Skip to content
2000
image of Clinical Diagnosis and Treatment System for Neurological Psychological Gastrointestinal Diseases Based on Multimodal Artificial Intelligence and Immunology

Abstract

Objective

To predict and assist in the treatment of colorectal cancer.

Background

Precision medicine systems can provide strategy optimization for the diagnosis and treatment of colorectal cancer to meet the needs of clinical pricing institutions.

Aim

To design an artificial intelligence multimodal gastrointestinal disease clinical information system based on neuroimmune gene regulation.

Methods

The system includes the use of cell gene expression levels to predict the 5-year survival rate of cancer patients, and the development of disease incidence rate prediction models based on immune cell status and living habits in somatic cell testing. The biological mechanism of feature selection in survival prediction systems was elucidated using single-cell sequencing technology, and this mechanism was analyzed in depth using molecular simulation techniques. Based on NCAM1 and CADM1 genes, biological activation pathway analysis was conducted to explore the biological mechanism of their synergistic immune genome regulation of gastrointestinal tumor proliferation.

Results

The accuracy of each model is higher than 0.70. The experimental credibility is high.

Conclusion

The research team conducted a detailed analysis of the biological characteristics of AI algorithms and reached a consensus with clinical experts. The ethical approval number of Chifeng Cancer Hospital is 202401, which has been reported by the World Health Organization.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010359130250413024112
2025-04-29
2025-09-11
Loading full text...

Full text loading...

References

  1. Silva J. Halmos E.P. Marsland B.J. Mychasiuk R. Breaking down silos: The gastroenterology immunology neuroscience (GIN) discovery program – a new model for research. Immunol. Cell Biol. 2024 102 8 658 662 10.1111/imcb.12802 39004931
    [Google Scholar]
  2. McDonald A. Avadhani V. Oprea-Ilies G. Zakka K. Lesinski G.B. Gbolahan O.B. Alese O. A pilot study of the immune microenvironment of GI neuroendocrine carcinoma. Endocr. Relat. Cancer 2024 31 10 e240046 10.1530/ERC‑24‑0046 39045861
    [Google Scholar]
  3. Pasricha P.J. McKnight M. Villatoro L. Barahona G. Brinker J. Hui K. Polydefkis M. Burns R. McMahan Z. Gould N. Goodman B. Hentz J. Treisman G. Clinical associations and response to intravenous immunoglobulin therapy. Offic. J. Amer. Coll. Gastroenterol. ACG. 2022 10 14309
    [Google Scholar]
  4. Noel S.C. Madranges J.F. Gothié J.D.M. Ewald J. Milnerwood A.J. Kennedy T.E. Scott M.E. Maternal gastrointestinal nematode infection alters hippocampal neuroimmunity, promotes synaptic plasticity, and improves resistance to direct infection in offspring. Sci. Rep. 2024 14 1 10773 10.1038/s41598‑024‑60865‑2 38730262
    [Google Scholar]
  5. Liu X. Luo M. Wang Z. Yang S.J. Su M. Wang Y. Wang W. Sun Z. Cai Y. Wu L. Zhou R. Xu M. Zhao Q. Chen L. Zuo W. Huang Y. Ren P. Huang X. Mind shift I: Fructus Aurantii - Rhizoma Chuanxiong synergistically anchors stress-induced depression-like behaviours and gastrointestinal dysmotility cluster by regulating psycho-immune-neuroendocrine network. Phytomedicine 2024 128 155324 10.1016/j.phymed.2023.155324 38552437
    [Google Scholar]
  6. McKay D.M. Defaye M. Rajeev S. MacNaughton W.K. Nasser Y. Sharkey K.A. Neuroimmunophysiology of the gastrointestinal tract. Am. J. Physiol. Gastrointest. Liver Physiol. 2024 326 6 G712 G725 10.1152/ajpgi.00075.2024 38626403
    [Google Scholar]
  7. Duan S. Sawyer T.W. Witten B.L. Song H. Else T. Merchant J.L. Spatial profiling reveals tissue‐specific neuro‐immune interactions in gastroenteropancreatic neuroendocrine tumors. J. Pathol. 2024 262 3 362 376 10.1002/path.6241 38229586
    [Google Scholar]
  8. Kassai S. Vos D.P. Gastrointestinal barrier function, immunity, and neurocognition: The role of human milk oligosaccharide (hMO) supplementation in infant formula. Compr. Rev. Food Sci. Food Saf. 2024 23 1 e13271 10.1111/1541‑4337.13271 38284595
    [Google Scholar]
  9. Saitou A. Shioya M. Nagahisa Y. Haseyama A. Niwa R. Tsuchimoto J. Chiba H. Small-cell lung carcinoma with gastrointestinal pseudo-obstruction as a paraneoplastic neurological syndrome elicited by an immune checkpoint inhibitor. Intern. Med. 2024 63 14 2059 2062 10.2169/internalmedicine.2648‑23 38044152
    [Google Scholar]
  10. Hoffman S.E. Dowrey T.W. Martin V.C. Bi K. Titchen B. Johri S. DelloStritto L. Patel M. Mackichan C. Inga S. Chen J. Grimaldi G. Napolitano S. Wakiro I. Wu J. Yeung J. Rotem A. Sicinska E. Shannon E. Clancy T. Wang J. Denning S. Brais L. Besson N.R. Pfaff K.L. Huang Y. Kao K.Z. Rodig S. Hornick J.L. Vigneau S. Park J. Kulke M.H. Chan J. Allen V.E.M. Murphy G.J. Intertumoral lineage diversity and immunosuppressive transcriptional programs in well-differentiated gastroenteropancreatic neuroendocrine tumors. Sci. Adv. 2023 9 39 eadd9668 10.1126/sciadv.add9668 37756410
    [Google Scholar]
  11. Gabriel-Segard T. Rontard J. Miny L. Dubuisson L. Batut A. Debis D. Gleyzes M. François F. Larramendy F. Soriano A. Honegger T. Paul S. Proof-of-concept human organ-on-chip study: First step of platform to assess neuro-immunological communication involved in inflammatory bowel diseases. Int. J. Mol. Sci. 2023 24 13 10568 10.3390/ijms241310568 37445748
    [Google Scholar]
  12. Dinu A. Aschie M. Cozaru G.C. Mitroi A.F. Grasa C.N. Iordache I.E. Deacu M. Orasanu C.I. Nicolau A.A. Baltatescu G.I. NET G3 vs NEC: P53 and Rb1 immunolabeling in high-grade gastrointestinal neuroendocrine neoplasms-is it enough for the differential diagnosis? J. Gastrointestin. Liver Dis. 2023 32 2 162 169 10.15403/jgld‑4654 37345605
    [Google Scholar]
  13. Burns G.L. Keely S. Understanding food allergy through neuroimmune interactions in the gastrointestinal tract. Ann. Allergy. Asthma. Immunol. 2023 131 5 576 584 10.1016/j.anai.2023.06.015 37331592
    [Google Scholar]
  14. Kim S. Yun Y.H. Moon J.M. Jung K. Lee C.H. Choi H.J. Park H. Im J.P. Kim J.S. Koh S-J. 1154 Inactive rhomboid protein 2 mediates gastrointestinal motility through immune-enteric nervous systemmicrobiome interaction. Gastroenterology 2023 164 6 S-244 10.1016/S0016‑5085(23)01544‑5
    [Google Scholar]
  15. Ji H. Lai D. Tou J. Neuroimmune regulation in Hirschsprung’s disease associated enterocolitis. Front. Immunol. 2023 14 1127375 10.3389/fimmu.2023.1127375 37138874
    [Google Scholar]
  16. Thomas S. Prendergast G.C. Gut-brain connections in neurodegenerative disease: Immunotherapeutic targeting of Bin1 in inflammatory bowel disease and Alzheimer’s disease. Front. Pharmacol. 2023 14 1183932 10.3389/fphar.2023.1183932 37521457
    [Google Scholar]
  17. Sesti F. Puliani G. Feola T. Campolo F. Sciarra F. Hasenmajer V. Lenzi A. Faggiano A. Isidori A.M. Venneri M.A. Giannetta E. Characterization of circulating immune cells and correlation with Tie2/Angiopoietins level in well differentiated neuroendocrine gastroenteropancreatic tumors: A cross-sectional analysis. Endocrine 2022 80 1 221 230 10.1007/s12020‑022‑03257‑8 36509928
    [Google Scholar]
  18. Caffarelli C. Santamaria F. Piro E. Basilicata S. Cave D.V. Cipullo M. Bernasconi S. Corsello G. New insights in pediatrics in 2021: Choices in allergy and immunology, critical care, endocrinology, gastroenterology, genetics, haematology, infectious diseases, neonatology, neurology, nutrition, palliative care, respiratory tract illnesses and telemedicine. Ital. J. Pediatr. 2022 48 1 189 10.1186/s13052‑022‑01374‑8 36435791
    [Google Scholar]
  19. Ge L. Liu S. Li S. Yang J. Hu G. Xu C. Song W. Psychological stress in inflammatory bowel disease: Psychoneuroimmunological insights into bidirectional gut–brain communications. Front. Immunol. 2022 13 1016578 1016578 10.3389/fimmu.2022.1016578 36275694
    [Google Scholar]
  20. Schneider K.M. Kim J. Bahnsen K. Heuckeroth R.O. Thaiss C.A. Environmental perception and control of gastrointestinal immunity by the enteric nervous system. Trends Mol. Med. 2022 28 11 989 1005 10.1016/j.molmed.2022.09.005 36208986
    [Google Scholar]
  21. Masanetz R.K. Winkler J. Winner B. Günther C. Süß P. The gut–immune–brain axis: An important route for neuropsychiatric morbidity in inflammatory bowel disease. Int. J. Mol. Sci. 2022 23 19 11111 10.3390/ijms231911111 36232412
    [Google Scholar]
  22. Lou X. Gao H. Xu X. Ye Z. Zhang W. Wang F. Chen J. Zhang Y. Chen X. Qin Y. Yu X. Ji S. The interplay of four main pathways recomposes immune landscape in primary and metastatic gastroenteropancreatic neuroendocrine tumors. Front. Oncol. 2022 12 808448 10.3389/fonc.2022.808448 35664743
    [Google Scholar]
  23. Abdullah H. Wani Z. Nabi Z. Shah P. Bhat S. Neuroendocrine tumors of gastrointestinal tract with special reference to immunohistochemistry markers at a tertiary care hospital. APIK J. Inter. Med. 2022 10 2 78 85 10.4103/ajim.ajim_14_21
    [Google Scholar]
  24. Ahrends T. Weiner M. Mucida D. Isolation of myenteric and submucosal plexus from mouse gastrointestinal tract and subsequent flow cytometry and immunofluorescence. STAR Protoc. 2022 3 1 101157 10.1016/j.xpro.2022.101157 35146454
    [Google Scholar]
  25. Franklin M.M. Schultz F.A. Tafoya M.A. Kerwin A.A. Broehm C.J. Fischer E.G. Gullapalli R.R. Clark D.P. Hanson J.A. Martin D.R. A deep learning convolutional neural network can differentiate between Helicobacter pylori gastritis and autoimmune gastritis with results comparable to gastrointestinal pathologists. Arch. Pathol. Lab. Med. 2022 146 1 117 122 10.5858/arpa.2020‑0520‑OA 33861314
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010359130250413024112
Loading
/content/journals/cpb/10.2174/0113892010359130250413024112
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test