Skip to content
2000
image of Recent Advancements in Nanoparticles-based Approaches for the Theranostics of Glioblastoma Multiforme

Abstract

One of the deadliest and most challenging tumors in the body is Glioblastoma Multiforme (GBM). The Most aggressive kinds of brain tumors pose multiple challenges in their treatment due to several barriers (BBB and BCSF). Conventional treatments show poor efficacy in the treatment owing to poor penetrability through the blood-brain barrier and extreme toxicity in the brain. Moreover, the prognosis and diagnosis of GBM are critical, as they can lead to a fatal outcome.The current state-of-the-art review emphasizes the novel theranostic nanoparticles, which are significantly effective in treating the GBM. The most effective nanocarriers are lipid-based (Liposomes, Solid lipid nanoparticles, nanostructured lipid carrier, nanoemulsion), polymeric (polymeric micelles, dendrimers, quantum dots, exosomes, and hydrogels), metallic (Gold, Silver, Platinum), inorganic (iron oxide, mesoporous silica, copper oxide, boron oxide, Gadolinium, Selenium, and Zinc oxide NPs), carbon-based (Carbon nanotubes and graphene oxide) and others (protein-based NPs, Cubosomes, Polymersosomes). These nanoparticle-loaded antitumor agents show good penetration across the barriers and improve survival rates compared to conventional ones. Lipid-based nanoparticles are preferred for providing high biocompatibility, biodegradability, and sustained release action. Polymeric nanocarriers are preferred for facilitating long-acting therapy, and patient comfort, mostly for their biosensing features. Carbon-based nanomaterials are gaining interest for their theranostic action. The most promising outcomes in clinical practices are shown in Liposomes, PLGA-based NPs, Gold NPs, hydrogels, iron oxide NPs, albumin-based NPs, .

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010352026250213055117
2025-03-18
2025-10-08
Loading full text...

Full text loading...

References

  1. Sonkin D. Thomas A. Teicher B.A. Cancer treatments: Past, present, and future. Cancer Genet. 2024 286-287 18 24 10.1016/j.cancergen.2024.06.002 38909530
    [Google Scholar]
  2. Shewale H. Kanugo A. Recent advances in immunotherapy and targeted therapy of triple negative breast cancer. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010303244240718075729 39092645
    [Google Scholar]
  3. Tavakol M. Delavari S. Salami F. Ansari S. Rasouli S.E. Chavoshzadeh Z. Sherkat R. Ahanchian H. Aleyasin S. Esmaeilzadeh H. Moazzen N. Shafiei A. Abolnezhadian F. Iranparast S. Ebrahimi S. Moeini Shad T. Pashangzadeh S. Nazari F. Rezaei A. Saeedi-Boroujeni A. Nabavi M. Arshi S. Fallahpour M. Bemanian M. Sharafian S. Shokri S. Eshaghi S. Nazari S. Shamsian B.S. Dargahi Mal-Amir M. Khazaei R. Ashkevari P. Khavandegar A. Haghi S. Esmaeili M. Abolhassani H. Rezaei N. Diversity of malignancies in patients with different types of inborn errors of immunity. Allergy Asthma Clin. Immunol. 2022 18 1 106 10.1186/s13223‑022‑00747‑2 36510326
    [Google Scholar]
  4. Gomes A.R. Tavares-da-Silva E.J. Costa S.C. Varela C.L. Abrantes A.M. Gonçalves A.C. Alves R. Botelho M.F. Roleira F.M.F. Pires A.S. Steroidal epoxides as anticancer agents in lung, prostate and breast cancers: The case of 1,2-epoxysteroids. Biochem. Pharmacol. 2024 225 116266 10.1016/j.bcp.2024.116266 38710333
    [Google Scholar]
  5. Kamal N. Ilowefah M. A. Hilles A. R. Anua N. A. Awin T. Alshwyeh H. A. Aldosary S. K. Jambocus N. G. S. Alosaimi A. A. Rahman A. Mahmood S. Mediani A. Genesis and mechanism of some cancer types and an overview on the role of diet and nutrition in cancer prevention. Mol. 2022 27 6 1794 10.3390/molecules27061794
    [Google Scholar]
  6. Pathak A. Tomar S. Pathak S. Epigenetics and cancer: A comprehensive review. Asia Pac J Cancer Biol. 2023 8 1 75 89 10.31557/apjcb.2023.8.1.75‑89
    [Google Scholar]
  7. Siegel R.L. Giaquinto A.N. Jemal A. Cancer statistics, 2024. CA Cancer J. Clin. 2024 74 1 12 49 10.3322/caac.21820 38230766
    [Google Scholar]
  8. Liu H. Qiu W. Sun T. Wang L. Du C. Hu Y. Liu W. Feng F. Chen Y. Sun H. Therapeutic strategies of glioblastoma (GBM): The current advances in the molecular targets and bioactive small molecule compounds. Acta Pharm. Sin. B 2022 12 4 1781 1804 10.1016/j.apsb.2021.12.019 35847506
    [Google Scholar]
  9. Zhao C. Zhu X. Tan J. Mei C. Cai X. Kong F. Lipid-based nanoparticles to address the limitations of GBM therapy by overcoming the blood-brain barrier, targeting glioblastoma stem cells, and counteracting the immunosuppressive tumor microenvironment. Biomed. Pharmacother. 2024 171 116113 10.1016/j.biopha.2023.116113 38181717
    [Google Scholar]
  10. Wu W. Klockow J.L. Zhang M. Lafortune F. Chang E. Jin L. Wu Y. Daldrup-Link H.E. Glioblastoma multiforme (GBM): An overview of current therapies and mechanisms of resistance. Pharmacol. Res. 2021 171 105780 10.1016/j.phrs.2021.105780 34302977
    [Google Scholar]
  11. Zong H. Verhaak R.G.W. Canoll P. The cellular origin for malignant glioma and prospects for clinical advancements. Expert Rev. Mol. Diagn. 2012 12 4 383 394 10.1586/erm.12.30 22616703
    [Google Scholar]
  12. Sahoo L. Tripathy N.S. Dilnawaz F. Naringenin nanoformulations for neurodegenerative diseases. Curr. Pharm. Biotechnol. 2024 25 16 2108 2124 10.2174/0113892010281459240118091137 38347794
    [Google Scholar]
  13. DeSisto J. Donson A.M. Griesinger A.M. Fu R. Riemondy K. Mulcahy Levy J. Siegenthaler J.A. Foreman N.K. Vibhakar R. Green A.L. Tumor and immune cell types interact to produce heterogeneous phenotypes of pediatric high-grade glioma. Neuro-oncol. 2024 26 3 538 552 10.1093/neuonc/noad207 37934854
    [Google Scholar]
  14. Cruz J.V.R. Batista C. Afonso B.H. Alexandre-Moreira M.S. Dubois L.G. Pontes B. Moura Neto V. Mendes F.A. Obstacles to glioblastoma treatment two decades after temozolomide. Cancers 2022 14 13 3203 10.3390/cancers14133203 35804976
    [Google Scholar]
  15. Hu D. Xia M. Wu L. Liu H. Chen Z. Xu H. He C. Wen J. Xu X. Challenges and advances for glioma therapy based on inorganic nanoparticles. Mater. Today Bio 2023 20 100673 10.1016/j.mtbio.2023.100673 37441136
    [Google Scholar]
  16. Trivedi S. Bhoyar V. Akojwar N. Belgamwar V. Transport of nanocarriers to brain for treatment of glioblastoma multiforme: Routes and challenges. Nano Trends 2023 1 100005 10.1016/j.nwnano.2023.100005
    [Google Scholar]
  17. Muir M. Gopakumar S. Traylor J. Lee S. Rao G. Glioblastoma multiforme: Novel therapeutic targets. Expert Opin. Ther. Targets 2020 24 7 605 614 10.1080/14728222.2020.1762568 32394767
    [Google Scholar]
  18. Sharma P. Aaroe A. Liang J. Puduvalli V.K. Tumor microenvironment in glioblastoma: Current and emerging concepts. Neurooncol. Adv. 2023 5 1 vdad009 10.1093/noajnl/vdad009 36968288
    [Google Scholar]
  19. Mao M. Wu Y. He Q. Recent advances in targeted drug delivery for the treatment of glioblastoma. Nanoscale 2024 16 18 8689 8707 10.1039/D4NR01056F 38606460
    [Google Scholar]
  20. Kanugo A. Misra A. New and novel approaches for enhancing the oral absorption and bioavailability of protein and peptides therapeutics. Ther Deliv. 2020 11 11 713 732 10.4155/tde‑2020‑0068
    [Google Scholar]
  21. Wei D. Zhang N. Qu S. Wang H. Li J. Advances in nanotechnology for the treatment of GBM. Front. Neurosci. 2023 17 1180943 10.3389/fnins.2023.1180943 37214394
    [Google Scholar]
  22. Kanugo A. Deshpande A. Sharma R. Formulation optimization and evaluation of nanocochleate gel of famciclovir for the treatment of herpes zoster. Recent Pat. Nanotechnol. 2023 17 3 259 269 10.2174/1872210516666220622115553 35733311
    [Google Scholar]
  23. Shah S. Dhawan V. Holm R. Nagarsenker M.S. Perrie Y. Liposomes: Advancements and innovation in the manufacturing process. Adv. Drug Deliv. Rev. 2020 154-155 102 122 10.1016/j.addr.2020.07.002 32650041
    [Google Scholar]
  24. Teixeira M.I. Lopes C.M. Amaral M.H. Costa P.C. Surface-modified lipid nanocarriers for crossing the blood-brain barrier (BBB): A current overview of active targeting in brain diseases. Colloids Surf. B Biointerfaces 2023 221 112999 10.1016/j.colsurfb.2022.112999 36368148
    [Google Scholar]
  25. Kuo Y.C. Lee Y.J. Rajesh R. Enhanced activity of AZD5582 and SM-164 in rabies virus glycoprotein-lactoferrin-liposomes to downregulate inhibitors of apoptosis proteins in glioblastoma. Biomater. Adv. 2022 133 112615 10.1016/j.msec.2021.112615 35525732
    [Google Scholar]
  26. Qi N. Zhang S. Zhou X. Duan W. Gao D. Feng J. Li A. Combined integrin αvβ3 and lactoferrin receptor targeted docetaxel liposomes enhance the brain targeting effect and anti-glioma effect. J. Nanobiotechnology 2021 19 1 446 10.1186/s12951‑021‑01180‑0 33397416
    [Google Scholar]
  27. Wu S. Lu L. Zhou J. Ran D. Wang S. Xu Q. Xu W. Wang J. Liu Y. Xie C. Luo Z. Lu W. All-stage targeted therapy for glioblastoma based on lipid membrane coated cabazitaxel nanocrystals. J. Control. Release 2022 345 685 695 10.1016/j.jconrel.2022.03.047 35346767
    [Google Scholar]
  28. Cai J. Liu Y. Zhang L. Guo R. Liu Y. Li X. Ma L. Kong L. Menthol-modified paclitaxel multifunctional cationic liposomes cross the blood-brain barrier and target glioma stem cells for treatment of glioblastoma. J. Drug Deliv. Sci. Technol. 2024 93 105387 10.1016/j.jddst.2024.105387
    [Google Scholar]
  29. Waghule T. Laxmi Swetha K. Roy A. Narayan Saha R. Singhvi G. Exploring temozolomide encapsulated PEGylated liposomes and lyotropic liquid crystals for effective treatment of glioblastoma: in-vitro, cell line, and pharmacokinetic studies. Eur. J. Pharm. Biopharm. 2023 186 18 29 10.1016/j.ejpb.2023.03.004 36924995
    [Google Scholar]
  30. Lakkadwala S. dos Santos Rodrigues B. Sun C. Singh J. Dual functionalized liposomes for efficient co-delivery of anti-cancer chemotherapeutics for the treatment of glioblastoma. J. Control. Release 2019 307 247 260 10.1016/j.jconrel.2019.06.033 31252036
    [Google Scholar]
  31. Liu X. Yi X. Gu J. Ji Z. Zhu M. Shen M. Ren Y. Guo L. Liu T. Ding N. Yang K. Immunoregulatory liposomes hitchhiking on neutrophils for enhanced carbon ion radiotherapy-assisted immunotherapy of glioblastoma. Nano Today 2023 53 102037 10.1016/j.nantod.2023.102037
    [Google Scholar]
  32. Ye J. Yang Y. Jin J. Ji M. Gao Y. Feng Y. Wang H. Chen X. Liu Y. Targeted delivery of chlorogenic acid by mannosylated liposomes to effectively promote the polarization of TAMs for the treatment of glioblastoma. Bioact. Mater. 2020 5 3 694 708 10.1016/j.bioactmat.2020.05.001 32478203
    [Google Scholar]
  33. Mellinger A. Lubitz L.J. Gazaille C. Leneweit G. Bastiat G. Lépinoux-Chambaud C. Eyer J. The use of liposomes functionalized with the NFL-TBS.40–63 peptide as a targeting agent to cross the in vitro blood–brain barrier and target glioblastoma cells. Int. J. Pharm. 2023 646 123421 10.1016/j.ijpharm.2023.123421 37722495
    [Google Scholar]
  34. Lakkadwala S. Singh J. Dual functionalized 5-fluorouracil liposomes as highly efficient nanomedicine for glioblastoma treatment as assessed in an in vitro brain tumor model. J. Pharm. Sci. 2018 107 11 2902 2913 10.1016/j.xphs.2018.07.020 30055226
    [Google Scholar]
  35. Jhaveri A. Deshpande P. Pattni B. Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. J. Control. Release 2018 277 89 101 10.1016/j.jconrel.2018.03.006 29522834
    [Google Scholar]
  36. Charkhat Gorgich E.A. Kasbiyan H. Shabani R. Mehdizadeh M. Hajiahmadi F. Ajdary M. Barati M. Moradi F. Ahmadvand D. Smart chlorotoxin-functionalized liposomes for sunitinib targeted delivery into glioblastoma cells. J. Drug Deliv. Sci. Technol. 2022 77 103908 10.1016/j.jddst.2022.103908
    [Google Scholar]
  37. Ismail M. Yang W. Li Y. Chai T. Zhang D. Du Q. Muhammad P. Hanif S. Zheng M. Shi B. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 2022 287 121608 10.1016/j.biomaterials.2022.121608 35690021
    [Google Scholar]
  38. Kanugo A. Gautam R.K. Kamal M.A. Recent advances of nanotechnology in the diagnosis and therapy of triple- negative breast cancer (TNBC). Curr. Pharm. Biotechnol. 2022 23 13 1581 1595 10.2174/1389201023666211230113658 34967294
    [Google Scholar]
  39. Mulay L. Hegde N. Kanugo A. Formulation optimization and characterization of solid lipid nanoparticles of apixaban. Recent Pat. Nanotechnol. 2024 18 10.2174/0118722105284862240506045944 39099216
    [Google Scholar]
  40. Sharma S. Kanugo A. Gaikwad J. Design and development of solid lipid nanoparticles of tazarotene for the treatment of psoriasis and acne: A quality by design approach. Mater. Technol. 2022 37 8 735 744 10.1080/10667857.2021.1873637
    [Google Scholar]
  41. Yang Q. Zhou Y. Chen J. Huang N. Wang Z. Cheng Y. Gene therapy for drug-resistant glioblastoma via lipid-polymer hybrid nanoparticles combined with focused ultrasound. Int. J. Nanomedicine 2021 16 185 199 10.2147/IJN.S286221 33447034
    [Google Scholar]
  42. Zwain T. Alder J.E. Sabagh B. Shaw A. Burrow A.J. Singh K.K. Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. Mater. Sci. Eng. C 2021 121 111774 10.1016/j.msec.2020.111774 33579439
    [Google Scholar]
  43. Passos Gibson V. Tahiri H. Yang C. Phan Q.T. Banquy X. Hardy P. Hyaluronan decorated layer-by-layer assembled lipid nanoparticles for miR-181a delivery in glioblastoma treatment. Biomaterials 2023 302 122341 10.1016/j.biomaterials.2023.122341 37778056
    [Google Scholar]
  44. Rinaldi A. Dumas F. Duskey J.T. Imbriano C. Belluti S. Roy C. Ottonelli I. Vandelli M.A. Ruozi B. Garcion E. Tosi G. Boury F. Polymer-lipid hybrid nanomedicines to deliver siRNA in and against glioblastoma cells. Int. J. Pharm. 2024 654 123994 10.1016/j.ijpharm.2024.123994 38484859
    [Google Scholar]
  45. Xue K. Yang R. An Y. Ding Y. Li S. Miao F. Liu D. Chen D. Tang Q. NIR-promoted ferrous ion regeneration enhances ferroptosis for glioblastoma treatment. J. Control. Release 2024 368 595 606 10.1016/j.jconrel.2024.01.004 38185333
    [Google Scholar]
  46. Nicoleti L.R. Di Filippo L.D. Duarte J.L. Luiz M.T. Sábio R.M. Chorilli M. Development, characterization and in vitro cytotoxicity of kaempferol-loaded nanostructured lipid carriers in glioblastoma multiforme cells. Colloids Surf. B Biointerfaces 2023 226 113309 10.1016/j.colsurfb.2023.113309 37054466
    [Google Scholar]
  47. Wang L. Wang X. Shen L. Alrobaian M. Panda S.K. Almasmoum H.A. Ghaith M.M. Almaimani R.A. Ibrahim I.A.A. Singh T. Baothman A.A. Choudhry H. Beg S. Paclitaxel and naringenin-loaded solid lipid nanoparticles surface modified with cyclic peptides with improved tumor targeting ability in glioblastoma multiforme. Biomed. Pharmacother. 2021 138 March 111461 10.1016/j.biopha.2021.111461 33706131
    [Google Scholar]
  48. Zwain T. Alder J.E. Zwayen S. Shaw A. Burrow A.J. Singh K.K. Overcoming biological barriers BBB/BBTB by designing PUFA functionalised lipid-based nanocarriers for glioblastoma targeted therapy. Biomater. Adv. 2023 155 213660 10.1016/j.bioadv.2023.213660 37976832
    [Google Scholar]
  49. Dana P. Yostawonkul J. Chonniyom W. Unger O. Sakulwech S. Sathornsumetee S. Saengkrit N. Nanostructured lipid base carrier for specific delivery of garlic oil through blood brain barrier against aggressiveness of glioma. J. Drug Deliv. Sci. Technol. 2021 64 102651 10.1016/j.jddst.2021.102651
    [Google Scholar]
  50. Di Filippo L.D. Lobato Duarte J. Hofstätter Azambuja J. Isler Mancuso R. Tavares Luiz M. Hugo Sousa Araújo V. Delbone Figueiredo I. Barretto-de-Souza L. Miguel Sábio R. Sasso-Cerri E. Martins Baviera A. Crestani C.C. Teresinha Ollala Saad S. Chorilli M. Glioblastoma multiforme targeted delivery of docetaxel using bevacizumab-modified nanostructured lipid carriers impair in vitro cell growth and in vivo tumor progression. Int. J. Pharm. 2022 618 121682 10.1016/j.ijpharm.2022.121682 35307470
    [Google Scholar]
  51. Mittal S. Shah S. Yadav H.N. Ali J. Gupta M.M. Baboota S. Quality by design engineered, enhanced anticancer activity of temozolomide and resveratrol coloaded NLC and brain targeting via lactoferrin conjugation in treatment of glioblastoma. Eur. J. Pharm. Biopharm. 2023 191 175 188 10.1016/j.ejpb.2023.08.018 37648174
    [Google Scholar]
  52. Sharma S. Kanugo A. Kaur T. Chaudhary D. Formulation and characterization of self-microemulsifying drug delivery system (SMEDDS) of sertraline hydrochloride. Recent Pat. Nanotechnol. 2022 16 10.2174/1872210516666220623152440 35747954
    [Google Scholar]
  53. Borges H.S. Gusmão L.A. Tedesco A.C. Multi-charged nanoemulsion for photodynamic treatment of glioblastoma cell line in 2D and 3D in vitro models. Photodiagn. Photodyn. Ther. 2023 43 103723 10.1016/j.pdpdt.2023.103723 37487809
    [Google Scholar]
  54. Michels L.R. Fachel F.N.S. Schuh R.S. Azambuja J.H. de Souza P.O. Gelsleichter N.E. Lenz G.S. Visioli F. Braganhol E. Teixeira H.F. Nasal administration of a temozolomide-loaded thermoresponsive nanoemulsion reduces tumor growth in a preclinical glioblastoma model. J. Control. Release 2023 355 343 357 10.1016/j.jconrel.2023.01.070 36731799
    [Google Scholar]
  55. Tedesco A.C. Silva E.P.O. Jayme C.C. Piva H.L. Franchi L.P. Cholesterol-rich nanoemulsion (LDE) as a novel drug delivery system to diagnose, delineate, and treat human glioblastoma. Mater. Sci. Eng. C 2021 123 111984 10.1016/j.msec.2021.111984 33812612
    [Google Scholar]
  56. Qu Y. Li A. Ma L. Iqbal S. Sun X. Ma W. Li C. Zheng D. Xu Z. Zhao Z. Ma D. Nose-to-brain delivery of disulfiram nanoemulsion in situ gel formulation for glioblastoma targeting therapy. Int. J. Pharm. 2021 597 120250 10.1016/j.ijpharm.2021.120250 33486040
    [Google Scholar]
  57. Alaayedi M.H. Maraie N.K. Lomustine’s nanoemulsion as nose-to-brain drug delivery system for CNS tumor treatment. Saudi Pharm. J. 2023 31 8 101692 10.1016/j.jsps.2023.06.025 37457367
    [Google Scholar]
  58. Sindhi K. Kanugo A. Recent developments in nanotechnology and immunotherapy for the diagnosis and treatment of pancreatic cancer. Curr. Pharm. Biotechnol. 2024 25 10.2174/0113892010284407240212110745 38415488
    [Google Scholar]
  59. Sun P. Xiao Y. Di Q. Ma W. Ma X. Wang Q. Chen W. Transferrin receptor-targeted PEG-PLA polymeric micelles for chemotherapy against glioblastoma multiforme. Int. J. Nanomedicine 2020 15 6673 6687 10.2147/IJN.S257459 32982226
    [Google Scholar]
  60. Chauhan P.S. Kumarasamy M. Carcaboso A.M. Sosnik A. Danino D. Multifunctional silica-coated mixed polymeric micelles for integrin-targeted therapy of pediatric patient-derived glioblastoma. Mater. Sci. Eng. C 2021 128 112261 10.1016/j.msec.2021.112261 34474820
    [Google Scholar]
  61. Smiley S.B. Yun Y. Ayyagari P. Shannon H.E. Pollok K.E. Vannier M.W. Das S.K. Veronesi M.C. Development of CD133 targeting multi-drug polymer micellar nanoparticles for glioblastoma - In vitro evaluation in glioblastoma stem cells. Pharm. Res. 2021 38 6 1067 1079 10.1007/s11095‑021‑03050‑8 34100216
    [Google Scholar]
  62. Torcasio S.M. Oliva R. Montesi M. Panseri S. Bassi G. Mazzaglia A. Piperno A. Coulembier O. Scala A. Three-armed RGD-decorated starPLA-PEG nanoshuttle for docetaxel delivery. Biomater. Adv. 2022 140 213043 10.1016/j.bioadv.2022.213043 35914327
    [Google Scholar]
  63. Göppert N.E. Quader S. Van Guyse J.F.R. Weber C. Kataoka K. Schubert U.S. Amphiphilic Poly(2-oxazoline)s with glycine-containing hydrophobic blocks tailored for panobinostat- and imatinib-loaded micelles. Biomacromolecules 2023 24 12 5915 5925 10.1021/acs.biomac.3c00934 37987713
    [Google Scholar]
  64. Silverman L. Bhatti G. Wulff J.E. Moffitt M.G. Improvements in drug-delivery properties by co-encapsulating curcumin in SN-38-loaded anticancer polymeric nanoparticles. Mol. Pharm. 2022 19 6 1866 1881 10.1021/acs.molpharmaceut.2c00005 35579267
    [Google Scholar]
  65. Xu K. Zhang L. Gu Y. Yang H. Du B. Liu H. Li Y. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur. Polym. J. 2021 145 110232 10.1016/j.eurpolymj.2020.110232
    [Google Scholar]
  66. Gao Y. Wang R. Huang T. Tian Q. Yang C. Pilehvar Y. Wang J. Synthesis and characterization of rutin-loaded micelles for glioblastoma multiforme treatment: A computational and experimental study. J. Drug Deliv. Sci. Technol. 2023 86 104675 10.1016/j.jddst.2023.104675
    [Google Scholar]
  67. Huang X. Mu N. Ding Y. Huang R. Wu W. Li L. Chen T. Tumor microenvironment targeting for glioblastoma multiforme treatment via hybrid cell membrane coating supramolecular micelles. J. Control. Release 2024 366 194 203 10.1016/j.jconrel.2023.12.033 38142965
    [Google Scholar]
  68. Wang K. Zhao B. Ao Y. Zhu J. Zhao C. Wang W. Zou Y. Huang D. Zhong Y. Chen W. Qian H. Super-small zwitterionic micelles enable the improvement of blood-brain barrier crossing for efficient orthotopic glioblastoma combinational therapy. J. Control. Release 2023 364 261 271 10.1016/j.jconrel.2023.10.019 37839641
    [Google Scholar]
  69. Bober Z. Bartusik-Aebisher D. Aebisher D. Application of dendrimers in anticancer diagnostics and therapy. Molecules 2022 27 10 3237 10.3390/molecules27103237 35630713
    [Google Scholar]
  70. Guizze F. Serra C.H.R. Giarolla J. PAMAM dendrimers: A review of methodologies employed in biopharmaceutical classification. J. Pharm. Sci. 2022 111 10 2662 2673 10.1016/j.xphs.2022.07.009 35850238
    [Google Scholar]
  71. Pérez-Ferreiro M. M Abelairas A. Criado A. Gómez I.J. Mosquera J. Dendrimers: Exploring their wide structural variety and applications. Polymers 2023 15 22 4369 10.3390/polym15224369 38006093
    [Google Scholar]
  72. Sahoo R.K. Gupta T. Batheja S. Goyal A.K. Gupta U. Surface engineered dendrimers: A potential nanocarrier for the effective management of glioblastoma multiforme. Curr. Drug Metab. 2022 23 9 708 722 10.2174/1389200223666220616125524 35713127
    [Google Scholar]
  73. Liu C. Zhao Z. Gao H. Rostami I. You Q. Jia X. Wang C. Zhu L. Yang Y. Enhanced blood-brain-barrier penetrability and tumor-targeting efficiency by peptide-functionalized poly(amidoamine) dendrimer for the therapy of gliomas. Nanotheranostics 2019 3 4 311 330 10.7150/ntno.38954 31687320
    [Google Scholar]
  74. Torres-Pérez S.A. Ramos-Godínez M.P. Ramón-Gallegos E. Glycosylated one-step PAMAM dendrimers loaded with methotrexate for target therapy in breast cancer cells MDA-MB-231. J. Drug Deliv. Sci. Technol. 2020 58 101769 10.1016/j.jddst.2020.101769
    [Google Scholar]
  75. Liaw K. Sharma R. Sharma A. Salazar S. Appiani La Rosa S. Kannan R.M. Systemic dendrimer delivery of triptolide to tumor-associated macrophages improves anti-tumor efficacy and reduces systemic toxicity in glioblastoma. J. Control. Release 2021 329 434 444 10.1016/j.jconrel.2020.12.003 33290796
    [Google Scholar]
  76. Hsu C.Y. Rajhi A.A. Ali E. Chandra S. Hassan Ahmed H. Hussein Adhab Z. Alkhayyat A.S. Alsalamy A. Saadh M.J. Acetyl-terminated PAMAM dendrimers for pH-sensitive delivery of irinotecan and fluorouracil: A molecular dynamics simulation study. Chem. Phys. Lett. 2023 832 140876 10.1016/j.cplett.2023.140876
    [Google Scholar]
  77. Zhang S. Lloveras V. Lope-Piedrafita S. Calero-Pérez P. Wu S. Candiota A.P. Vidal-Gancedo J. Metal-free radical dendrimers as MRI contrast agents for glioblastoma diagnosis: Ex vivo and in vivo approaches. Biomacromolecules 2022 23 7 2767 2777 10.1021/acs.biomac.2c00088 35749573
    [Google Scholar]
  78. Sharma A. Liaw K. Sharma R. Thomas A.G. Slusher B.S. Kannan S. Kannan R.M. Targeting mitochondria in tumor-associated macrophages using a dendrimer-conjugated TSPO ligand that stimulates antitumor signaling in glioblastoma. Biomacromolecules 2020 21 9 3909 3922 10.1021/acs.biomac.0c01033 32786523
    [Google Scholar]
  79. Sharma A. Liaw K. Sharma R. Spriggs T. Appiani La Rosa S. Kannan S. Kannan R.M. Dendrimer-mediated targeted delivery of rapamycin to tumor-associated macrophages improves systemic treatment of glioblastoma. Biomacromolecules 2020 21 12 5148 5161 10.1021/acs.biomac.0c01270 33112134
    [Google Scholar]
  80. Czarnik-Kwaśniak J. Kwaśniak K. Tutaj K. Filiks I. Uram Ł. Stompor M. Wołowiec S. Glucoheptoamidated polyamidoamine PAMAM G3 dendrimer as a vehicle for succinate linked doxorubicin; enhanced toxicity of DOX against grade IV glioblastoma U-118 MG cells. J. Drug Deliv. Sci. Technol. 2020 55 101424 10.1016/j.jddst.2019.101424
    [Google Scholar]
  81. Bae Y. Rhim H.S. Lee S. Ko K.S. Han J. Choi J.S. Apoptin gene delivery by the functionalized polyamidoamine dendrimer derivatives induces cell death of U87-MG glioblastoma cells. J. Pharm. Sci. 2017 106 6 1618 1633 10.1016/j.xphs.2017.01.034 28188727
    [Google Scholar]
  82. Knauer N. Meschaninova M. Muhammad S. Hänggi D. Majoral J.P. Kahlert U.D. Kozlov V. Apartsin E.K. Effects of dendrimer-microRNA nanoformulations against glioblastoma stem cells. Pharmaceutics 2023 15 3 968 10.3390/pharmaceutics15030968 36986829
    [Google Scholar]
  83. Gallien J. Srinageshwar B. Gallo K. Holtgrefe G. Koneru S. Otero P. S. Bueno C. A. Mosher J. Roh A. Kohtz D. S. Swanson D. Sharma A. Dunbar G. Rossignol J. Curcumin loaded dendrimers specifically reduce viability of glioblastoma cell lines. Mol. 2021 26 19 6050 10.3390/molecules26196050
    [Google Scholar]
  84. Soldado A. Barrio L.C. Díaz-Gonzalez M. de la Escosura-Muñiz A. Costa-Fernandez J.M. Advances in quantum dots as diagnostic tools. Adv. Clin. Chem. 2022 107 1 40 10.1016/bs.acc.2021.07.001 35337601
    [Google Scholar]
  85. Sobhanan J. Rival J.V. Anas A. Sidharth Shibu E. Takano Y. Biju V. Luminescent quantum dots: Synthesis, optical properties, bioimaging and toxicity. Adv. Drug Deliv. Rev. 2023 197 114830 10.1016/j.addr.2023.114830 37086917
    [Google Scholar]
  86. Seabra M.A.B.L. Dubois L.G. dos Santos-Júnior E.F. Cavalcanti Santos R.V. Castro Neto A.G. Isaac A.R. Fontes A. Hochhaus G. Costa B.L.S.A. Moura Neto V. Santos B.S. CdTe quantum dots as fluorescent nanotools for in vivo glioblastoma imaging. Optical Materials: X 2024 21 100282 10.1016/j.omx.2023.100282
    [Google Scholar]
  87. Surendranath A. Mohanan P.V. Solvothermal exfoliation assisted synthesis of transition metal dichalcogenide based tungsten disulphide quantum dots (WS2 QDs) and cellular QD-bio interaction in LN-229 human glioblastoma cells. Mater. Sci. Eng. B 2022 284 115907 10.1016/j.mseb.2022.115907
    [Google Scholar]
  88. Carvalho I.C. Mansur H.S. Mansur A.A.P. Carvalho S.M. de Oliveira L.C.A. de Fatima Leite M. Luminescent switch of polysaccharide-peptide-quantum dot nanostructures for targeted-intracellular imaging of glioblastoma cells. J. Mol. Liq. 2020 304 112759 10.1016/j.molliq.2020.112759
    [Google Scholar]
  89. Karthik A. Shiek Aalam S. Sivakumar M. Rama Sundari M.V. Dafni Rose J. Elangovan M. Rajaram A. Improving brain tumor treatment with better imaging and real-time therapy using quantum dots. Biomed. Signal Process. Control 2024 95 106286 10.1016/j.bspc.2024.106286
    [Google Scholar]
  90. Mansur A.A.P. Carvalho S.C. Dorneles E.M.S. Lage A.P. Lobato Z.I.P. Mansur H.S. Bio-functionalized nanocolloids of ZnS quantum dot/amine-rich polypeptides for bioimaging cancer cells with antibacterial activity: “ seeing is believing ”. RSC Advances 2023 13 49 34378 34390 10.1039/D3RA06711D 38024978
    [Google Scholar]
  91. Wang M. Jin F. Tong X. From bench to bedside: The promising value of exosomes in precision medicine for CNS tumors. Heliyon 2024 10 11 e32376 10.1016/j.heliyon.2024.e32376 38961907
    [Google Scholar]
  92. Singh N. Guha L. Kumar H. From hope to healing: Exploring the therapeutic potential of exosomes in spinal cord injury. Extracell. Vesicle 2024 3 100044 10.1016/j.vesic.2024.100044
    [Google Scholar]
  93. Wang Y. Huo Y. Zhao C. Liu H. Shao Y. Zhu C. An L. Chen X. Chen Z. Engineered exosomes with enhanced stability and delivery efficiency for glioblastoma therapy. J. Control. Release 2024 368 170 183 10.1016/j.jconrel.2024.02.015 38382811
    [Google Scholar]
  94. Chu L. Sun Y. Zhao Y. Wang A. Sun Y. Duan X. Li N. Xia H. Liu W. Sun K. Exosome-mediated delivery platform of biomacromolecules into the brain: Cetuximab in combination with doxorubicin for glioblastoma therapy. Int. J. Pharm. 2024 660 124262 10.1016/j.ijpharm.2024.124262 38815637
    [Google Scholar]
  95. Valipour E. Ranjbar F.E. Mousavi M. Ai J. Malekshahi Z.V. Mokhberian N. Taghdiri-Nooshabadi Z. Khanmohammadi M. Nooshabadi V.T. The anti-angiogenic effect of atorvastatin loaded exosomes on glioblastoma tumor cells: An in vitro 3D culture model. Microvasc. Res. 2022 143 104385 10.1016/j.mvr.2022.104385 35609635
    [Google Scholar]
  96. Liu W. Wei L. Li M. Mo J. Zinc sulfide-based hybrid exosome-coated nanoplatform for targeted treatment of glioblastoma in an orthotopic mouse glioblastoma model. Mater. Today Adv. 2023 17 100327 10.1016/j.mtadv.2022.100327
    [Google Scholar]
  97. Li J. Wang X. Guo Y. Zhang Y. Zhu A. Zeng W. Di L. Wang R. Ginsenoside Rg3-engineered exosomes as effective delivery platform for potentiated chemotherapy and photoimmunotherapy of glioblastoma. Chem. Eng. J. 2023 471 144692 10.1016/j.cej.2023.144692
    [Google Scholar]
  98. Duarte J. Mascarenhas-Melo F. Pires P.C. Veiga F. Paiva-Santos A.C. Multifunctional hydrogels-based therapies for chronic diabetic wound healing. Eur. Polym. J. 2024 211 113026 10.1016/j.eurpolymj.2024.113026
    [Google Scholar]
  99. Erthal L.C.S. Gobbo O.L. Ruiz-Hernandez E. Biocompatible copolymer formulations to treat glioblastoma multiforme. Acta Biomater. 2021 121 89 102 10.1016/j.actbio.2020.11.030 33227487
    [Google Scholar]
  100. Yue W. Wang T. Xie L. Shen J. An injectable in situ hydrogel platform for sustained drug release against Glioblastoma. J. Drug Deliv. Sci. Technol. 2024 95 105527 10.1016/j.jddst.2024.105527
    [Google Scholar]
  101. Wang Z. Liu Z. Wang S. Bing X. Ji X. He D. Han M. Wei Y. Wang C. Xia Q. Yang J. Gao J. Yin X. Wang Z. Shang Z. Xu J. Xin T. Liu Q. Implantation of hydrogel-liposome nanoplatform inhibits glioblastoma relapse by inducing ferroptosis. Asian J. Pharm. Sci. 2023 18 3 100800 10.1016/j.ajps.2023.100800 37274924
    [Google Scholar]
  102. Gazaille C. Bozzato E. Madadian-Bozorg N. Mellinger A. Sicot M. Farooq U. Saulnier P. Eyer J. Préat V. Bertrand N. Bastiat G. Glioblastoma-targeted, local and sustained drug delivery system based on an unconventional lipid nanocapsule hydrogel. Biomater. Adv. 2023 153 213549 10.1016/j.bioadv.2023.213549 37453243
    [Google Scholar]
  103. Ye L. Lv W. He W. Li S. Min Z. Gong L. Zhang Q. Teng C. Sun S. Lv L. Guo Y. Xin H. Reduced malignant glioblastoma recurrence post-resection through the anti-CD47 antibody and Temozolomide co-embedded in-situ hydrogel system. J. Control. Release 2023 359 224 233 10.1016/j.jconrel.2023.05.046 37290721
    [Google Scholar]
  104. Bozzato E. Tsakiris N. Paquot A. Muccioli G.G. Bastiancich C. Préat V. Dual-drug loaded nanomedicine hydrogel as a therapeutic platform to target both residual glioblastoma and glioma stem cells. Int. J. Pharm. 2022 628 122341 10.1016/j.ijpharm.2022.122341 36341916
    [Google Scholar]
  105. Norouzi M. Firouzi J. Sodeifi N. Ebrahimi M. Miller D.W. Salinomycin-loaded injectable thermosensitive hydrogels for glioblastoma therapy. Int. J. Pharm. 2021 598 120316 10.1016/j.ijpharm.2021.120316 33540001
    [Google Scholar]
  106. Gawel A.M. Singh R. Debinski W. Metal-based nanostructured therapeutic strategies for glioblastoma treatment—an update. Biomedicines 2022 10 7 1598 10.3390/biomedicines10071598 35884903
    [Google Scholar]
  107. Sun L. Liu H. Ye Y. Lei Y. Islam R. Tan S. Tong R. Miao Y.B. Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 418 10.1038/s41392‑023‑01642‑x 37919282
    [Google Scholar]
  108. Govindaraj M. Suresh M. Palaniyandi T. Viswanathan S. Wahab M.R.A. Baskar G. Surendran H. Ravi M. Sivaji A. Bio-fabrication of gold nanoparticles from brown seaweeds for anticancer activity against glioblastoma through invitro and molecular docking approaches. J. Mol. Struct. 2023 1281 135178 10.1016/j.molstruc.2023.135178
    [Google Scholar]
  109. Alnemeh-Al Ali H. Griveau A. Artzner F. Dupont A. Lautram N. Jourdain M.A. Eyer J. Investigation on the self-assembly of the NFL-TBS.40-63 peptide and its interaction with gold nanoparticles as a delivery agent for glioblastoma. Int. J. Pharm. X 2022 4 100128 10.1016/j.ijpx.2022.100128 36204592
    [Google Scholar]
  110. Stavropoulou A.P. Theodosiou M. Sakellis E. Boukos N. Papanastasiou G. Wang C. Tavares A. Corral C.A. Gournis D. Chalmpes N. Gobbo O.L. Efthimiadou E.K. Bimetallic gold-platinum nanoparticles as a drug delivery system coated with a new drug to target glioblastoma. Colloids Surf. B Biointerfaces 2022 214 112463 10.1016/j.colsurfb.2022.112463 35316703
    [Google Scholar]
  111. Sukumar U.K. Bose R.J.C. Malhotra M. Babikir H.A. Afjei R. Robinson E. Zeng Y. Chang E. Habte F. Sinclair R. Gambhir S.S. Massoud T.F. Paulmurugan R. Intranasal delivery of targeted polyfunctional gold–iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials 2019 218 119342 10.1016/j.biomaterials.2019.119342 31326657
    [Google Scholar]
  112. Kan X. Ma J. Ma J. Li D. Li F. Cao Y. Huang C. Li Y. Liu P. Dual-targeted TfRA4-DNA1-Ag@AuNPs: An innovative radiosensitizer for enhancing radiotherapy in glioblastoma multiforme. Colloids Surf. B Biointerfaces 2025 245 114328 10.1016/j.colsurfb.2024.114328 39442410
    [Google Scholar]
  113. Wang L. Tang S. Yu Y. Lv Y. Wang A. Yan X. Li N. Sha C. Sun K. Li Y. Intranasal delivery of temozolomide-conjugated gold nanoparticles functionalized with anti-epha3 for glioblastoma targeting. Mol. Pharm. 2021 18 3 915 927 10.1021/acs.molpharmaceut.0c00911 33417456
    [Google Scholar]
  114. Takáč P. Michalková R. Čižmáriková M. Bedlovičová Z. Balážová Ľ. Takáčová G. The role of silver nanoparticles in the diagnosis and treatment of cancer: Are there any perspectives for the future? Life 2023 13 2 466 10.3390/life13020466 36836823
    [Google Scholar]
  115. Kabir S.R. Islam F. Al-Bari M.A.A. Asaduzzaman A.K.M. Asparagus racemosus mediated silver chloride nanoparticles induce apoptosis in glioblastoma stem cells in vitro and inhibit Ehrlich ascites carcinoma cells growth in vivo. Arab. J. Chem. 2022 15 8 104013 10.1016/j.arabjc.2022.104013
    [Google Scholar]
  116. Akyuva Y. Nazıroğlu M. Silver nanoparticles potentiate antitumor and oxidant actions of cisplatin via the stimulation of TRPM2 channel in glioblastoma tumor cells. Chem. Biol. Interact. 2023 369 110261 10.1016/j.cbi.2022.110261 36403784
    [Google Scholar]
  117. Hosseinkazemi H. Samani S. O’Neill A. Soezi M. Moghoofei M. Azhdari M.H. Aavani F. Nazbar A. Keshel S.H. Doroudian M. Applications of iron oxide nanoparticles against breast cancer. J. Nanomater. 2022 2022 1 6493458 10.1155/2022/6493458
    [Google Scholar]
  118. Baabu P.R.S. Kumar H.K. Gumpu M.B. Babu K J. Kulandaisamy A.J. Rayappan J.B.B. Iron oxide nanoparticles: A review on the province of its compounds, properties and biological applications. Materials 2022 16 1 59 10.3390/ma16010059 36614400
    [Google Scholar]
  119. Chen H. Wen J. Iron oxide nanoparticles loaded with paclitaxel inhibits glioblastoma by enhancing autophagy-dependent ferroptosis pathway. Eur. J. Pharmacol. 2022 921 174860 10.1016/j.ejphar.2022.174860 35278406
    [Google Scholar]
  120. Chiarelli P.A. Revia R.A. Stephen Z.R. Wang K. Kievit F.M. Sandhu J. Upreti M. Chung S. Ellenbogen R.G. Zhang M. Iron oxide nanoparticle-mediated radiation delivery for glioblastoma treatment. Mater. Today 2022 56 66 78 10.1016/j.mattod.2022.04.001
    [Google Scholar]
  121. Xie R. Fu S. Zhu G. Ai H. Song B. Lui S. Li G. Wang Y. Wu M. Iron oxide nanoclusters formed by acid-induced in situ calcium ion cross-linking for targeted magnetic resonance imaging of glioblastoma. Chem. Eng. J. 2024 484 149410 10.1016/j.cej.2024.149410
    [Google Scholar]
  122. Nozhat Z. Wang S. Mushtaq A. Deng T. Iqbal M.Z. Kong X. Temozolomide loaded Fe3O4@SiO2 nanoparticles for MR-imaging directed synergistic therapy of glioblastoma multiforme in vitro. Mater. Today Commun. 2024 38 108289 10.1016/j.mtcomm.2024.108289
    [Google Scholar]
  123. Alfonso-Triguero P. Lorenzo J. Candiota A.P. Arús C. Ruiz-Molina D. Novio F. Platinum-based nanoformulations for glioblastoma treatment: The resurgence of platinum drugs? Nanomaterials 2023 13 10 1619 10.3390/nano13101619 37242036
    [Google Scholar]
  124. Chan M.H. Chen W. Li C.H. Fang C.Y. Chang Y.C. Wei D.H. Liu R.S. Hsiao M. An advanced in situ magnetic resonance imaging and ultrasonic theranostics nanocomposite platform: Crossing the blood–brain barrier and improving the suppression of glioblastoma using iron-platinum nanoparticles in nanobubbles. ACS Appl. Mater. Interfaces 2021 13 23 26759 26769 10.1021/acsami.1c04990 34076419
    [Google Scholar]
  125. Seemann K.M. Kovács A. Schmid T.E. Ilicic K. Multhoff G. Dunin-Borkowski R.E. Michelagnoli C. Cieplicka-Oryńczak N. Jana S. Colombi G. Jentschel M. Schneider C.M. Kuhn B. Neutron-activated, plasmonically excitable Fe-Pt-Yb2O3 nanoparticles delivering anti-cancer radiation against human glioblastoma cells. iScience 2023 26 9 107683 10.1016/j.isci.2023.107683 37680485
    [Google Scholar]
  126. Jimenez-Macias J.L. Lee Y.C. Miller E. Finkelberg T. Zdioruk M. Berger G. Farquhar C.E. Nowicki M.O. Cho C.F. Fedeles B.I. Loas A. Pentelute B.L. Lawler S.E. A Pt(IV)-conjugated brain penetrant macrocyclic peptide shows pre-clinical efficacy in glioblastoma. J. Control. Release 2022 352 623 636 10.1016/j.jconrel.2022.10.051 36349615
    [Google Scholar]
  127. Tang L. Xiao Q. Mei Y. He S. Zhang Z. Wang R. Wang W. Insights on functionalized carbon nanotubes for cancer theranostics. J. Nanobiotechnology 2021 19 1 423 10.1186/s12951‑021‑01174‑y 34915901
    [Google Scholar]
  128. Ahmed S.A. Parama D. Daimari E. Girisa S. Banik K. Harsha C. Dutta U. Kunnumakkara A.B. Rationalizing the therapeutic potential of apigenin against cancer. Life Sci. 2021 267 118814 10.1016/j.lfs.2020.118814 33333052
    [Google Scholar]
  129. Naief M.F. Mohammed S.N. Mayouf H.J. Mohammed A.M. A review of the role of carbon nanotubes for cancer treatment based on photothermal and photodynamic therapy techniques. J. Organomet. Chem. 2023 999 122819 10.1016/j.jorganchem.2023.122819
    [Google Scholar]
  130. Parikh S.D. Dave S. Huang L. Wang W. Mukhopadhyay S.M. Mayes D.A. Multi-walled carbon nanotube carpets as scaffolds for U87MG glioblastoma multiforme cell growth. Mater. Sci. Eng. C 2020 108 110345 10.1016/j.msec.2019.110345 31924041
    [Google Scholar]
  131. De Pasquale D. Marino A. Tapeinos C. Pucci C. Rocchiccioli S. Michelucci E. Finamore F. McDonnell L. Scarpellini A. Lauciello S. Prato M. Larrañaga A. Drago F. Ciofani G. Homotypic targeting and drug delivery in glioblastoma cells through cell membrane-coated boron nitride nanotubes. Mater. Des. 2020 192 108742 10.1016/j.matdes.2020.108742 32394995
    [Google Scholar]
  132. Niskanen J. Zhang I. Xue Y. Golberg D. Maysinger D. Winnik F.M. Dually-functionalized boron nitride nanotubes to target glioblastoma multiforme. Mater. Today Chem. 2020 16 100270 10.1016/j.mtchem.2020.100270
    [Google Scholar]
  133. Kregielewski K. Fraczek W. Grodzik M. Graphene oxide enhanced cisplatin cytotoxic effect in glioblastoma and cervical cancer. Mol. 2023 28 17 6253 10.3390/molecules28176253
    [Google Scholar]
  134. Wang B. Guo H. Xu H. Chen Y. Zhao G. Yu H. The role of graphene oxide nanocarriers in treating gliomas. Front. Oncol. 2022 12 736177 10.3389/fonc.2022.736177 35155223
    [Google Scholar]
  135. Foo C.Y. Fu R.Z. Unravelling the potential of graphene in glioblastoma therapy. Mater. Sci. Eng. C 2021 128 112330 10.1016/j.msec.2021.112330 34474881
    [Google Scholar]
  136. Dash B.S. Lu Y.J. Huang Y.S. Chen J.P. Chitosan-coated magnetic graphene oxide for targeted delivery of doxorubicin as a nanomedicine approach to treat glioblastoma. Int. J. Biol. Macromol. 2024 260 Pt 1 129401 10.1016/j.ijbiomac.2024.129401 38224798
    [Google Scholar]
  137. Zygouri P. Tsiodoulos G. Angelidou M. Papanikolaou E. Athinodorou A.M. Simos Y.V. Spyrou K. Subrati M. Kouloumpis A. Kaloudi A.S. Asimakopoulos G. Tsamis K. Peschos D. Vezyraki P. Ragos V. Gournis D.P. Graphene oxide and oxidized carbon nanodiscs as biomedical scaffolds for the targeted delivery of quercetin to cancer cells. Nanoscale Adv. 2024 6 11 2860 2874 10.1039/D3NA00966A 38817436
    [Google Scholar]
  138. Kesavan S. Meena K.S. Sharmili S.A. Govindarajan M. Alharbi N.S. Kadaikunnan S. Khaled J.M. Alobaidi A.S. Alanzi K.F. Vaseeharan B. Ulvan loaded graphene oxide nanoparticle fabricated with chitosan and d-mannose for targeted anticancer drug delivery. J. Drug Deliv. Sci. Technol. 2021 65 102760 10.1016/j.jddst.2021.102760
    [Google Scholar]
  139. Unal S. Arslan S. Gokce T. Atasoy B.M. Karademir B. Oktar F.N. Gunduz O. Design and characterization of polycaprolactone-gelatin-graphene oxide scaffolds for drug influence on glioblastoma cells. Eur. Polym. J. 2019 115 157 165 10.1016/j.eurpolymj.2019.03.027
    [Google Scholar]
  140. Dutta Gupta Y. Mackeyev Y. Krishnan S. Bhandary S. Mesoporous silica nanotechnology: Promising advances in augmenting cancer theranostics. Cancer Nanotechnol. 2024 15 1 1 44 10.1186/s12645‑024‑00250‑w
    [Google Scholar]
  141. Khalbas A.H. Albayati T.M. Ali N.S. Salih I.K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S. Afr. J. Chem. Eng. 2024 50 261 280 10.1016/j.sajce.2024.08.013
    [Google Scholar]
  142. Heidari R. Assadollahi V. Shakib Manesh M.H. Mirzaei S.A. Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int. J. Pharm. 2024 665 124654 10.1016/j.ijpharm.2024.124654 39244073
    [Google Scholar]
  143. Shah S. Famta P. Bagasariya D. Charankumar K. Sikder A. Kashikar R. Kotha A.K. Chougule M.B. Khatri D.K. Asthana A. Raghuvanshi R.S. Singh S.B. Srivastava S. Tuning mesoporous silica nanoparticles in novel avenues of cancer therapy. Mol. Pharm. 2022 19 12 4428 4452 10.1021/acs.molpharmaceut.2c00374 36109099
    [Google Scholar]
  144. Bielecki P.A. Lorkowski M.E. Becicka W.M. Atukorale P.U. Moon T.J. Zhang Y. Wiese M. Covarrubias G. Ravichandran S. Karathanasis E. Immunostimulatory silica nanoparticle boosts innate immunity in brain tumors. Nanoscale Horiz. 2021 6 2 156 167 10.1039/D0NH00446D 33400743
    [Google Scholar]
  145. Hsu T.I. Chen Y.P. Zhang R.L. Chen Z.A. Wu C.H. Chang W.C. Mou C.Y. Chan H.W.H. Wu S.H. Overcoming the blood–brain tumor barrier with docetaxel-loaded mesoporous silica nanoparticles for treatment of temozolomide-resistant glioblastoma. ACS Appl. Mater. Interfaces 2024 16 17 21722 21735 10.1021/acsami.4c04289 38629735
    [Google Scholar]
  146. Saleem M.H. Ejaz U. Vithanage M. Bolan N. Siddique K.H.M. Synthesis, characterization, and advanced sustainable applications of copper oxide nanoparticles: A review. Clean Technol. Environ. Policy 2024 2024 1 26 10.1007/s10098‑024‑02774‑6
    [Google Scholar]
  147. Devaraji M. Thanikachalam P.V. Elumalai K. The potential of copper oxide nanoparticles in nanomedicine: A comprehensive review. Biotechnology Notes 2024 5 80 99 10.1016/j.biotno.2024.06.001 39416693
    [Google Scholar]
  148. Zhong X. Dai X. Wang Y. Wang H. Qian H. Wang X. Copper‐based nanomaterials for cancer theranostics. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 4 e1797 10.1002/wnan.1797 35419993
    [Google Scholar]
  149. Tian S. Xu J. Qiao X. Zhang X. Zhang S. Zhang Y. Xu C. Wang H. Fang C. CuO nanoparticles for glioma treatment in vitro and in vivo. Sci. Reports 2024 14 1 1 11 10.1038/s41598‑024‑74546‑7
    [Google Scholar]
  150. Joshi A. Naatz H. Faber K. Pokhrel S. Dringen R. Iron-doping of copper oxide nanoparticles lowers their toxic potential on C6 glioma cells. Neurochem. Res. 2020 45 4 809 824 10.1007/s11064‑020‑02954‑y 31997104
    [Google Scholar]
  151. Kulkarni S. Bhandary D. Singh Y. Monga V. Thareja S. Boron in cancer therapeutics: An overview. Pharmacol. Ther. 2023 251 108548 10.1016/j.pharmthera.2023.108548 37858628
    [Google Scholar]
  152. Ghazarian S. Kalantar Z. Hashemianzadeh S.M. An exploration of efficiency of proposed drug delivery system including BNNT, C48N12, and TMZ in treating of glioblastoma through classical molecular dynamics. J. Mol. Liq. 2023 379 121625 10.1016/j.molliq.2023.121625
    [Google Scholar]
  153. Çetin Altındal D. Therapeutic potential of boron-based nanoparticles for enhanced glioblastoma treatment. J. Drug Deliv. Sci. Technol. 2024 99 105936 10.1016/j.jddst.2024.105936
    [Google Scholar]
  154. Zeng Y. Li H. Li Z. Luo Q. Zhu H. Gu Z. Zhang H. Gong Q. Luo K. Engineered gadolinium-based nanomaterials as cancer imaging agents. Appl. Mater. Today 2020 20 100686 10.1016/j.apmt.2020.100686
    [Google Scholar]
  155. Shen Z. Liu T. Yang Z. Zhou Z. Tang W. Fan W. Liu Y. Mu J. Li L. Bregadze V.I. Mandal S.K. Druzina A.A. Wei Z. Qiu X. Wu A. Chen X. Small-sized gadolinium oxide based nanoparticles for high-efficiency theranostics of orthotopic glioblastoma. Biomaterials 2020 235 119783 10.1016/j.biomaterials.2020.119783 31981762
    [Google Scholar]
  156. Lai Y.H. Su C.Y. Cheng H.W. Chu C.Y. Jeng L.B. Chiang C.S. Shyu W.C. Chen S.Y. Stem cell–nanomedicine system as a theranostic bio-gadolinium agent for targeted neutron capture cancer therapy. Nat. Commun. 2023 14 1 285 10.1038/s41467‑023‑35935‑0 36650171
    [Google Scholar]
  157. Li T. Xu H. Selenium-containing nanomaterials for cancer treatment. Cell Rep. Phys. Sci. 2020 1 7 100111 10.1016/j.xcrp.2020.100111
    [Google Scholar]
  158. Abadi B. Khazaeli P. Forootanfar H. Ranjbar M. Ahmadi-Zeidabadi M. Nokhodchi A. Ameri A. Adeli-Sardou M. Amirinejad M. Chitosan-sialic acid nanoparticles of selenium: Statistical optimization of production, characterization, and assessment of cytotoxic effects against two human glioblastoma cell lines. Int. J. Pharm. 2023 637 122884 10.1016/j.ijpharm.2023.122884 36966981
    [Google Scholar]
  159. Mazarei M. Mohammadi Arvejeh P. Mozafari M.R. Khosravian P. Ghasemi S. Anticancer potential of temozolomide-loaded eudragit-chitosan coated selenium nanoparticles: In vitro evaluation of cytotoxicity, apoptosis and gene regulation. Nanomaterials 2021 11 7 1704 10.3390/nano11071704
    [Google Scholar]
  160. Sivadasan D. Sultan M.H. Alqahtani S.S. Javed S. Cubosomes in drug delivery—a comprehensive review on its structural components, preparation techniques and therapeutic applications. Biomedicines 2023 11 4 1114 10.3390/biomedicines11041114 37189732
    [Google Scholar]
  161. Gowda B.H.J. Ahmed M.G. Alshehri S.A. Wahab S. Vora L.K. Singh Thakur R.R. Kesharwani P. The cubosome-based nanoplatforms in cancer therapy: Seeking new paradigms for cancer theranostics. Environ. Res. 2023 237 Pt 1 116894 10.1016/j.envres.2023.116894 37586450
    [Google Scholar]
  162. Cai X. Refaat A. Gan P.Y. Fan B. Yu H. Thang S.H. Drummond C.J. Voelcker N.H. Tran N. Zhai J. Angiopep-2-functionalized lipid cubosomes for blood–brain barrier crossing and glioblastoma treatment. ACS Appl. Mater. Interfaces 2024 16 10 12161 12174 10.1021/acsami.3c14709 38416873
    [Google Scholar]
  163. Lin T. Wei Q. Zhang H. Yang Y. Jiang B. Wang Z. Li S. Wang Q. Hu M. Chen W. Wang L. Ding B. Novel dual targeting cubosomes modified with angiopep-2 for co-delivery GNA and PLHSpT to brain glioma. J. Biomater. Appl. 2024 38 6 743 757 10.1177/08853282231217753 38000075
    [Google Scholar]
  164. Hassanin I. Elzoghby A. Albumin-based nanoparticles: A promising strategy to overcome cancer drug resistance. Cancer Drug Resist. 2020 3 4 930 946 10.20517/cdr.2020.68 35582218
    [Google Scholar]
  165. Kamali M. Webster T.J. Amani A. Hadjighassem M.R. Malekpour M.R. Tirgar F. Khosravani M. Adabi M. Effect of folate-targeted Erlotinib loaded human serum albumin nanoparticles on tumor size and survival rate in a rat model of glioblastoma. Life Sci. 2023 313 121248 10.1016/j.lfs.2022.121248 36526047
    [Google Scholar]
  166. Patel H. Patel A. Vats M. Patel K. Albumin and polysorbate-80 coated sterile nanosuspensions of mebendazole for glioblastoma therapy. AAPS PharmSciTech 2024 25 8 271 10.1208/s12249‑024‑02978‑5 39586850
    [Google Scholar]
  167. Mauser A. Waibel I. Banerjee K. Mujeeb A.A. Gan J. Lee S. Brown W. Lang N. Gregory J. Raymond J. Franzeb M. Schwendeman A. Castro M.G. Lahann J. Controlled delivery of paclitaxel via stable synthetic protein nanoparticles. Adv. Ther. 2024 7 11 2400208 10.1002/adtp.202400208 39575154
    [Google Scholar]
  168. Yang Z. Li H. Yang B. Liu Y. Albumin-based microneedles for spatiotemporal delivery of temozolomide and niclosamide to resistant glioblastoma. ACS Appl. Mater. Interfaces 2024 16 34 44518 44527 10.1021/acsami.4c09394 39145481
    [Google Scholar]
  169. Fonseca M. Jarak I. Victor F. Domingues C. Veiga F. Figueiras A. Polymersomes as the next attractive generation of drug delivery systems: Definition, synthesis and applications. Mater. 2024 17 2 319 10.3390/ma17020319
    [Google Scholar]
  170. Xu Q. Wang Y. Zheng Y. Zhu Y. Li Z. Liu Y. Ding M. Polymersomes in drug delivery─from experiment to computational modeling. Biomacromolecules 2024 25 4 2114 2135 10.1021/acs.biomac.3c00903 38011222
    [Google Scholar]
  171. Alves A. Silva A.M. Moreira J. Nunes C. Reis S. Pinto M. Cidade H. Rodrigues F. Ferreira D. Costa P.C. Correia-da-Silva M. Polymersomes for sustained delivery of a chalcone derivative targeting glioblastoma cells. Brain Sci. 2024 14 1 82 10.3390/brainsci14010082 38248297
    [Google Scholar]
  172. Zheng M. Yan C. Yang Q. Zhu F. Du Q. Xia X. Morsch M. Lee A. Yin J. Zou Y. Shi B. Brain-targeted polymersome codelivery of siRNA and temozolomide for effective glioblastoma chemo-RNAi synergistic therapy. ChemPhysMater 2022 1 3 203 210 10.1016/j.chphma.2022.01.001
    [Google Scholar]
  173. Anjum S. Hashim M. Malik S.A. Khan M. Lorenzo J.M. Abbasi B.H. Hano C. Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers 2021 13 18 4570 10.3390/cancers13184570 34572797
    [Google Scholar]
  174. Mukhtar M. Bilal M. Rahdar A. Barani M. Arshad R. Behl T. Brisc C. Banica F. Bungau S. Nanomaterials for diagnosis and treatment of brain cancer: Recent updates. Chemosens. 2020 8 4 117 10.3390/chemosensors8040117
    [Google Scholar]
  175. Sadanandan B. Murali Krishna P. Kumari M. Vijayalakshmi V. Nagabhushana B.M. Vangala S. Singh H.K. Divya Swaroopa B.R. Megala V. Zinc oxide nanoparticles exhibit anti-cancer activity against human cell lines. J. Mol. Struct. 2024 1305 137723 10.1016/j.molstruc.2024.137723
    [Google Scholar]
  176. Marfavi Z.H. Farhadi M. Jameie S.B. Zahmatkeshan M. Pirhajati V. Jameie M. Glioblastoma U-87MG tumour cells suppressed by ZnO folic acid-conjugated nanoparticles: An in vitro study. Artif. Cells Nanomed. Biotechnol. 2019 47 1 2783 2790 10.1080/21691401.2019.1577889 31286796
    [Google Scholar]
  177. Liu D. Dai X. Ye L. Wang H. Qian H. Cheng H. Wang X. Nanotechnology meets glioblastoma multiforme: Emerging therapeutic strategies. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2023 15 1 e1838 10.1002/wnan.1838 35959642
    [Google Scholar]
  178. Xu D. Song X.J. Chen X. Wang J.W. Cui Y.L. Advances and future perspectives of intranasal drug delivery: A scientometric review. J. Control. Release 2024 367 366 384 10.1016/j.jconrel.2024.01.053 38286336
    [Google Scholar]
  179. Ahmad S. Khan I. Pandit J. Emad N.A. Bano S. Dar K.I. Rizvi M.M.A. Ansari M.D. Aqil M. Sultana Y. Brain targeted delivery of carmustine using chitosan coated nanoparticles via nasal route for glioblastoma treatment. Int. J. Biol. Macromol. 2022 221 435 445 10.1016/j.ijbiomac.2022.08.210 36067850
    [Google Scholar]
  180. Seidkhani E. Moradi F. Rustamzadeh A. Simorgh S. Shirvalilou S. Mehdizadeh M. Dehghani H. Akbarnejad Z. Motevalian M. Gorgich E.A.C. Intranasal delivery of sunitinib: A new therapeutic approach for targeting angiogenesis of glioblastoma. Toxicol. Appl. Pharmacol. 2023 481 116754 10.1016/j.taap.2023.116754 37956929
    [Google Scholar]
  181. Ferreira N.N. de Oliveira Junior E. Granja S. Boni F.I. Ferreira L.M.B. Cury B.S.F. Santos L.C.R. Reis R.M. Lima E.M. Baltazar F. Gremião M.P.D. Nose-to-brain co-delivery of drugs for glioblastoma treatment using nanostructured system. Int. J. Pharm. 2021 603 120714 10.1016/j.ijpharm.2021.120714 34015380
    [Google Scholar]
  182. Trivedi S. Kause S. Belgamwar V. Intranasal delivery of poly (d-glucosamine) encrusted self-assembled lipidic nanovesicles to enhanced brain uptake of thymoquinone for management of Glioblastoma Multiforme. J. Drug Deliv. Sci. Technol. 2023 90 105149 10.1016/j.jddst.2023.105149
    [Google Scholar]
  183. Hu Y. Jiang K. Wang D. Yao S. Lu L. Wang H. Song J. Zhou J. Fan X. Wang Y. Lu W. Wang J. Wei G. Core-shell lipoplexes inducing active macropinocytosis promote intranasal delivery of c-Myc siRNA for treatment of glioblastoma. Acta Biomater. 2022 138 478 490 10.1016/j.actbio.2021.10.042 34757231
    [Google Scholar]
  184. Lin E.Y. Chen Y.S. Li Y.S. Chen S.R. Lee C.H. Huang M.H. Chuang H.M. Harn H.J. Yang H.H. Lin S.Z. Tai D.F. Chiou T.W. Liposome consolidated with cyclodextrin provides prolonged drug retention resulting in increased drug bioavailability in brain. Int. J. Mol. Sci. 2020 21 12 4408 10.3390/ijms21124408 32575820
    [Google Scholar]
  185. Farooq M. Scalia G. Umana G. Parekh U. Naeem F. Abid S. Khan M. Zahra S. Sarkar H. Chaurasia B. A systematic review of nanomedicine in glioblastoma treatment: Clinical efficacy, safety, and future directions. Brain Sci. 2023 13 12 1727 10.3390/brainsci13121727 38137175
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010352026250213055117
Loading
/content/journals/cpb/10.2174/0113892010352026250213055117
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test