.2001.1262 11846609
    [Google Scholar]
  22. Hamad G.M. Taha T.H. Deeb E.N.M. Alshehri A.M.A. Advanced trends in controlling Helicobacter pylori infections using functional and therapeutically supplements in baby milk. J. Food Sci. Technol. 2015 52 12 8156 8163 10.1007/s13197‑015‑1875‑3 26604389
    [Google Scholar]
  23. Zhishen J. Mengcheng T. Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999 64 4 555 559 10.1016/S0308‑8146(98)00102‑2
    [Google Scholar]
  24. Hamad G.M. Mohdaly A.A.A. Nogoumy E.B.A. Ramadan M.F. Hassan S.A. Zeitoun A.M. Detoxification of aflatoxin B1 and Ochratoxin A using Salvia farinacea and Azadirachta indica water extract and application in meat products. Appl. Biochem. Biotechnol. 2021 193 10 3098 3120 10.1007/s12010‑021‑03581‑1 34028665
    [Google Scholar]
  25. Catarino M.D. Silva A.M.S. Saraiva S.C. Sobral A.J.F.N. Cardoso S.M. Characterization of phenolic constituents and evaluation of antioxidant properties of leaves and stems of Eriocephalus africanus. Arab. J. Chem. 2018 11 1 62 69 10.1016/j.arabjc.2015.04.018
    [Google Scholar]
  26. KARA R. BULUT S. AKKAYA L. Determination of Fatty Acid Composition of Afyon Tulum Cheese. AOCS (1997) Official Method Ce, 2-66 1-2. Journal of Food and Nutrition Research. 2014 2 1 17 20 10.12691/jfnr‑2‑1‑3
    [Google Scholar]
  27. ISO 12966-2:2017: Animal and Vegetable Fats and Oils - Gas Chromatography of Fatty Acid Methyl Esters - Part 2: Preparation of Methyl Esters of Fatty Acids, https://www.iso.org/ standard/72142.html, accessed in August 2024. 2nd Ed. 2017 2
    [Google Scholar]
  28. Yeboah S.O. Mitei Y.C. Ngila J.C. Wessjohann L. Schmidt J. Compositional and structural studies of the oils from two edible seeds: Tiger nut, Cyperus esculentum, and asiato, Pachira insignis, from Ghana. Food Res. Int. 2012 47 2 259 266 10.1016/j.foodres.2011.06.036
    [Google Scholar]
  29. Chen C. Chen H. Zhang Y. Thomas H.R. Frank M.H. He Y. Xia R. TBtools: An integrative toolkit developed for interactive analyses of big biological data. Mol. Plant 2020 13 8 1194 1202 10.1016/j.molp.2020.06.009 32585190
    [Google Scholar]
  30. Belewu M.A. Abodunrin O.A. Preparation of Kunnu from unexploited rich food source: Tiger nut (Cyperus esculentus). World J. Dairy Food Sci. 2006 1 19 21
    [Google Scholar]
  31. Sanful R.E. The use of tiger nut (Cyperus esculentus), cow milk and their composite as substrates for yoghurt production. Pak. J. Nutr. 2009 6 755 757 10.3923/pjn.2009.755.758
    [Google Scholar]
  32. Lei E. Vacy K. Boon W.C. Fatty acids and their therapeutic potential in neurological disorders. Neurochem. Int. 2016 95 75 84 10.1016/j.neuint.2016.02.014
    [Google Scholar]
  33. Milatovic D. Dettbarn W.D. Modification of acetylcholinesterase during adaptation to chronic, subacute paraoxon application in rat. Toxicol. Appl. Pharmacol. 1996 136 1 20 28 10.1006/taap.1996.0003 8560475
    [Google Scholar]
  34. Hussien H.M. Elmegied A.A. Ghareeb D.A. Hafez H.S. Ahmed H.E.A. moneam E.N.A. Neuroprotective effect of berberine against environmental heavy metals-induced neurotoxicity and Alzheimer’s-like disease in rats. Food Chem. Toxicol. 2018 111 432 444 10.1016/j.fct.2017.11.025 29170048
    [Google Scholar]
  35. Saleh S.R. Abdelhady S.A. Khattab A.R. Hadidy E.W.F. Dual prophylactic/therapeutic potential of date seed, and nigella and olive oils-based nutraceutical formulation in rats with experimentally-induced Alzheimer’s disease: A mechanistic insight. J. Chem. Neuroanat. 2020 110 101878 10.1016/j.jchemneu.2020.101878 33144183
    [Google Scholar]
  36. Saeed M.M. Ochoa F.Á. Saber F.R. Sayed R.H. Gurrea C.M.L. Elmotayam A.K. Jiménez L.F.J. Carretero S.A. Nadeem R.I. The potential neuroprotective effect of Cyperus esculentus L. extract in scopolamine-induced cognitive impairment in rats: Extensive biological and metabolomics approaches. Molecules 2022 27 20 7118 10.3390/molecules27207118 36296710
    [Google Scholar]
  37. Dehghanian F. Kalantaripour T.P. Esmaeilpour K. Elyasi L. Oloumi H. Pour F.M. Shekaari A.M. Date seed extract ameliorates β-amyloid-induced impairments in hippocampus of male rats. Biomed. Pharmacother. 2017 89 221 226 10.1016/j.biopha.2017.02.037 28231543
    [Google Scholar]
  38. Rigacci S. Olive oil phenols as promising Alzheimer’s disease. Adv. Exp. Med. Biol. 2015 863 1 20 10.1007/978‑3‑319‑18365‑7_1 26092624
    [Google Scholar]
  39. Elsaid F.G. Shati A.A. Hafez E.E. The protective role of Coffea arabica L. and Crocus sativus L. against the neurotoxicity induced by chronic administration of aluminium chloride. J. Pharmacol. Toxicol. 2011 6 8 647 663 10.3923/jpt.2011.647.663
    [Google Scholar]
  40. Oboh G. Agunloye O.M. Akinyemi A.J. Ademiluyi A.O. Adefegha S.A. Comparative study on the inhibitory effect of caffeic and chlorogenic acids on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced oxidative stress in rats’ brain-in vitro. Neurochem. Res. 2013 38 2 413 419 10.1007/s11064‑012‑0935‑6 23184188
    [Google Scholar]
  41. Servili M. Sordini B. Esposto S. Urbani S. Veneziani G. Maio D.I. Selvaggini R. Taticchi A. Biological activities of phenolic compounds of extra virgin olive oil. Antioxidants 2013 3 1 1 23 10.3390/antiox3010001 26784660
    [Google Scholar]
  42. Visioli F. Poli A. Gall C. Antioxidant and other biological activities of phenols from olives and olive oil. Med. Res. Rev. 2002 22 1 65 75 10.1002/med.1028 11746176
    [Google Scholar]
  43. Guo T. Wan C. Huang F. Wei C. Evaluation of quality properties and antioxidant activities of tiger nut (Cyperus esculentus L.) oil produced by mechanical expression or/with critical fluid extraction. Lebensm. Wiss. Technol. 2021 141 110915 10.1016/j.lwt.2021.110915
    [Google Scholar]
  44. Hasan H.F. Hamzah A.M. Zghair Z.R. Study the comparative effect between Cyperus Esculentus seeds extract and gentamicin on induced endometritis in mice. JPCS 2013 7 40 47
    [Google Scholar]
  45. Farzaei M.H. Bahramsoltani R. Abbasabadi Z. Braidy N. Nabavi S.M. Role of green tea catechins in prevention of age‐related cognitive decline: Pharmacological targets and clinical perspective. J. Cell. Physiol. 2019 234 3 2447 2459 10.1002/jcp.27289 30187490
    [Google Scholar]
  46. Marika M. Scoditti E. Carluccio M. A. Kaltsatou A. Cicchella A. Effect of cocoa products and its polyphenolic constituents on exercise performance and exercise-induced muscle damage and inflammation: A review of clinical trials. Nutrients 2019 11 7 1471
    [Google Scholar]
  47. Díaz R.M.C. Caravaca G.A.M. Hernández G.E.J. Villanova G.B. Verardo V. New advances in the phenolic composition of Tiger Nut (Cyperus esculentus L.) by-Products. Foods 2022 11 3 343 10.3390/foods11030343 35159494
    [Google Scholar]
  48. Soto R.E. Quijal M.F.J. Cilla A. Munekata P.E.S. Lorenzo J.M. Remize F. Barba F.J. Influence of temperature, solvent and pH on the selective extraction of phenolic compounds from tiger nuts by-products: Triple-TOF-LC-MS-MS characterization. Molecules 2019 24 4 797 10.3390/molecules24040797 30813299
    [Google Scholar]
  49. Dorni C. Paras S. Gunendra S. Longvah T. Fatty acid profile of edible oils and fats consumed in India. Food Chem. 2018 238 9 15
    [Google Scholar]
  50. Gagliardi A.C.M. Maranhão R.C. de Sousa H.P. Schaefer E.J. Santos R.D. Effects of margarines and butter consumption on lipid profiles, inflammation markers and lipid transfer to HDL particles in free-living subjects with the metabolic syndrome. Eur. J. Clin. Nutr. 2010 64 10 1141 1149
    [Google Scholar]
  51. Deosarkar S.S. Khedkar C.D. Ghee. Encycl. of food and health. Caballero B. Finglas P. Toldrá F. Waltham, MA Academic 2015
    [Google Scholar]
  52. Guha S. Paidi R.K. Goswami S. Saha P. Biswas S.C. ICAM-1 protects neurons against Amyloid-β and improves cognitive behaviors in 5xFAD mice by inhibiting NF-κB. Brain Behav. Immun. 2022 100 February 194 210 10.1016/j.bbi.2021.11.021 34875346
    [Google Scholar]
  53. An S.S. Park S.A. Bagyinszky E. Bae S.O. Kim Y.J. Im J.Y. Park K.W. Park K.H. Kim E.J. Jeong J.H. Kim J.H. Han H.J. Choi S.H. Kim S. A genetic screen of the mutations in the Korean patients with early-onset Alzheimer’s disease. Clin. Interv. Aging 2016 11 1817 1822 10.2147/CIA.S116724 28008242
    [Google Scholar]
  54. Innih S.O. Eluehike N. Francis B. Effects of aqueous extract of Cyperus esculentus (tiger nut) on antioxidant status and hematological indices in the heart of cadmium-induced wistar rats. Nigerian J. Exp. Clin. Biosci. 2021 9 1 17 24 10.4103/njecp.njecp_32_20
    [Google Scholar]
  55. Sudha T.S. Evaluation of anticonvulsant and antioxidant properties of Cyperus esculentus Linn. in various types of experimentally induced seizures in rats. Int. J. Green Pharm 2020 14 4 381 387
    [Google Scholar]
  56. Niu S.L. Mitchell D.C. Litman B.J. Trans fatty acid derived phospholipids show increased membrane cholesterol and reduced receptor activation as compared to their cis analogs. Biochemistry 2005 44 11 4458 4465 10.1021/bi048319+ 15766276
    [Google Scholar]
  57. Ginter E. Simko V. New data on harmful effects of trans-fatty acids. Bratisl. Med. J. 2016 117 5 251 253 10.4149/BLL_2016_048
    [Google Scholar]
  58. Hussein J.S. Medhat D. Latif A.Y. Morsy S. Gaafar A.A. Ibrahim E.A. kashef A.A.S. Nooman M.U. Amelioration of neurotoxicity induced by esfenvalerate: Impact of Cyperus rotundus L. tuber extract. Comp. Clin. Pathol. 2021 30 1 1 10 10.1007/s00580‑020‑03182‑0
    [Google Scholar]
  59. Umukoro S. Okoh L. Igweze S.C. Ajayi A.M. Azu B.B. Protective effect of Cyperus esculentus (tiger nut) extract against scopolamine-induced memory loss and oxidative stress in mouse brain. Drug Metab. Person. Ther. 2020 35 3 20200112
    [Google Scholar]
  60. Marasy E.S.A. Elsalam A.R.M. Farid A.O.A. Ameliorative effect of silymarin on scopolamine-induced dementia in rats. Open Access Maced. J. Med. Sci. 2018 6 7 1215 1224 10.3889/oamjms.2018.257 30087724
    [Google Scholar]
  61. Barai P. Raval N. Acharya S. Borisa A. Bhatt H. Acharya N. Neuroprotective effects of bergenin in Alzheimer’s disease: Investigation through molecular docking, in vitro and in vivo studies. Behav. Brain Res. 2019 356 18 40 10.1016/j.bbr.2018.08.010 30118774
    [Google Scholar]
  62. Müller K.J.A. Rana T. Olabiyi B.F. Zimmer A. Schmöle A.C. Cannabinoid receptor 2 alters social memory and microglial activity in an age-dependent manner. Molecules 2021 26 19 5984 10.3390/molecules26195984 34641528
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010343085250226111914
Loading
/content/journals/cpb/10.2174/0113892010343085250226111914
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test