Skip to content
2000
image of Protective Role of Coffee in Thioacetamide-induced Nephrotoxicity: A Study in Rats

Abstract

Objective

The purpose of the present research was to assess the protective role of coffee in thioacetamide-induced nephrotoxicity.

Methods

The experimental period consisted of 18 weeks, divided into two phases. Four experimental groups were designed, each consisting of six rats. Group I was considered an untreated control group. Groups II and III were intraperitoneally injected with thioacetamide at a dose of 200 mg/kg body weight twice a week for twelve weeks during the first phase of the study. In the second phase, group II received saline, and group III and group IV received 0.4 mg/Kg of coffee daily for six weeks. The biochemical analysis was evaluated by the estimation of plasma urea, uric acid, creatinine, Malondialdehyde (MDA), Superoxide Dismutase (SOD), and catalase.

Results

Thiocetamide-induced nephrotoxicity resulted in the reduction of body weight, superoxide dismutase, and catalase activities, and an increase in kidney weight, plasma urea, uric acid, creatinine, and tissue malondialdehyde. Supplementation with coffee effectively increased body weight while reducing elevated levels of urea, uric acid, creatinine, and MDA. It also restored SOD and catalase activities in Group III (TAA + Coffee-treated).

Conclusion

This work shows that coffee can protect the kidneys against thioacetamide-induced nephrotoxicity in a rat model. It highlights the antioxidant potential of coffee by its ability to restore enzymatic antioxidant activity (SOD and catalase), lower oxidative stress markers (MDA), and enhance renal function measures (urea, creatinine, and uric acid). The study fills a significant gap by demonstrating coffee as a viable natural therapeutic agent for oxidative stress-induced kidney impairment, providing an alternative to conventional treatments with fewer side effects.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010356725250329094402
2025-04-09
2025-09-20
Loading full text...

Full text loading...

References

  1. Martini D. Del Bo’ C. Tassotti M. Riso P. Del Rio D. Brighenti F. Porrini M. Coffee consumption and oxidative stress: A review of human intervention studies. Molecules 2016 21 8 979 10.3390/molecules21080979 27483219
    [Google Scholar]
  2. George S.E. Ramalakshmi K. Rao M. L.J. A perception on health benefits of coffee. Crit. Rev. Food Sci. Nutr. 2008 48 5 464 486 10.1080/10408390701522445 18464035
    [Google Scholar]
  3. Saud S. Salamatullah A.M. Relationship between the chemical composition and the biological functions of coffee. Molecules 2021 26 24 7634 10.3390/molecules26247634 34946716
    [Google Scholar]
  4. Amiri R. Akbari M. Moradikor N. Bioactive potential and chemical compounds of coffee. 2024 10.1016/bs.pbr.2024.06.011 39168557
    [Google Scholar]
  5. Makiso M.U. Tola Y.B. Ogah O. Endale F.L. Bioactive compounds in coffee and their role in lowering the risk of major public health consequences: A review. Food Sci. Nutr. 2024 12 2 734 764 10.1002/fsn3.3848 38370073
    [Google Scholar]
  6. Simedru D. Becze A. Complex profiling of roasted coffee based on origin and production scale. Agriculture 2023 13 6 1146 10.3390/agriculture13061146
    [Google Scholar]
  7. Fiani B. Zhu L. Musch B.L. Briceno S. Andel R. Sadeq N. Ansari A.Z. The neurophysiology of caffeine as a central nervous system stimulant and the resultant effects on cognitive function. Cureus 2021 13 5 e15032 10.7759/cureus.15032 34150383
    [Google Scholar]
  8. Jia L. Zhao H. Hao L. Jia L.H. Jia R. Zhang H.L. Caffeine intake improves the cognitive performance of patients with chronic kidney disease. Front. Med. 2022 9 976244 10.3389/fmed.2022.976244 36314017
    [Google Scholar]
  9. Pauwels E.K.J. Volterrani D. Coffee consumption and cancer risk: An assessment of the health implications based on recent knowledge. Med. Princ. Pract. 2021 30 5 401 411 10.1159/000516067 33761499
    [Google Scholar]
  10. Yang K. Chang Y. Jeong S.W. Jang J.Y. Ryu T. Reassessing the impact of coffee consumption on liver disease: Insights from a large-scale cohort study with IPTW adjustment. Nutrients 2024 16 13 2020 10.3390/nu16132020 38999772
    [Google Scholar]
  11. Pak E.S. Park S. Yoon H. Kim S. Kwon Y. Roles of coffee and its components in liver diseases. Drug Targets and Therapeutics 2023 2 2 133 144 10.58502/DTT.23.0012
    [Google Scholar]
  12. Ősz B.E. Jîtcă G. Ștefănescu R.E. Pușcaș A. Tero-Vescan A. Vari C.E. Caffeine and its antioxidant properties—it is all about dose and source. Int. J. Mol. Sci. 2022 23 21 13074 10.3390/ijms232113074 36361861
    [Google Scholar]
  13. Schenker S. Heinemann C. Huber M. Pompizzi R. Perren R. Escher R. Impact of roasting conditions on the formation of aroma compounds in coffee beans. J. Food Sci. 2002 67 1 60 66 10.1111/j.1365‑2621.2002.tb11359.x
    [Google Scholar]
  14. Şimşek A. Çiçek B. Turan E. The effect of chlorogenic acid from green coffee as a natural antioxidant on the shelf life and composition of hazelnut paste. Eur. Food Res. Technol. 2023 249 8 2077 2086 10.1007/s00217‑023‑04277‑y 37362348
    [Google Scholar]
  15. Sato T. Kudo T. Takamatsu M. Honma T. Itoh N. Effects of temperature and pressure on hydrothermal extraction kinetics of green coffee beans. J. Supercrit. Fluids 2024 213 106350 10.1016/j.supflu.2024.106350
    [Google Scholar]
  16. Wu H. Lu P. Liu Z. Sharifi-Rad J. Suleria H.A.R. Impact of roasting on the phenolic and volatile compounds in coffee beans. Food Sci. Nutr. 2022 10 7 2408 2425 10.1002/fsn3.2849 35844912
    [Google Scholar]
  17. Haile M. Bae H.M. Kang W.H. Comparison of the antioxidant activities and volatile compounds of coffee beans obtained using digestive bio-processing (elephant dung coffee) and commonly known processing methods. Antioxidants 2020 9 5 408 10.3390/antiox9050408 32403247
    [Google Scholar]
  18. Pashmforoosh M. Rezaie A. Haghi-Karamallah M. Fazlara A. Shahriari A. Najafzadeh H. Effects of caffeine on renal toxicity induced by diethylnitrosamine. Zahedan J. Res. Med. Sci. 2015 17
    [Google Scholar]
  19. Furtado K.S. Prado M.G. Aguiar e Silva M.A. Dias M.C. Rivelli D.P. Rodrigues M.A.M. Barbisan L.F. Coffee and caffeine protect against liver injury induced by thioacetamide in male Wistar rats. Basic Clin. Pharmacol. Toxicol. 2012 111 5 339 347 10.1111/j.1742‑7843.2012.00903.x 22646289
    [Google Scholar]
  20. Butler A.R. Hussain I. Leitch E. The chemistry of the diacetyl monoxime assay of urea in biological fluids. Clin. Chim. Acta 1981 112 3 357 360 10.1016/0009‑8981(81)90459‑9 7237833
    [Google Scholar]
  21. Spierto F.W. Macneil M.L. Burtis C.A. The effect of temperature and wavelength on the measurement of creatinine with the jaffe procedure. Clin. Biochem. 1979 12 1 18 21 10.1016/S0009‑9120(79)90032‑8 36238
    [Google Scholar]
  22. Ohkawa H. Ohishi N. Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979 95 2 351 358 10.1016/0003‑2697(79)90738‑3 36810
    [Google Scholar]
  23. Sinha A.K. Colorimetric assay of catalase. Anal. Biochem. 1972 47 2 389 394 10.1016/0003‑2697(72)90132‑7 4556490
    [Google Scholar]
  24. Kono Y. Generation of superoxide radical during autoxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophys. 1978 186 1 189 195 10.1016/0003‑9861(78)90479‑4 24422
    [Google Scholar]
  25. Chinnappan S.M. George A. Thaggikuppe P. Choudhary Y. Choudhary V.K. Ramani Y. Dewangan R. Nephroprotective effect of herbal extract Eurycoma longifolia on paracetamol‐induced nephrotoxicity in rats. Evid. Based Complement. Alternat. Med. 2019 2019 1 6 10.1155/2019/4916519 31214269
    [Google Scholar]
  26. Oduola T. Bello I. Adeosun G. Ademosun A-W. Raheem G. Avwioro G. Hepatotoxicity and nephrotoxicity evaluation in Wistar albino rats exposed to Morinda lucida leaf extract. N. Am. J. Med. Sci. 2010 2 5 230 233 22574294
    [Google Scholar]
  27. El-Hameed S.A. Ibrahim I. Awadin W. El-Shaieb A. Thioacetamide: Definition, exposure, hepatic and renal toxicity. Mansoura Veterinary Medical Journal 2023 24 4 3 10.35943/2682‑2512.1217
    [Google Scholar]
  28. Kadir F.A. Kassim N.M. Abdulla M.A. Yehye W.A. Effect of oral administration of ethanolic extract of Vitex negundo on thioacetamide-induced nephrotoxicity in rats. BMC Complement. Altern. Med. 2013 13 1 294 10.1186/1472‑6882‑13‑294 24499255
    [Google Scholar]
  29. Hajovsky H. Hu G. Koen Y. Sarma D. Cui W. Moore D.S. Staudinger J.L. Hanzlik R.P. Metabolism and toxicity of thioacetamide and thioacetamide S-oxide in rat hepatocytes. Chem. Res. Toxicol. 2012 25 9 1955 1963 10.1021/tx3002719 22867114
    [Google Scholar]
  30. Alomar M.Y. Physiological and histopathological study on the influence of Ocimum basilicum leaves extract on thioacetamide-induced nephrotoxicity in male rats. Saudi J. Biol. Sci. 2020 27 7 1843 1849 10.1016/j.sjbs.2020.05.034 32565705
    [Google Scholar]
  31. Jomova K. Raptova R. Alomar S.Y. Alwasel S.H. Nepovimova E. Kuca K. Valko M. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: Chronic diseases and aging. Arch. Toxicol. 2023 97 10 2499 2574 10.1007/s00204‑023‑03562‑9 37597078
    [Google Scholar]
  32. Spira B. Raw I. The effect of thioacetamide on the activity and expression of cytosolic rat liver glutathione-S-transferase. Mol. Cell. Biochem. 2000 211 1/2 103 110 10.1023/A:1007114801362 11055553
    [Google Scholar]
  33. Sirag H. Biochemical studies on thioacetamide toxicity in male albino rats and the role of tomato juice as an antioxidant. Mansoura J. Forensic Med. Clin. Toxicol. 2007 15 2 99 115 10.21608/mjfmct.2007.48853
    [Google Scholar]
  34. Omnia M. Nabila M. Nadia R. Biochemical effects of propolis and bee pollen in experimentally-induced hyperammonemia in rats. Benha Vet. Med. J. 2014 27 8 24
    [Google Scholar]
  35. Lim J.H. Kim T.W. Park S.J. Song I.B. Kim M.S. Kwon H.J. Cho E.S. Son H.Y. Lee S.W. Suh J.W. Kim J.W. Yun H.I. Protective effects of platycodon grandiflorum aqueousextract on thioacetamide-induced fulminant hepaticfailure in mice. J. Toxicol. Pathol. 2011 24 4 223 228 10.1293/tox.24.223 22319234
    [Google Scholar]
  36. López-Novoa J.M. Rodríguez-Peña A.B. Ortiz A. Martínez-Salgado C. López Hernández F.J. Etiopathology of chronic tubular, glomerular and renovascular nephropathies: Clinical implications. J. Transl. Med. 2011 9 1 13 10.1186/1479‑5876‑9‑13 21251296
    [Google Scholar]
  37. Irazabal M.V. Torres V.E. Reactive oxygen species and redox signaling in chronic kidney disease. Cells 2020 9 6 1342 10.3390/cells9061342 32481548
    [Google Scholar]
  38. Kellum J.A. Romagnani P. Ashuntantang G. Ronco C. Zarbock A. Anders H.J. Acute kidney injury. Nat. Rev. Dis. Primers 2021 7 1 52 10.1038/s41572‑021‑00284‑z 34267223
    [Google Scholar]
  39. Martemucci G. Costagliola C. Mariano M. D’andrea L. Napolitano P. D’Alessandro A.G. Free radical properties, source and targets, antioxidant consumption and health. Oxygen (Basel) 2022 2 2 48 78 10.3390/oxygen2020006
    [Google Scholar]
  40. Johnson R.J. Sanchez Lozada L.G. Lanaspa M.A. Piani F. Borghi C. Uric acid and chronic kidney disease: Still more to do. Kidney Int. Rep. 2023 8 2 229 239 10.1016/j.ekir.2022.11.016 36815099
    [Google Scholar]
  41. Khazaei M. Bayat P.D. Ghanbari A. Khazaei S. Feizian M. Khodaei A. Alian H.A. Protective effects of subchronic caffeine administration on cisplatin induced urogenital toxicity in male mice. Indian J. Exp. Biol. 2012 50 9 638 644 23140022
    [Google Scholar]
  42. Choi E.Y. Jang J.Y. Cho Y.O. Coffee intake can promote activity of antioxidant enzymes with increasing MDA level and decreasing HDL-cholesterol in physically trained rats. Nutr. Res. Pract. 2010 4 4 283 289 10.4162/nrp.2010.4.4.283 20827343
    [Google Scholar]
  43. Ren Y. Wang C. Xu J. Wang S. Cafestol and kahweol: A review on their bioactivities and pharmacological properties. Int. J. Mol. Sci. 2019 20 17 4238 10.3390/ijms20174238 31480213
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010356725250329094402
Loading
/content/journals/cpb/10.2174/0113892010356725250329094402
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test