Skip to content
2000
image of Bioactive Phytochemicals: Unlocking the Promise of Natural Remedies for Diabetes Mellitus

Abstract

Background

Metabolic syndrome encompasses conditions such as diabetes mellitus (DM), which has become increasingly prevalent. Chemically synthesized medications are commonly used to mitigate the effects of DM and its complications; however, these often result in undesirable side effects, including weight gain, digestive issues, and heart failure.

Objective

This review highlights the therapeutic potential of bioactive compounds and anti-diabetic plants that possess proven anti-diabetic properties. Focusing on phytomedicines also explores their possible mechanisms of action and positions this work relative to current reviews in the field.

Methods

A comprehensive literature analysis was conducted, emphasizing the therapeutic potential of bioactive compounds in anti-diabetic plants. Databases such as PubMed, Scopus, and Google Scholar were thoroughly searched to identify studies investigating the anti-diabetic properties and mechanisms of action of plant-derived bioactive compounds. Inclusion criteria focused on studies evaluating the pharmacological effects of herbal medicines, plant extracts, and isolated bioactive compounds on diabetes management.

Results

Therapeutic plants, as sources of anti-diabetic compounds, offer significant advantages. They are affordable, exhibit minimal or no adverse effects, and do not necessitate strict dietary restrictions or intense exercise regimens. The integrated insights underscore the potential of phytomedicines to address limitations in current diabetes management strategies.

Conclusion

The unique focus on phytomedicines positions this review as a valuable resource for researchers and clinicians. Detailing mechanisms and evidence supporting the efficacy of these compounds, guides the development of innovative strategies for identifying and utilizing bioactive compounds in effective diabetes management.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010371753250324150813
2025-04-03
2025-10-07
Loading full text...

Full text loading...

References

  1. Sharma A. Khanna S. Kaur G. Singh I. Medicinal plants and their components for wound healing applications. Fut. J. Pharm. Sci. 2021 7 1 53 10.1186/s43094‑021‑00202‑w
    [Google Scholar]
  2. Ogurtsova K. Guariguata L. Barengo N.C. Ruiz P.L.D. Sacre J.W. Karuranga S. Sun H. Boyko E.J. Magliano D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract. 2022 183 109118 10.1016/j.diabres.2021.109118 34883189
    [Google Scholar]
  3. Tran P. Tran L. Tran L. A cross-sectional comparison of us adult diabetes screening levels by disability status. J. Prim. Prev. 2021 42 5 459 471 10.1007/s10935‑021‑00641‑4 34254255
    [Google Scholar]
  4. Kumar R. Saha P. Kumar Y. Sahana S. Dubey A. Prakash O. A review on diabetes mellitus: Type1 & type2. World J. Pharm. Pharm. Sci. 2020 9 10 838 850
    [Google Scholar]
  5. Padhi S. Nayak A.K. Behera A. Type II diabetes mellitus: A review on recent drug based therapeutics. Biomed. Pharmacother. 2020 131 110708 10.1016/j.biopha.2020.110708 32927252
    [Google Scholar]
  6. Kaul K Tarr JM Ahmad SI Kohner EM Chibber R Introduction to diabetes mellitus. Adv. Exp. Med. Biol. 2013 771 1 11 10.1007/978‑1‑4614‑5441‑0_1
    [Google Scholar]
  7. Sharma P. Singh S. Thakur V. Sharma N. Grewal A.S. Novel and emerging therapeutic drug targets for management of type 2 Diabetes Mellitus. Obes. Med. 2021 23 100329 10.1016/j.obmed.2021.100329
    [Google Scholar]
  8. Cerf M.E. Beta cell dysfunction and insulin resistance. Front. Endocrinol. 2013 4 37 10.3389/fendo.2013.00037 23542897
    [Google Scholar]
  9. Zheng Y. Ley S.H. Hu F.B. Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat. Rev. Endocrinol. 2018 14 2 88 98 10.1038/nrendo.2017.151 29219149
    [Google Scholar]
  10. Galicia-Garcia U. Benito-Vicente A. Jebari S. Larrea-Sebal A. Siddiqi H. Uribe K.B. Ostolaza H. Martín C. Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 2020 21 17 6275 10.3390/ijms21176275 32872570
    [Google Scholar]
  11. Sola D. Rossi L. Schianca G.P.C. Maffioli P. Bigliocca M. Mella R. Corlianò F. Fra G.P. Bartoli E. Derosa G. State of the art paper Sulfonylureas and their use in clinical practice. Arch. Med. Sci. 2015 4 4 840 848 10.5114/aoms.2015.53304 26322096
    [Google Scholar]
  12. Douros A Dell’Aniello S Yu OH Filion KB Azoulay L Suissa S Sulfonylureas as second line drugs in type 2 diabetes and the risk of cardiovascular and hypoglycaemic events: Population based cohort study. BMJ 2018 62 k2693 10.1136/bmj.k2693
    [Google Scholar]
  13. Hansen A.M.K. Christensen I.T. Hansen J.B. Carr R.D. Ashcroft F.M. Wahl P. Differential interactions of nateglinide and repaglinide on the human β-cell sulphonylurea receptor 1. Diabetes 2002 51 9 2789 2795 10.2337/diabetes.51.9.2789 12196472
    [Google Scholar]
  14. Lv W. Wang X. Xu Q. Lu W. Mechanisms and characteristics of sulfonylureas and glinides. Curr. Top. Med. Chem. 2020 20 1 37 56 10.2174/1568026620666191224141617 31884929
    [Google Scholar]
  15. Bailey C.J. Metformin: Historical overview. Diabetologia 2017 60 9 1566 1576 10.1007/s00125‑017‑4318‑z 28776081
    [Google Scholar]
  16. Viollet B. Guigas B. Garcia N.S. Leclerc J. Foretz M. Andreelli F. Cellular and molecular mechanisms of metformin: An overview. Clin. Sci. (Lond.) 2012 122 6 253 270 10.1042/CS20110386 22117616
    [Google Scholar]
  17. Rena G. Hardie D.G. Pearson E.R. The mechanisms of action of metformin. Diabetologia 2017 60 9 1577 1585 10.1007/s00125‑017‑4342‑z 28776086
    [Google Scholar]
  18. DiNicolantonio J.J. Bhutani J. O’Keefe J.H. Acarbose: Safe and effective for lowering postprandial hyperglycaemia and improving cardiovascular outcomes. Open Heart 2015 2 1 e000327 10.1136/openhrt‑2015‑000327 26512331
    [Google Scholar]
  19. Unger R.H. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes 1995 44 8 863 870 10.2337/diab.44.8.863 7621989
    [Google Scholar]
  20. Stumvoll M. Häring H.U. Glitazones: Clinical effects and molecular mechanisms. Ann. Med. 2002 34 3 217 224 10.1080/ann.34.3.217.224 12173692
    [Google Scholar]
  21. Quinn C.E. Hamilton P.K. Lockhart C.J. McVeigh G.E. Thiazolidinediones: Effects on insulin resistance and the cardiovascular system. Br. J. Pharmacol. 2008 153 4 636 645 10.1038/sj.bjp.0707452 17906687
    [Google Scholar]
  22. Hinnen D. Glucagon-like peptide 1 receptor agonists for type 2 diabetes. Diabetes Spectr. 2017 30 3 202 210 10.2337/ds16‑0026 28848315
    [Google Scholar]
  23. Filippatos T.D. Panagiotopoulou T.V. Elisaf M.S. Adverse effects of GLP-1 receptor agonists. Rev. Diabet. Stud. 2014 11 3-4 202 230 10.1900/RDS.2014.11.202 26177483
    [Google Scholar]
  24. Dicker D. DPP-4 inhibitors. Diabetes Care 2011 34 Suppl 2 S276 S278 10.2337/dc11‑s229 21525468
    [Google Scholar]
  25. Gallwitz B. Clinical use of DPP-4 inhibitors. Front. Endocrinol. 2019 10 389 10.3389/fendo.2019.00389 31275246
    [Google Scholar]
  26. Nauck M. Update on developments with SGLT2 inhibitors in the management of type 2 diabetes. Drug Des. Devel. Ther. 2014 8 1335 1380 10.2147/DDDT.S50773 25246775
    [Google Scholar]
  27. Abdul-Ghani M.A. Norton L. DeFronzo R.A. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr. Rev. 2011 32 4 515 531 10.1210/er.2010‑0029 21606218
    [Google Scholar]
  28. Xu L. Li Y. Dai Y. Peng J. Natural products for the treatment of type 2 diabetes mellitus: Pharmacology and mechanisms. Pharmacol. Res. 2018 130 451 465 10.1016/j.phrs.2018.01.015 29395440
    [Google Scholar]
  29. Ríos J. Francini F. Schinella G. Natural products for the treatment of type 2 diabetes mellitus. Planta Med. 2015 81 12/13 975 994 10.1055/s‑0035‑1546131 26132858
    [Google Scholar]
  30. Wang G.S. Hoyte C. Review of biguanide (metformin) toxicity. J. Intensive Care Med. 2019 34 11-12 863 876 10.1177/0885066618793385 30126348
    [Google Scholar]
  31. Liu X. Wei J. Tan F. Zhou S. Würthwein G. Rohdewald P. Antidiabetic effect of Pycnogenol® French maritime pine bark extract in patients with diabetes type II. Life Sci. 2004 75 21 2505 2513 10.1016/j.lfs.2003.10.043 15363656
    [Google Scholar]
  32. Vitetta L. Butcher B. Forno D.S. Vitetta G. Nikov T. Hall S. Steels E. A Double-Blind Randomized Placebo-Controlled Study Assessing the Safety, Tolerability and Efficacy of a Herbal Medicine Containing Pycnogenol Combined with Papain and Aloe vera in the Prevention and Management of Pre-Diabetes. Medicines 2020 7 4 22 10.3390/medicines7040022 32331307
    [Google Scholar]
  33. Tiwari N. Thakur A.K. Kumar V. Dey A. Kumar V. Therapeutic targets for diabetes mellitus: An update. Clin. Pharmacol. Biopharm. 2014 3 1 1 10.4172/2167‑065X.1000117
    [Google Scholar]
  34. Patel D.K. Prasad S.K. Kumar R. Hemalatha S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012 2 4 320 330 10.1016/S2221‑1691(12)60032‑X 23569923
    [Google Scholar]
  35. Tran N. Pham B. Le L. Bioactive compounds in anti-diabetic plants: From herbal medicine to modern drug discovery. Biology 2020 9 9 252 10.3390/biology9090252 32872226
    [Google Scholar]
  36. Katiyar D. Singh V. Gilani S.J. Goel R. Grover P. Vats A. Hypoglycemic herbs and their polyherbal formulations: A comprehensive review. Med. Chem. Res. 2015 24 1 1 21 10.1007/s00044‑014‑1080‑3
    [Google Scholar]
  37. Behl T. Gupta A. Albratty M. Najmi A. Meraya A.M. Alhazmi H.A. Anwer M.K. Bhatia S. Bungau S.G. Alkaloidal phytoconstituents for diabetes management: Exploring the unrevealed potential. Molecules 2022 27 18 5851 10.3390/molecules27185851 36144587
    [Google Scholar]
  38. Bever B.O. Zahnd G.R. Plants with oral hypoglycaemic action. Q. J. Crude Drug Res. 1979 17 3-4 139 196 10.3109/13880207909065167
    [Google Scholar]
  39. Atta-Ur-Rahman Zaman K. Medicinal plants with hypoglycemic activity. J. Ethnopharmacol. 1989 26 1 1 55 10.1016/0378‑8741(89)90112‑8 2664356
    [Google Scholar]
  40. Marles R.J. Farnsworth N.R. Antidiabetic plants and their active constituents. Phytomedicine 1995 2 2 137 189 10.1016/S0944‑7113(11)80059‑0 23196156
    [Google Scholar]
  41. Li W.L. Zheng H.C. Bukuru J. Kimpe D.N. Natural medicines used in the traditional Chinese medical system for therapy of diabetes mellitus. J. Ethnopharmacol. 2004 92 1 1 21 10.1016/j.jep.2003.12.031 15099842
    [Google Scholar]
  42. Simmonds MS Howes MJ Plants used in the treatment of diabetes. Tradit. Med. Mod. Tim. Antidiab. Plants. 2006 2006 19 82
    [Google Scholar]
  43. Giovannini P. Howes M.J.R. Edwards S.E. Medicinal plants used in the traditional management of diabetes and its sequelae in Central America: A review. J. Ethnopharmacol. 2016 184 58 71 10.1016/j.jep.2016.02.034 26924564
    [Google Scholar]
  44. Harlev E. Nevo E. Mirsky N. Ofir R. Antidiabetic attributes of desert and steppic plants: A review. Planta Med. 2013 79 6 425 436 10.1055/s‑0032‑1328331 23539351
    [Google Scholar]
  45. Moradi B. Abbaszadeh S. Shahsavari S. Alizadeh M. Beyranvand F. The most useful medicinal herbs to treat diabetes. Biomed. Res. Ther. 2018 5 8 2538 2551 10.15419/bmrat.v5i8.463
    [Google Scholar]
  46. Eddouks M. Maghrani M. Lemhadri A. Ouahidi M.L. Jouad H. Ethnopharmacological survey of medicinal plants used for the treatment of diabetes mellitus, hypertension and cardiac diseases in the south-east region of Morocco (Tafilalet). J. Ethnopharmacol. 2002 82 2-3 97 103 10.1016/S0378‑8741(02)00164‑2 12241983
    [Google Scholar]
  47. Tag H. Kalita P. Dwivedi P. Das A.K. Namsa N.D. Herbal medicines used in the treatment of diabetes mellitus in Arunachal Himalaya, northeast, India. J. Ethnopharmacol. 2012 141 3 786 795 10.1016/j.jep.2012.03.007 22433536
    [Google Scholar]
  48. Adhikari M. Thapa R. Kunwar R.M. Devkota H.P. Poudel P. Ethnomedicinal uses of plant resources in the machhapuchchhre rural municipality of kaski district, nepal. Medicines 2019 6 2 69 10.3390/medicines6020069 31234605
    [Google Scholar]
  49. Augustine I. Hypolipidaemic and antidiabetic potency of allium cepa (onions) bulb in alloxan-induced diabetic rats. Acta Scient. Nutrit. Health. 2020 4 1 8
    [Google Scholar]
  50. Archana T.M. Soumya K. James J. Sudhakaran S. Root extracts of Anacardium occidentale reduce hyperglycemia and oxidative stress in vitro. Clinical Phytoscience 2021 7 1 57 10.1186/s40816‑021‑00293‑1
    [Google Scholar]
  51. Maghfur R. Shahat M. Soliman M. Assessment of the therapeutic role of mangifera indica leaves extract in diabetic albino rats. Egypt. Acad. J. Biol. Sci. B Zool. 2022 14 2 247 262 10.21608/eajbsz.2022.265796
    [Google Scholar]
  52. Ansari P. Hannan J.M.A. Seidel V. Abdel-Wahab Y.H.A. Polyphenol-rich leaf of annona squamosa stimulates insulin release from BRIN-BD11 cells and isolated mouse islets, reduces (CH2O) n digestion and absorption, and improves glucose tolerance and GLP-1 (7-36) levels in high-fat-fed rats. Metabolites 2022 12 10 995 10.3390/metabo12100995 36295897
    [Google Scholar]
  53. Alkreathy H.M. Ahmad A. Catharanthus roseus combined with ursolic acid attenuates streptozotocin-induced diabetes through insulin secretion and glycogen storage. Oxid. Med. Cell. Longev. 2020 2020 1 8 10.1155/2020/8565760 32148658
    [Google Scholar]
  54. Martínez G.L.A. Sánchez-Ruiz L.A. Zuñiga L.Y. González-Ortiz M. Martínez-Abundis E. Effect of Gymnema sylvestre administration on glycemic control, insulin secretion, and insulin sensitivity in patients with impaired glucose tolerance. J. Med. Food 2021 24 1 28 32 10.1089/jmf.2020.0024 32460589
    [Google Scholar]
  55. Ahangarpour A. Oroojan A.A. Heydari H. Ahmadi I. Effects of aqueous and hydro-alcoholic extracts of Bunium persicum seed on insulin secretion from male mouse-isolated langerhans islets. Majallah-i Pizishki-i Urumiyyah 2014 25 8 742 751
    [Google Scholar]
  56. Liu T. Wang D. Zhou X. Song J. Yang Z. Shi C. Li R. Zhang Y. Zhang J. Yan J. Zhu X. Li Y. Gong M. Wang C. Yuan C. Cui Y. Wu X. Study on the mechanism of American ginseng extract for treating type 2 diabetes mellitus based on metabolomics. Front. Pharmacol. 2022 13 960050 10.3389/fphar.2022.960050 36120310
    [Google Scholar]
  57. Atawodi S.E. Adepoju O.A. Nzelibe H.C. Antihyperglycaemic and hypolipidemic effect of methanol extracts of Ageratum conyzoides L (Asteraceae) in normal and diabetic rats. Trop. J. Pharm. Res. 2017 16 5 989 996 10.4314/tjpr.v16i5.4
    [Google Scholar]
  58. Hbika A. Daoudi N.E. Bouyanzer A. Bouhrim M. Mohti H. Loukili E.H. Mechchate H. Al-Salahi R. Nasr F.A. Bnouham M. Zaid A. Artemisia absinthium L. Aqueous and ethyl acetate extracts: Antioxidant effect and potential activity in vitro and in vivo against pancreatic α-amylase and intestinal α-glucosidase. Pharmaceutics 2022 14 3 481 10.3390/pharmaceutics14030481 35335858
    [Google Scholar]
  59. Li H. Wang Y. Tian Y. Tian F. Xing Z. Wang Y. Yan M. Gong Y. Atractylodes chinensis volatile oil up-regulated IGF-1 to improve diabetic gastroparesis in rats. Iran. J. Basic Med. Sci. 2022 25 4 520 526 35656073
    [Google Scholar]
  60. Tolo M.M. Bidens pilosa extract and sub-fractions induce adipogenesis and exert glucose uptake in 3T3-L1 adipocytes. Thesis , Doctoral dissertation University of Limpopo.
    [Google Scholar]
  61. Chandra K. Jain V. Jabin A. Dwivedi S. Joshi S. Ahmad S. Jain S.K. Effect ofCichorium intybus seeds supplementation on the markers of glycemic control, oxidative stress, inflammation, and lipid profile in type 2 diabetes mellitus: A randomized, double‐blind placebo study. Phytother. Res. 2020 34 7 1609 1618 10.1002/ptr.6624 32026537
    [Google Scholar]
  62. Syahrian M.F. Lister I.N.E. Ginting C.N. Evaluating the therapeutic potential of vernonia amygdalina: A promising antidiabetic agent in STZ and nicotinamide-induced rat model. Pharmacogn. J. 2024 16 1 94 99 10.5530/pj.2024.16.13
    [Google Scholar]
  63. Mehdi S. Mehmood M.H. Ahmed M.G. Ashfaq U.A. Antidiabetic activity of Berberis brandisiana is possibly mediated through modulation of insulin signaling pathway, inflammatory cytokines and adipocytokines in high fat diet and streptozotocin-administered rats. Front. Pharmacol. 2023 14 1085013 10.3389/fphar.2023.1085013 37089941
    [Google Scholar]
  64. Thirumalai T. Therasa S.V. Elumalai E.K. David E. Hypoglycemic effect of Brassica juncea (seeds) on streptozotocin induced diabetic male albino rat. Asian Pac. J. Trop. Biomed. 2011 1 4 323 325 10.1016/S2221‑1691(11)60052‑X 23569784
    [Google Scholar]
  65. Agada R. Thagriki D. Lydia E.D. Khusro A. Alkahtani J. Shaqha A.M.M. Alwahibi M.S. Elshikh S.M. Antioxidant and anti-diabetic activities of bioactive fractions of Carica papaya seeds extract. J. King Saud Univ. Sci. 2021 33 2 101342 10.1016/j.jksus.2021.101342
    [Google Scholar]
  66. Sharmila K.J. Kanimozhi L. Shanmuga P.J. Vidhya G.V. Jeba C.R. Kowsalya R. Anti-diabetic potential of Indian medicinal plants with Garcinia kola and Syzygium cumini. Res. J. Phar. Tech. 2021 14 11 5696 5702
    [Google Scholar]
  67. Ansari P. Hannon-Fletcher M.P. Flatt P.R. Abdel-Wahab Y.H.A. Effects of 22 traditional anti-diabetic medicinal plants on DPP-IV enzyme activity and glucose homeostasis in high-fat fed obese diabetic rats. Biosci. Rep. 2021 41 1 BSR20203824 10.1042/BSR20203824 33416077
    [Google Scholar]
  68. Ha T.J. Lee M.H. Oh E. Kim J.I. Song S.B. Kwak D. α-Glucosidase inhibitory activity of the ethanol extract of peanut (Arachis hypogaea L.) skin. Hanguk Yakyong Changmul Hakhoe Chi 2020 28 1 21 28 10.7783/KJMCS.2020.28.1.21
    [Google Scholar]
  69. Akhare YD Sharma S Effect of terminalia arjuna bark extract on streptozotocin-induced diabetic rats. Inter. J. Curr. Sci. Res. Rev. 2022 5 4 1044 1048
    [Google Scholar]
  70. Samai Z. Toudert N. Dadda N. Hamel T. Zakkad F. Zerrad C. Boutemedjet S. Bensouici C. Djilani S.E. Discovery phenolic profiles and in vitro antioxidants, neuroprotective, anti-diabetic activities of extracts from of algerian plant: Calendula monardii boiss. & reut. Curr. Enzym. Inhib. 2024 20 1 30 39 10.2174/1573408019666230810115245
    [Google Scholar]
  71. Zhang Y. Jin D. Zhou R. Yang C. Zhang Y. Lian F. Tong X. Mechanism of Cornus Officinalis in treating diabetic kidney disease based on network pharmacology. Evid. Based Complement. Alternat. Med. 2022 2022 1 14 10.1155/2022/1799106 35855831
    [Google Scholar]
  72. Xu B. Li Z. Zeng T. Zhan J. Wang S. Ho C.T. Li S. Bioactives of Momordica charantia as potential anti-diabetic/hypoglycemic agents. Molecules 2022 27 7 2175 10.3390/molecules27072175 35408574
    [Google Scholar]
  73. Bati K. Baeti P.B. Gaobotse G. Kwape T.E. Leaf extracts of Euclea natalensis A.D.C ameliorate biochemical abnormalities in high-fat-low streptozotocin-induced diabetic rats through modulation of the AMPK-GLUT4 pathway. Egypt. J. Basic Appl. Sci. 2024 11 1 232 252 10.1080/2314808X.2024.2326748
    [Google Scholar]
  74. Oyebode O.A. Erukainure O.L. Chuturgoon A.A. Ghazi T. Naidoo P. Chukwuma C.I. Islam M.S. Bridelia ferruginea Benth. (Euphorbiaceae) mitigates oxidative imbalance and lipotoxicity, with concomitant modulation of insulin signaling pathways via GLUT4 upregulation in hepatic tissues of diabetic rats. J. Ethnopharmacol. 2022 284 114816 10.1016/j.jep.2021.114816 34763044
    [Google Scholar]
  75. Shilpa VS Lekshmi S Swapna TS In vitro antidiabetic potential of Euphorbia hirta Linn.: A nutritionally significant plant. J. Pharm. Phytochem. 2020 9 1 01 4
    [Google Scholar]
  76. Alonso-Castro A.J. Zapata-Bustos R. Gómez-Espinoza G. Salazar-Olivo L.A. Isoorientin reverts TNF-α-induced insulin resistance in adipocytes activating the insulin signaling pathway. Endocrinology 2012 153 11 5222 5230 10.1210/en.2012‑1290 22948221
    [Google Scholar]
  77. Matou M. Bercion S. Marianne-Pepin T. Haddad P. Merciris P. Phenolic profiles and biological properties of traditional Phyllanthus amarus aqueous extracts used for diabetes. J. Funct. Foods 2021 83 104571 10.1016/j.jff.2021.104571
    [Google Scholar]
  78. Boye A. Barku V.Y.A. Acheampong D.O. Ofori E.G. Abrus precatorius leaf extract reverses alloxan/nicotinamide-induced diabetes mellitus in rats through hormonal (insulin, GLP-1, and glucagon) and enzymatic (α-amylase/α-glucosidase) modulation. BioMed Res. Int. 2021 2021 1 9920826 10.1155/2021/9920826 34341763
    [Google Scholar]
  79. Hashiesh H.M. Meeran M.F.N. Sharma C. Sadek B. Kaabi J.A. Ojha S.K. Therapeutic potential of β-caryophyllene: A dietary cannabinoid in diabetes and associated complications. Nutrients 2020 12 10 2963 10.3390/nu12102963 32998300
    [Google Scholar]
  80. Le T.T. Ha M.T. Hoang L.M. Vu N.K. Kim J.A. Min B.S. α-Glucosidase inhibitory activity of phenolic compounds isolated from the stems of Caesalpinia decapetala var. japonica. Nat. Prod. Sci. 2022 28 3 143 152 10.20307/nps.2022.28.3.143
    [Google Scholar]
  81. Purnomo Y Taufiq M Wijaya AN Hakim R Molecular docking of soybean (Glycine max) seed and ginger (zingiber officinale) rhizome components as anti-diabetic through inhibition of dipeptidyl peptidase 4 (DPP-4) and alpha-glucosidase enzymes. Trop. J. Nat. Pro. Res. 2021 5 10 1735 1742
    [Google Scholar]
  82. Qureshi J.A. Memon Z. Ismail K. Saher F. Motiani V. Mushtaq Z. Anti-hyperglycemic and anti-dyslipidemic activities of glycyrrhiza glabra root extract in diabetic rats. J. Isl. Inter. Med. Coll. 2020 15 2 98 103
    [Google Scholar]
  83. Peddio S. Padiglia A. Cannea F.B. Crnjar R. Zam W. Sharifi-Rad J. Rescigno A. Zucca P. Common bean ( Phaseolus vulgaris L.) α‐amylase inhibitors as safe nutraceutical strategy against diabetes and obesity: An update review. Phytother. Res. 2022 36 7 2803 2823 10.1002/ptr.7480 35485365
    [Google Scholar]
  84. Danao K. Kale S. Rokde V. Nandurkar D. Mahajan U. Dumore N. Bendale A.R. Naphade V. Tatode A. In silico prediction of antidiabetic activity of phytoconstituents of pterocarpus marsupium targeting α-amylase enzyme. Biosci. Biotechnol. Res. Asia 2023 20 1 147 162 10.13005/bbra/3077
    [Google Scholar]
  85. Krishna R.N. Anitha R. Ezhilarasan D. Aqueous extract of Tamarindus indica fruit pulp exhibits antihyperglycaemic activity. Avicenna J. Phytomed. 2020 10 5 440 447 32995322
    [Google Scholar]
  86. Mahata L.E. Ali H. Murni A.W. Alimuddin T. Basil extract (ocimum basilicum l) exhibits antidiabetic and hepatoprotective effects via sirt1 and peroxisome proliferator-activated receptors (pparγ) on gestational diabetes mellitus rats model. Indones. J. Pharm. 2023
    [Google Scholar]
  87. Wariyapperuma W.A.N.M. Kannangara S. Wijayasinghe Y.S. Subramanium S. Jayawardena B. In vitro anti-diabetic effects and phytochemical profiling of novel varieties of Cinnamomum zeylanicum (L.) extracts. PeerJ 2020 8 e10070 10.7717/peerj.10070 33194379
    [Google Scholar]
  88. Ansari P. Flatt P.R. Harriott P. Hannan J.M.A. Abdel-Wahab Y.H.A. Identification of multiple pancreatic and extra-pancreatic pathways underlying the glucose-lowering actions of Acacia arabica Bark in type-2 diabetes and isolation of active phytoconstituents. Plants 2021 10 6 1190 10.3390/plants10061190 34208010
    [Google Scholar]
  89. Ahmadi DM Mojtabavi S Ghadami S Eftekhari M Ardekani MR Faramarzi MA Khanavi M Cassia angustifolia vahl. leaves: Determination of total phenolic and sennoside contents of different fractions in comparison with their α-glucosidase and tyrosinase inhibitory effects. IJ Pharm. Res. 2024 23 1 1 6
    [Google Scholar]
  90. Ojo O.A. Adegboyega A.E. Johnson G.I. Umedum N.L. Onuh K. Adeduro M.N. Nwobodo V.O. Elekan A.O. Alemika T.E. Johnson T.O. Deciphering the interactions of compounds from Allium sativum targeted towards identification of novel PTP 1B inhibitors in diabetes treatment: A computational approach. Infor. Med. Unlock. 2021 26 100719 10.1016/j.imu.2021.100719
    [Google Scholar]
  91. Babu S.N. Govindarajan S. Vijayalakshmi M.A. Noor A. Role of zonulin and GLP-1/DPP-IV in alleviation of diabetes mellitus by peptide/polypeptide fraction of Aloe vera in streptozotocin- induced diabetic wistar rats. J. Ethnopharmacol. 2021 272 113949 10.1016/j.jep.2021.113949 33610707
    [Google Scholar]
  92. Yan D. Fan P. Sun W. Ding Q. Zheng W. Xiao W. Zhang B. Zhang T. Zhang T. Shi J. Chen X. Chen P. Zhang J. Hao Y. Sun X. Pang X. Dong Y. Xu P. Yu L. Ma B. Anemarrhena asphodeloides modulates gut microbiota and restores pancreatic function in diabetic rats. Biomed. Pharmacother. 2021 133 110954 10.1016/j.biopha.2020.110954 33378992
    [Google Scholar]
  93. Mishra BB Padmadeo SR On the hypoglycemic and antioxidant activities of root extract of asparagus racemosus in alloxan-induced diabetic rats. Biosci. Biotechnol. Res. Commun. 2021 14 1 403 409 10.21786/bbrc/14.1/57
    [Google Scholar]
  94. Mechchate H. Es-safi I. Conte R. Hano C. Amaghnouje A. Jawhari F.Z. Radouane N. Bencheikh N. Grafov A. Bousta D. In vivo and in vitro antidiabetic and anti-inflammatory properties of flax (Linum usitatissimum L.) seed polyphenols. Nutrients 2021 13 8 2759 10.3390/nu13082759 34444919
    [Google Scholar]
  95. Pottathil S. Nain P. Morsy M.A. Kaur J. Al-Dhubiab B.E. Jaiswal S. Nair A.B. Mechanisms of antidiabetic activity of methanolic extract of Punica granatum leaves in nicotinamide/streptozotocin-induced type 2 diabetes in rats. Plants 2020 9 11 1609 10.3390/plants9111609 33228177
    [Google Scholar]
  96. Erukainure O.L. Oyebode O.A. Chuturgoon A.A. Ghazi T. Muhammad A. Aljoundi A. Elamin G. Chukwuma C.I. Islam M.S. Potential molecular mechanisms underlying the ameliorative effect of Cola nitida (Vent.) Schott & Endl. on insulin resistance in rat skeletal muscles. J. Ethnopharmacol. 2024 319 Pt 2 117249 10.1016/j.jep.2023.117249 37806534
    [Google Scholar]
  97. Ansari P. Flatt P.R. Harriott P. Abdel-Wahab Y.H.A. Insulin secretory and antidiabetic actions of Heritiera fomes bark together with isolation of active phytomolecules. PLoS One 2022 17 3 e0264632 10.1371/journal.pone.0264632 35239729
    [Google Scholar]
  98. Herowati R. Antidiabetic activity of okra fruit (Abelmoschus esculentus (L) Moench) extract and fractions in two conditions of diabetic rats. Indones. J. Pharm. 2020 31 1 27 10.14499/indonesianjpharm31iss1pp27
    [Google Scholar]
  99. Chauhan K. Rani S. Evaluation of antidiabetic potential of Hibiscus rosa sinensis on streptozotocin-induced diabetes on Wistar albino rats. J. Appl. Nat. Sci. 2024 16 1 245 250 10.31018/jans.v16i1.5334
    [Google Scholar]
  100. Sarkar S Singh RP Bhattacharya G Exploring the role of Azadirachta indica (neem) and its active compounds in the regulation of biological pathways: An update on molecular approach. 3 Biotech 2021 11 4 178
    [Google Scholar]
  101. Ajiboye BO Ojo OA Oyinloye BE Okesola MA Oluwatosin A Boligon AA Kappo AP Investigation of the in vitro antioxidant potential of polyphenolic-rich extract of Artocarpus heterophyllus lam stem bark and its antidiabetic activity in streptozotocin-induced diabetic rats. J. Evid. Based Integr. Med. 2020 25 2515690X20916123 10.1177/2515690X20916123
    [Google Scholar]
  102. Khanal P. Patil B.M. Integration of in silico, in vitro and ex vivo pharmacology to decode the anti-diabetic action of Ficus benghalensis L. bark. J. Diabetes Metab. Disord. 2020 19 2 1325 1337 10.1007/s40200‑020‑00651‑9 33553030
    [Google Scholar]
  103. Anwer T. Safhi M.M. Makeen H.A. Alshahrani S. Siddiqui R. Sivakumar S.M. Shaheen E.S. Alam M.F. Antidiabetic potential of Moringa oleifera Lam. leaf extract in type 2 diabetic rats, and its mechanism of action. Trop. J. Pharm. Res. 2021 20 1 95 103 10.4314/tjpr.v20i1.15
    [Google Scholar]
  104. Ansari P. Choudhury S.T. Abdel-Wahab Y.H.A. Insulin secretory actions of ethanol extract of eucalyptus citriodora leaf, including plasma DPP-IV and GLP-1 levels in high-Fat-Fed rats, as well as characterization of biologically effective phytoconstituents. Metabolites 2022 12 8 757 10.3390/metabo12080757 36005629
    [Google Scholar]
  105. Bello M. Jiddah-kazeem B. Fatoki T.H. Ibukun E.O. Akinmoladun A.C. Antioxidant property of Eucalyptus globulus Labill. Extracts and inhibitory activities on carbohydrate metabolizing enzymes related to type-2 diabetes. Biocatal. Agric. Biotechnol. 2021 36 102111 10.1016/j.bcab.2021.102111
    [Google Scholar]
  106. Devnani D. Dave P.C. Acharya A.S. Mohan P. Pimpalshende M.K. Ghadi F.D. Rahate S.S. Anti-diabetic study of flower extract of eugenia jambolona in rats. J. Adv. Zool. 2024 45 1
    [Google Scholar]
  107. Abo-Elghiet F. Ahmed A.H. Aly H.F. Younis E.A. Rabeh M.A. Alshehri S.A. Alshahrani K.S.A. Mohamed S.A. D-pinitol content and antioxidant and antidiabetic activities of five Bougainvillea spectabilis willd. cultivars. Pharmaceuticals 2023 16 7 1008 10.3390/ph16071008 37513920
    [Google Scholar]
  108. Chigurupati S. Alharbi F.S. Almahmoud S. Aldubayan M. Almoshari Y. Vijayabalan S. Bhatia S. Chinnam S. Venugopal V. Molecular docking of phenolic compounds and screening of antioxidant and antidiabetic potential of Olea europaea L. Ethanolic leaves extract. Arab. J. Chem. 2021 14 11 103422 10.1016/j.arabjc.2021.103422
    [Google Scholar]
  109. Zhang S. Zhang Y. Wen Z. Chen Y. Bu T. Yang Y. Ni Q. Enhancing β-cell function and identity in type 2 diabetes: The protective role of Coptis deltoidea C. Y. Cheng et Hsiao via glucose metabolism modulation and AMPK signaling activation. Phytomedicine 2024 128 155396 10.1016/j.phymed.2024.155396 38547617
    [Google Scholar]
  110. Maideen N.M.P. Antidiabetic activity of nigella sativa (black seeds) and its active constituent (thymoquinone): A review of human and experimental animal studies. Chonnam Med. J. 2021 57 3 169 175 10.4068/cmj.2021.57.3.169 34621636
    [Google Scholar]
  111. Li J. Ding X. Jian T. Lü H. Zhao L. Li J. Liu Y. Ren B. Chen J. Four sesquiterpene glycosides from loquat ( Eriobotrya japonica ) leaf ameliorates palmitic acid-induced insulin resistance and lipid accumulation in HepG2 Cells via AMPK signaling pathway. PeerJ 2020 8 e10413 10.7717/peerj.10413 33240683
    [Google Scholar]
  112. Sorrenti V. Consoli V. Grosso S. Raffaele M. Amenta M. Ballistreri G. Fabroni S. Rapisarda P. Vanella L. Bioactive compounds from lemon (Citrus limon) extract overcome TNF-α-induced insulin resistance in cultured adipocytes. Molecules 2021 26 15 4411 10.3390/molecules26154411 34361563
    [Google Scholar]
  113. Benayad O. Bouhrim M. Tiji S. Kharchoufa L. Addi M. Drouet S. Hano C. Lorenzo J.M. Bendaha H. Bnouham M. Mimouni M. Phytochemical profile, α-glucosidase, and α-amylase inhibition potential and toxicity evaluation of extracts from Citrus aurantium (L) peel, a valuable by-product from Northeastern Morocco. Biomolecules 2021 11 11 1555 10.3390/biom11111555 34827553
    [Google Scholar]
  114. Mangesh V. Kishore M. Naik S. Antidiabetic activity of alcoholic extract of Momordica Charantia and Murraya koenigii in alloxan induced albino rat. Inter. J. Pharma. Res. 2022 14 1 1 9
    [Google Scholar]
  115. Li Y. Chen Q. Sun H.J. Zhang J.H. Liu X. The active ingredient catalpol in Rehmannia glutinosa reduces blood glucose in diabetic rats via the ampk pathway. Diabetes Metab. Syndr. Obes. 2024 17 1761 1767 10.2147/DMSO.S446318 38645660
    [Google Scholar]
  116. Ferdowsi P.V. Ahuja K.D.K. Beckett J.M. Myers S. Capsaicin and zinc Signalling pathways as promising targets for managing insulin resistance and type 2 diabetes. Molecules 2023 28 6 2861 10.3390/molecules28062861 36985831
    [Google Scholar]
  117. Satyanarayana N. Chinni S.V. Gobinath R. Sunitha P. Sankar U.A. Muthuvenkatachalam B.S. Antidiabetic activity of Solanum torvum fruit extract in streptozotocin-induced diabetic rats. Front. Nutr. 2022 9 987552 10.3389/fnut.2022.987552 36386935
    [Google Scholar]
  118. Kumar P. Ram H. Kala C. Kashyap P. Singh G. Agnihotri C. Singh B.P. Kumar A. Panwar A. DPP-4 inhibition mediated antidiabetic potential of phytoconstituents of an aqueous fruit extract of Withania coagulans (Stocks) Dunal: in-silico, in-vitro and in-vivo assessments. J. Biomol. Struct. Dyn. 2023 41 13 6145 6167 10.1080/07391102.2022.2103029 35930363
    [Google Scholar]
  119. Ansari P. Flatt P.R. Harriott P. Abdel-Wahab Y.H.A. Anti-hyperglycaemic and insulin-releasing effects of Camellia sinensis leaves and isolation and characterisation of active compounds. Br. J. Nutr. 2021 126 8 1149 1163 10.1017/S0007114520005085 33331251
    [Google Scholar]
  120. Muhammad AJ Muhammad M Yunusa A Mikail TA Dalhatu MM Habib IY Sarki SI Gwarzo MS Muhammad NA Mustapha RA Determination of antioxidant and α–amylase inhibition properties of Alligator pepper (Aframomum Melegueta): A potential therapeutic against diabetes mellitus. EAS J. Pharm. Pharmacol. 2022 4 3 1 49 10.36349/easjpp.2022.v04i03.001
    [Google Scholar]
  121. Ovaditya S.Z. Brilliantika S.P. Chodidjah C. Sumarawati T. The effect of Curcuma longa on fasting blood glucose, MMP-9 and IFN-γ in diabetes mellitus: An experimental study. Bali Med. J. 2022 11 3 1996 2002 10.15562/bmj.v11i3.3648
    [Google Scholar]
  122. Shakman E. Abdalha B.A. Talha F. Al-Faturi A.F. Bariche M. First records of seven marine organisms of different origins from Libya (Mediterranean Sea). BioInvasions Rec. 2017 6 4 377 382 10.3391/bir.2017.6.4.13
    [Google Scholar]
  123. Pan G.Y. Huang Z.J. Wang G.J. Fawcett J.P. Liu X.D. Zhao X.C. Sun J.G. Xie Y.Y. The antihyperglycaemic activity of berberine arises from a decrease of glucose absorption. Planta Med. 2003 69 7 632 636 10.1055/s‑2003‑41121 12898419
    [Google Scholar]
  124. Patel D.K. Kumar R. Laloo D. Hemalatha S. Natural medicines from plant source used for therapy of diabetes mellitus: An overview of its pharmacological aspects. Asian Pac. J. Trop. Dis. 2012 2 3 239 250 10.1016/S2222‑1808(12)60054‑1
    [Google Scholar]
  125. Chattopadhyay R.R. A comparative evaluation of some blood sugar lowering agents of plant origin. J. Ethnopharmacol. 1999 67 3 367 372 10.1016/S0378‑8741(99)00095‑1 10617074
    [Google Scholar]
  126. Khacheba I. Boussoussa H. Djeridane A. Bekhaoua A. Bensayah N. Yousfi M. α-Glucosidase inhibitory effect and antioxidant activity of the extracts of eighteen plant traditionally used in Algeria for diabetes. Curr. Enzym. Inhib. 2017 13 1 67 78 10.2174/1573408012666160728100110
    [Google Scholar]
  127. Bierer D.E. Dubenko L.G. Zhang P. Lu Q. Imbach P.A. Garofalo A.W. Phuan P.W. Fort D.M. Litvak J. Gerber R.E. Sloan B. Luo J. Cooper R. Reaven G.M. Antihyperglycemic activities of cryptolepine analogues: An ethnobotanical lead structure isolated from Cryptolepis sanguinolenta. J. Med. Chem. 1998 41 15 2754 2764 10.1021/jm970735n 9667966
    [Google Scholar]
  128. Cooper E.J. Hudson A.L. Parker C.A. Morgan N.G. Effects of the β-carbolines, harmane and pinoline, on insulin secretion from isolated human islets of Langerhans. Eur. J. Pharmacol. 2003 482 1-3 189 196 10.1016/j.ejphar.2003.09.039 14660022
    [Google Scholar]
  129. Sharma R. Amin H. Galib Prajapati P.K. Antidiabetic claims of Tinospora cordifolia (Willd.) Miers: Critical appraisal and role in therapy. Asian Pac. J. Trop. Biomed. 2015 5 1 68 78 10.1016/S2221‑1691(15)30173‑8
    [Google Scholar]
  130. Khanal P. Patil B.M. Mandar B.K. Dey Y.N. Duyu T. Network pharmacology-based assessment to elucidate the molecular mechanism of anti-diabetic action of Tinospora cordifolia. Clinical Phytoscience 2019 5 1 35 10.1186/s40816‑019‑0131‑1
    [Google Scholar]
  131. Attia E.S. Amer A.H. Hasanein M.A. The hypoglycemic and antioxidant activities of garden cress ( Lepidium sativum L.) seed on alloxan-induced diabetic male rats. Nat. Prod. Res. 2019 33 6 901 905 10.1080/14786419.2017.1413564 29237302
    [Google Scholar]
  132. Kumar B.D. Krishnakumar K. Jaganathan S. Mandal M. Effect of mangiferin and mahanimbine on glucose utilization in 3T3-L1 cells. Pharmacogn. Mag. 2013 9 33 72 75 10.4103/0973‑1296.108145 23661997
    [Google Scholar]
  133. Ge Q. Chen L. Yuan Y. Liu L. Feng F. Lv P. Ma S. Chen K. Yao Q. Network pharmacology-based dissection of the anti-diabetic mechanism of Lobelia chinensis. Front. Pharmacol. 2020 11 347 10.3389/fphar.2020.00347 32265717
    [Google Scholar]
  134. Bajpai M. Asthana R. Sharma N. Chatterjee S. Mukherjee S. Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita. Planta Med. 1991 57 2 102 104 10.1055/s‑2006‑960041 1891489
    [Google Scholar]
  135. Shibano M. Tsukamoto D. Masuda A. Tanaka Y. Kusano G. Two new pyrrolidine alkaloids, radicamines A and B, as inhibitors of α-glucosidase from Lobelia chinensis Lour. Chem. Pharm. Bull. 2001 49 10 1362 1365 10.1248/cpb.49.1362 11605673
    [Google Scholar]
  136. Marzouk M. Soliman A.M. Omar T.Y. Hypoglycemic and antioxidative effects of fenugreek and termis seeds powder in streptozotocin-diabetic rats. Eur. Rev. Med. Pharmacol. Sci. 2013 17 4 559 565 23467959
    [Google Scholar]
  137. Costantino L. Raimondi L. Pirisino R. Brunetti T. Pessotto P. Giannessi F. Lins A.P. Barlocco D. Antolini L. El-Abady S.A. Isolation and pharmacological activities of the Tecoma stans alkaloids. Farmaco 2003 58 9 781 785 10.1016/S0014‑827X(03)00133‑2 13679170
    [Google Scholar]
  138. Behl T. Mehta K. Sehgal A. Singh S. Sharma N. Ahmadi A. Arora S. Bungau S. Exploring the role of polyphenols in rheumatoid arthritis. Crit. Rev. Food Sci. Nutr. 2022 62 19 5372 5393 10.1080/10408398.2021.1924613 33998910
    [Google Scholar]
  139. Gandhi G.R. Jothi G. Antony P.J. Balakrishna K. Paulraj M.G. Ignacimuthu S. Stalin A. Al-Dhabi N.A. Gallic acid attenuates high-fat diet fed-streptozotocin-induced insulin resistance via partial agonism of PPARγ in experimental type 2 diabetic rats and enhances glucose uptake through translocation and activation of GLUT4 in PI3K/p-Akt signaling pathway. Eur. J. Pharmacol. 2014 745 201 216 10.1016/j.ejphar.2014.10.044 25445038
    [Google Scholar]
  140. Huang D.W. Chang W.C. Wu J.S.B. Shih R.W. Shen S.C. Gallic acid ameliorates hyperglycemia and improves hepatic carbohydrate metabolism in rats fed a high-fructose diet. Nutr. Res. 2016 36 2 150 160 10.1016/j.nutres.2015.10.001 26547672
    [Google Scholar]
  141. Amin M.M. Arbid M.S. Estimation of ellagic acid and/or repaglinide effects on insulin signaling, oxidative stress, and inflammatory mediators of liver, pancreas, adipose tissue, and brain in insulin resistant/type 2 diabetic rats. Appl. Physiol. Nutr. Metab. 2017 42 2 181 192 10.1139/apnm‑2016‑0429 28092161
    [Google Scholar]
  142. Jung U.J. Lee M.K. Park Y.B. Jeon S.M. Choi M.S. Antihyperglycemic and antioxidant properties of caffeic acid in db/db mice. J. Pharmacol. Exp. Ther. 2006 318 2 476 483 10.1124/jpet.106.105163 16644902
    [Google Scholar]
  143. Ong K.W. Hsu A. Tan B.K.H. Anti-diabetic and anti-lipidemic effects of chlorogenic acid are mediated by ampk activation. Biochem. Pharmacol. 2013 85 9 1341 1351 10.1016/j.bcp.2013.02.008 23416115
    [Google Scholar]
  144. Govindaraj J. Pillai S.S. Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: Streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 2015 404 1-2 143 159 10.1007/s11010‑015‑2374‑6 25735949
    [Google Scholar]
  145. Jeong KyongJu JK Jeong K.J.K. Kim Y.D. Hai-Yan Q. Effects of eugenol on hepatic glucose production and AMPK signaling pathway in hepatocytes and C57BL/6J mice. Fitoterapia 2014 93 150 162
    [Google Scholar]
  146. Kopp C. Singh S. Regenhard P. Müller U. Sauerwein H. Mielenz M. Trans-cinnamic acid increases adiponectin and the phosphorylation of AMP-activated protein kinase through G-protein-coupled receptor signaling in 3T3-L1 adipocytes. Int. J. Mol. Sci. 2014 15 2 2906 2915 10.3390/ijms15022906 24557583
    [Google Scholar]
  147. Cherng Y.G. Tsai C.C. Chung H.H. Lai Y.W. Kuo S.C. Cheng J.T. Antihyperglycemic action of sinapic acid in diabetic rats. J. Agric. Food Chem. 2013 61 49 12053 12059 10.1021/jf403092b 24261449
    [Google Scholar]
  148. Postula M. Janicki P.K. Rosiak M. Przybylkowski A. Kaplon-Cieslicka A. Grygorowicz T. Trzepla E. Filipiak K.J. Czlonkowski A. Opolski G. Association of plasma concentrations of salicylic acid and high on ASA platelet reactivity in type 2 diabetes patients. Cardiol. J. 2013 20 2 170 177 10.5603/CJ.2013.0030 23558875
    [Google Scholar]
  149. Rashedinia M. Sabahi Z. Khoshnoud M.J. Khalvati B. Hashemi S-S. Farsani G.Z. Gerashi M.H. Syringic acid improves oxidative stress and mitochondrial biogenesis in the liver of streptozotocin-induced diabetic rats. Asian Pac. J. Trop. Biomed. 2020 10 3 111 119 10.4103/2221‑1691.276317
    [Google Scholar]
  150. Cahyana Y. Adiyanti T. Flavonoids as antidiabetic agents. Indonesian Journal of Chemistry 2021 21 2 512 526 10.22146/ijc.58439
    [Google Scholar]
  151. Haddad P.S. Eid H.M. Nachar A. Thong F. Sweeney G. The molecular basis of the antidiabetic action of quercetin in cultured skeletal muscle cells and hepatocytes. Pharmacogn. Mag. 2015 11 41 74 81 10.4103/0973‑1296.149708 25709214
    [Google Scholar]
  152. Babu P.V.A. Si H. Fu Z. Zhen W. Liu D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J. Nutr. 2012 142 4 724 730 10.3945/jn.111.152322 22399524
    [Google Scholar]
  153. Fu Z. Zhang W. Zhen W. Lum H. Nadler J. Bassaganya-Riera J. Jia Z. Wang Y. Misra H. Liu D. Genistein induces pancreatic β-cell proliferation through activation of multiple signaling pathways and prevents insulin-deficient diabetes in mice. Endocrinology 2010 151 7 3026 3037 10.1210/en.2009‑1294 20484465
    [Google Scholar]
  154. Zhang Y. Liu D. Flavonol kaempferol improves chronic hyperglycemia-impaired pancreatic beta-cell viability and insulin secretory function. Eur. J. Pharmacol. 2011 670 1 325 332 10.1016/j.ejphar.2011.08.011 21914439
    [Google Scholar]
  155. Liu Y. Fu X. Lan N. Li S. Zhang J. Wang S. Li C. Shang Y. Huang T. Zhang L. Luteolin protects against high fat diet-induced cognitive deficits in obesity mice. Behav. Brain Res. 2014 267 178 188 10.1016/j.bbr.2014.02.040 24667364
    [Google Scholar]
  156. Kim M.S. Hur H.J. Kwon D.Y. Hwang J.T. Tangeretin stimulates glucose uptake via regulation of AMPK signaling pathways in C2C12 myotubes and improves glucose tolerance in high-fat diet-induced obese mice. Mol. Cell. Endocrinol. 2012 358 1 127 134 10.1016/j.mce.2012.03.013 22476082
    [Google Scholar]
  157. Bak E.J. Kim J. Choi Y.H. Kim J.H. Lee D.E. Woo G.H. Cha J.H. Yoo Y.J. Wogonin ameliorates hyperglycemia and dyslipidemia via PPARα activation in db/db mice. Clin. Nutr. 2014 33 1 156 163 10.1016/j.clnu.2013.03.013 23623334
    [Google Scholar]
  158. Ahad A. Ganai A.A. Mujeeb M. Siddiqui W.A. Chrysin, an anti-inflammatory molecule, abrogates renal dysfunction in type 2 diabetic rats. Toxicol. Appl. Pharmacol. 2014 279 1 1 7 10.1016/j.taap.2014.05.007 24848621
    [Google Scholar]
  159. Ghorbani A. Mechanisms of antidiabetic effects of flavonoid rutin. Biomed. Pharmacother. 2017 96 305 312 10.1016/j.biopha.2017.10.001 29017142
    [Google Scholar]
  160. Bouzier A Rojas J Ibinga SK Lamarti A Martin P Morillo M The impact of saponins on health-review. Biointer. Res. Appl. Chem. 2022 13 4 362 10.33263/BRIAC134.362
    [Google Scholar]
  161. Alhujaily M. Dhifi W. Mnif W. An overview of the potential of medicinal plants used in the development of nutraceuticals for the management of diabetes mellitus: Proposed biological mechanisms. Processes 2022 10 10 2044 10.3390/pr10102044
    [Google Scholar]
  162. Bai L. Gao J. Wei F. Zhao J. Wang D. Wei J. Therapeutic potential of ginsenosides as an adjuvant treatment for diabetes. Front. Pharmacol. 2018 9 423 10.3389/fphar.2018.00423 29765322
    [Google Scholar]
  163. Zhang Y. Xu G. Huang B. Chen D. Ye R. Astragaloside IV regulates insulin resistance and inflammatory response of adipocytes via modulating CTRP3 and PI3K/AKT signaling. Diabetes Ther. 2022 13 11-12 1823 1834 10.1007/s13300‑022‑01312‑1 36103112
    [Google Scholar]
  164. Gan Q. Wang J. Hu J. Lou G. Xiong H. Peng C. Zheng S. Huang Q. The role of diosgenin in diabetes and diabetic complications. J. Steroid Biochem. Mol. Biol. 2020 198 105575 10.1016/j.jsbmb.2019.105575 31899316
    [Google Scholar]
  165. Gaikwad D.T. Bansode S.P. Mali D.P. Wadkar G.H. Pawar V.T. Tamboli F.A. Promising discovery of alpha amylase enzyme inhibitors from terminalia arjuna for antidiabetic potential. Technology 2022 12 3 1020 1024
    [Google Scholar]
  166. Les F. Cásedas G. Gómez C. Moliner C. Valero M.S. López V. The role of anthocyanins as antidiabetic agents: From molecular mechanisms to in vivo and human studies. J. Physiol. Biochem. 2021 77 1 109 131 10.1007/s13105‑020‑00739‑z 32504385
    [Google Scholar]
  167. AL-Ishaq R.K. Abotaleb M. Kubatka P. Kajo K. Büsselberg D. Flavonoids and their anti-diabetic effects: Cellular mechanisms and effects to improve blood sugar levels. Biomolecules 2019 9 9 430 10.3390/biom9090430 31480505
    [Google Scholar]
  168. Rupasinghe H.P.V. Arumuggam N. Amararathna M. Silva D.A.B.K.H. The potential health benefits of haskap ( Lonicera caerulea L.): Role of cyanidin-3- O -glucoside. J. Funct. Foods 2018 44 24 39 10.1016/j.jff.2018.02.023
    [Google Scholar]
  169. Chen Z. Zhang R. Shi W. Li L. Liu H. Liu Z. Wu L. The multifunctional benefits of naturally occurring delphinidin and its glycosides. J. Agric. Food Chem. 2019 67 41 11288 11306 10.1021/acs.jafc.9b05079 31557009
    [Google Scholar]
  170. Aba PE Asuzu IU Mechanisms of actions of some bioactive anti-diabetic principles from phytochemicals of medicinal plants: A review. Indian J. Nat. Prod. Res. 2018 9 2 85 96
    [Google Scholar]
  171. Akinwumi B. Bordun K.A. Anderson H. Biological activities of stilbenoids. Int. J. Mol. Sci. 2018 19 3 792 10.3390/ijms19030792 29522491
    [Google Scholar]
  172. Sun C. Zhao C. Guven E.C. Paoli P. Simal-Gandara J. Ramkumar K.M. Wang S. Buleu F. Pah A. Turi V. Damian G. Dragan S. Tomas M. Khan W. Wang M. Delmas D. Portillo M.P. Dar P. Chen L. Xiao J. Dietary polyphenols as antidiabetic agents: Advances and opportunities. Food Front. 2020 1 1 18 44 10.1002/fft2.15
    [Google Scholar]
  173. Salehi B. Sharifi-Rad J. Cappellini F. Reiner Ž. Zorzan D. Imran M. Sener B. Kilic M. El-Shazly M. Fahmy N.M. Al-Sayed E. Martorell M. Tonelli C. Petroni K. Docea A.O. Calina D. Maroyi A. The therapeutic potential of anthocyanins: Current approaches based on their molecular mechanism of action. Front. Pharmacol. 2020 11 1300 10.3389/fphar.2020.01300 32982731
    [Google Scholar]
  174. Shao J.W. Jiang J.L. Zou J.J. Yang M.Y. Chen F.M. Zhang Y.J. Jia L. Therapeutic potential of ginsenosides on diabetes: From hypoglycemic mechanism to clinical trials. J. Funct. Foods 2020 64 103630 10.1016/j.jff.2019.103630
    [Google Scholar]
  175. Shehadeh M.B. Suaifan G.A.R.Y. Abu-Odeh A.M. Plants secondary metabolites as blood glucose-lowering molecules. Molecules 2021 26 14 4333 10.3390/molecules26144333 34299610
    [Google Scholar]
  176. Yang W Chen X Li Y Guo S Wang Z Yu X. Advances in pharmacological activities of terpenoids. Nat. Pro. Commu. 2020 15 3 1934578X2090355 10.1177/1934578X20903555
    [Google Scholar]
  177. Panigrahy S.K. Bhatt R. Kumar A. Targeting type II diabetes with plant terpenes: The new and promising antidiabetic therapeutics. Biologia (Bratisl.) 2021 76 1 241 254 10.2478/s11756‑020‑00575‑y
    [Google Scholar]
  178. Murali R Saravanan R Antidiabetic effect of d-limonene, a monoterpene in streptozotocin-induced diabetic rats. Biomed. Prevent. Nutrit. 2012 2 4 269 275 10.1016/j.bionut.2012.08.008
    [Google Scholar]
  179. Lailerd N. Saengsirisuwan V. Sloniger J.A. Toskulkao C. Henriksen E.J. Effects of stevioside on glucose transport activity in insulin-sensitive and insulin-resistant rat skeletal muscle. Metabolism 2004 53 1 101 107 10.1016/j.metabol.2003.07.014 14681850
    [Google Scholar]
  180. Prasad S. Kalra N. Shukla Y. Hepatoprotective effects of lupeol and mango pulp extract of carcinogen induced alteration in Swiss albino mice. Mol. Nutr. Food Res. 2007 51 3 352 359 10.1002/mnfr.200600113 17340578
    [Google Scholar]
  181. Kishi A. Morikawa T. Matsuda H. Yoshikawa M. Structures of new friedelane- and norfriedelane-type triterpenes and polyacylated eudesmane-type sesquiterpene from Salacia chinensis LINN. (S. prinoides DC., Hippocrateaceae) and radical scavenging activities of principal constituents. Chem. Pharm. Bull. 2003 51 9 1051 1055 10.1248/cpb.51.1051 12951446
    [Google Scholar]
  182. Morikawa T. Kishi A. Pongpiriyadacha Y. Matsuda H. Yoshikawa M. Structures of new friedelane-type triterpenes and eudesmane-type sesquiterpene and aldose reductase inhibitors from Salacia chinensis. J. Nat. Prod. 2003 66 9 1191 1196 10.1021/np0301543 14510595
    [Google Scholar]
  183. Ha D.T. Tuan D.T. Thu N.B. Nhiem N.X. Ngoc T.M. Yim N. Bae K. Palbinone and triterpenes from Moutan Cortex (Paeonia suffruticosa, Paeoniaceae) stimulate glucose uptake and glycogen synthesis via activation of AMPK in insulin-resistant human HepG2 cells. Bioorg. Med. Chem. Lett. 2009 19 19 5556 5559 10.1016/j.bmcl.2009.08.048 19716700
    [Google Scholar]
  184. Singh A. Dipeptidyl peptidase-4 inhibitors: Novel mechanism of actions. Indian J. Endocrinol. Metab. 2014 18 6 753 759 10.4103/2230‑8210.141319 25364668
    [Google Scholar]
  185. Deutschländer M.S. Lall N. Van de Venter M. Hussein A.A. Hypoglycemic evaluation of a new triterpene and other compounds isolated from Euclea undulata Thunb. var. myrtina (Ebenaceae) root bark. J. Ethnopharmacol. 2011 133 3 1091 1095 10.1016/j.jep.2010.11.038 21111037
    [Google Scholar]
  186. Judy W.V. Hari S.P. Stogsdill W.W. Judy J.S. Naguib Y.M.A. Passwater R. Antidiabetic activity of a standardized extract (Glucosol™) from Lagerstroemia speciosa leaves in Type II diabetics. J. Ethnopharmacol. 2003 87 1 115 117 10.1016/S0378‑8741(03)00122‑3 12787964
    [Google Scholar]
  187. Castro A.J.G. Frederico M.J.S. Cazarolli L.H. Mendes C.P. Bretanha L.C. Schmidt É.C. Bouzon Z.L. Pinto M.D.V.A. da Fonte Ramos C. Pizzolatti M.G. Silva F.R.M.B. The mechanism of action of ursolic acid as insulin secretagogue and insulinomimetic is mediated by cross-talk between calcium and kinases to regulate glucose balance. Biochim. Biophys. Acta, Gen. Subj. 2015 1850 1 51 61 10.1016/j.bbagen.2014.10.001 25312987
    [Google Scholar]
  188. Datta S Pomila MB Sinha D Sharma P Seal S Muhammad M Banerjee S Kar S Glycosides from natural sources in treatment of diabetes mellitus. Adv. Pharmacog. Phytochem. Diab. 2024 84 114
    [Google Scholar]
  189. Bai Y. Han L. Qian J. Wang H. Molecular mechanism of puerarin against diabetes and its complications. Front. Pharmacol. 2022 12 780419 10.3389/fphar.2021.780419 35058775
    [Google Scholar]
  190. Laha S. Paul S. Gymnema sylvestre (Gurmar): A potent herb with anti-diabetic and antioxidant potential. Pharmacogn. J. 2019 11 2 201 206 10.5530/pj.2019.11.33
    [Google Scholar]
  191. Tofighi Z. Moradi-Afrapoli F. Ebrahimi S.N. Goodarzi S. Hadjiakhoondi A. Neuburger M. Hamburger M. Abdollahi M. Yassa N. Securigenin glycosides as hypoglycemic principles of Securigera securidaca seeds. J. Nat. Med. 2017 71 1 272 280 10.1007/s11418‑016‑1060‑7 27848204
    [Google Scholar]
  192. Pei F. Li B. Zhang Z. Yu F. Li X. Lu W. Cai Q. Gao H. Shen L. Beneficial effects of phlorizin on diabetic nephropathy in diabetic db/db mice. J. Diab. Complicat. 2014 28 5 596 603 10.1016/j.jdiacomp.2014.04.010 24927646
    [Google Scholar]
  193. Tzen J.T.C. Strictinin: A key ingredient of tea. Molecules 2023 28 9 3961 10.3390/molecules28093961 37175375
    [Google Scholar]
  194. Emami S. Rouhani M.H. Azadbakht L. The effect of garlic intake on glycemic control in humans: A systematic review and meta-analysis. Prog. Nutr. 2017 19 10 18
    [Google Scholar]
  195. Hou L.Q. Liu Y.H. Zhang Y.Y. Garlic intake lowers fasting blood glucose: Meta-analysis of randomized controlled trials. Asia Pac. J. Clin. Nutr. 2015 24 4 575 582 26693740
    [Google Scholar]
  196. Tian L.Y. Bai X. Chen X.H. Fang J.B. Liu S.H. Chen J.C. Anti-diabetic effect of methylswertianin and bellidifolin from Swertia punicea Hemsl. and its potential mechanism. Phytomedicine 2010 17 7 533 539 10.1016/j.phymed.2009.10.007 19962285
    [Google Scholar]
  197. Seo E Lee EK Lee CS Chun KH Lee MY Jun HS Psoralea corylifolia L. seed extract ameliorates streptozotocin-induced diabetes in mice by inhibition of oxidative stress. Oxid. Med. Cell. Longev. 2014 2014 897296
    [Google Scholar]
  198. Marton L.T. Pescinini-e-Salzedas L.M. Camargo M.E.C. Barbalho S.M. Haber J.F.S. Sinatora R.V. Detregiachi C.R.P. Girio R.J.S. Buchaim D.V. Bueno C.D.S.P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol. 2021 12 669448 10.3389/fendo.2021.669448 34012421
    [Google Scholar]
  199. Deepak K.G.K. Challa S. Suhasin G. Nagesewara Rao Reddy N. Elansary H.O. El-Ansary D.O. Antidiabetic and antilipidemic activity of root extracts of Salacia oblonga against streptozotocin-induced diabetes in Wistar rats. Processes 2020 8 3 301 10.3390/pr8030301
    [Google Scholar]
  200. Ekiert H. Klimek-Szczykutowicz M. Szopa A. Paeonia× suffruticosa (Moutan Peony)—A review of the chemical composition, traditional and professional use in medicine, position in cosmetics industries, and biotechnological studies. Plants 2022 11 23 3379 10.3390/plants11233379 36501418
    [Google Scholar]
  201. Zarvandi M. Rakhshandeh H. Abazari M. Shafiee-Nick R. Ghorbani A. Safety and efficacy of a polyherbal formulation for the management of dyslipidemia and hyperglycemia in patients with advanced-stage of type-2 diabetes. Biomed. Pharmacother. 2017 89 69 75 10.1016/j.biopha.2017.02.016 28214690
    [Google Scholar]
  202. Ashraf R. Khan R.A. Ashraf I. Garlic (Allium sativum) supplementation with standard antidiabetic agent provides better diabetic control in type 2 diabetes patients. Pak. J. Pharm. Sci. 2011 24 4 565 570 21959822
    [Google Scholar]
  203. Ashraf R. Aamir K. Shaikh A.R. Ahmed T. Effects of garlic on dyslipidemia in patients with type 2 diabetes mellitus. J. Ayub Med. Coll. Abbot. 2005 17 3 60 64 16320801
    [Google Scholar]
  204. Sobenin I.A. Nedosugova L.V. Filatova L.V. Balabolkin M.I. Gorchakova T.V. Orekhov A.N. Metabolic effects of time-released garlic powder tablets in type 2 diabetes mellitus: The results of double-blinded placebo-controlled study. Acta Diabetol. 2008 45 1 1 6 10.1007/s00592‑007‑0011‑x 17823766
    [Google Scholar]
  205. Pradeep A.R. Garg V. Raju A. Singh P. Adjunctive local delivery of Aloe vera gel in patients with type 2 diabetes and chronic periodontitis: A randomized, controlled clinical trial. J. Periodontol. 2016 87 3 268 274 10.1902/jop.2015.150161 26447752
    [Google Scholar]
  206. Huseini H. Kianbakht S. Hajiaghaee R. Dabaghian F. Anti-hyperglycemic and anti-hypercholesterolemic effects of Aloe vera leaf gel in hyperlipidemic type 2 diabetic patients: A randomized double-blind placebo-controlled clinical trial. Planta Med. 2012 78 4 311 316 10.1055/s‑0031‑1280474 22198821
    [Google Scholar]
  207. Choi H.C. Kim S.J. Son K.Y. Oh B.J. Cho B.L. Metabolic effects of aloe vera gel complex in obese prediabetes and early non-treated diabetic patients: Randomized controlled trial. Nutrition 2013 29 9 1110 1114 10.1016/j.nut.2013.02.015 23735317
    [Google Scholar]
  208. Devaraj S. Yimam M. Brownell L.A. Jialal I. Singh S. Jia Q. Effects of Aloe vera supplementation in subjects with prediabetes/metabolic syndrome. Metab. Syndr. Relat. Disord. 2013 11 1 35 40 10.1089/met.2012.0066 23035844
    [Google Scholar]
  209. Najafian Y. Khorasani Z.M. Najafi M.N. Hamedi S.S. Mahjour M. Feyzabadi Z. Efficacy of aloe vera/plantago major gel in diabetic foot ulcer: A randomized double-blind clinical trial. Curr. Drug Discov. Technol. 2019 16 2 223 231 10.2174/1570163815666180115093007 29336265
    [Google Scholar]
  210. Mohan V. Gayathri R. Jaacks L.M. Lakshmipriya N. Anjana R.M. Spiegelman D. Jeevan R.G. Balasubramaniam K.K. Shobana S. Jayanthan M. Gopinath V. Divya S. Kavitha V. Vijayalakshmi P. R B.M.R. Unnikrishnan R. Sudha V. Krishnaswamy K. Salas-Salvadó J. Willett W.C. Cashew nut consumption increases HDL cholesterol and reduces systolic blood pressure in Asian Indians with type 2 diabetes: A 12-week randomized controlled trial. J. Nutr. 2018 148 1 63 69 10.1093/jn/nxx001 29378038
    [Google Scholar]
  211. Mariángel C.P. Lorca A.M. Leon M.F. Rocca F.P. Zapata V.L. Navarrete P.E. Effects of bauhinia forficata link tea on lipid profile in diabetic patients. J. Med. Food 2019 22 3 321 323 10.1089/jmf.2018.0111 30817232
    [Google Scholar]
  212. Carvalho AF Feitosa MC Coelho NP Rebêlo VC Castro JG Sousa PR Feitosa VC Arisawa EA Low-level laser therapy and Calendula officinalis in repairing diabetic foot ulcers. Rev. Esc. Enferm. USP. 2016 50 4 628 634 10.1590/S0080‑623420160000500013
    [Google Scholar]
  213. Zemestani M. Rafraf M. Asghari-Jafarabadi M. Chamomile tea improves glycemic indices and antioxidants status in patients with type 2 diabetes mellitus. Nutrition 2016 32 1 66 72 10.1016/j.nut.2015.07.011 26437613
    [Google Scholar]
  214. Asadi S. Gholami M.S. Siassi F. Qorbani M. Khamoshian K. Sotoudeh G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med. 2019 43 253 260 10.1016/j.ctim.2019.02.014 30935539
    [Google Scholar]
  215. Panahi Y. Khalili N. Sahebi E. Namazi S. Reiner Ž. Majeed M. Sahebkar A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med. 2017 33 1 5 10.1016/j.ctim.2017.05.006 28735818
    [Google Scholar]
  216. Kurian G.A. Manjusha V. Nair S.S. Varghese T. Padikkala J. Short-term effect of G-400, polyherbal formulation in the management of hyperglycemia and hyperlipidemia conditions in patients with type 2 diabetes mellitus. Nutrition 2014 30 10 1158 1164 10.1016/j.nut.2014.02.026 24976431
    [Google Scholar]
  217. Jiménez-Osorio A.S. García-Niño W.R. González-Reyes S. Álvarez-Mejía A.E. Guerra-León S. Salazar-Segovia J. Falcón I. Montes de Oca-Solano H. Madero M. Pedraza-Chaverri J. The effect of dietary supplementation with curcumin on redox status and Nrf2 activation in patients with nondiabetic or diabetic proteinuric chronic kidney disease: A pilot study. J. Ren. Nutr. 2016 26 4 237 244 10.1053/j.jrn.2016.01.013 26915483
    [Google Scholar]
  218. Khajehdehi P. Pakfetrat M. Javidnia K. Azad F. Malekmakan L. Nasab M.H. Dehghanzadeh G. Oral supplementation of turmeric attenuates proteinuria, transforming growth factor-β and interleukin-8 levels in patients with overt type 2 diabetic nephropathy: A randomized, double-blind and placebo-controlled study. Scand. J. Urol. Nephrol. 2011 45 5 365 370 10.3109/00365599.2011.585622 21627399
    [Google Scholar]
  219. Srinivasan A. Selvarajan S. Kamalanathan S. Kadhiravan T. Lakshmi P.N.C. Adithan S. Effect of Curcuma longa on vascular function in native Tamilians with type 2 diabetes mellitus: A randomized, double‐blind, parallel arm, placebo‐controlled trial. Phytother. Res. 2019 33 7 1898 1911 10.1002/ptr.6381 31155769
    [Google Scholar]
  220. Adab Z. Eghtesadi S. Vafa M.R. Heydari I. Shojaii A. Haqqani H. Arablou T. Eghtesadi M. Effect of turmeric on glycemic status, lipid profile, hs‐CRP, and total antioxidant capacity in hyperlipidemic type 2 diabetes mellitus patients. Phytother. Res. 2019 33 4 1173 1181 10.1002/ptr.6312 30859660
    [Google Scholar]
  221. Adibian M. Hodaei H. Nikpayam O. Sohrab G. Hekmatdoost A. Hedayati M. The effects of curcumin supplementation on high‐sensitivity C‐reactive protein, serum adiponectin, and lipid profile in patients with type 2 diabetes: A randomized, double‐blind, placebo‐controlled trial. Phytother. Res. 2019 33 5 1374 1383 10.1002/ptr.6328 30864188
    [Google Scholar]
  222. Ahn H.Y. Kim M. Seo C.R. Yoo H.J. Lee S.H. Lee J.H. The effects of Jerusalem artichoke and fermented soybean powder mixture supplementation on blood glucose and oxidative stress in subjects with prediabetes or newly diagnosed type 2 diabetes. Nutr. Diabetes 2018 8 1 42 10.1038/s41387‑018‑0052‑y 30026514
    [Google Scholar]
  223. Sedaghat A. Shahbazian H. Rezazadeh A. Haidari F. Jahanshahi A. Latifi M.S. Shirbeigi E. The effect of soy nut on serum total antioxidant, endothelial function and cardiovascular risk factors in patients with type 2 diabetes. Diabetes Metab. Syndr. 2019 13 2 1387 1391 10.1016/j.dsx.2019.01.057 31336497
    [Google Scholar]
  224. Fei B. Ling L. Hua C. Ren S. Effects of soybean oligosaccharides on antioxidant enzyme activities and insulin resistance in pregnant women with gestational diabetes mellitus. Food Chem. 2014 158 429 432 10.1016/j.foodchem.2014.02.106 24731365
    [Google Scholar]
  225. Clerici C. Nardi E. Battezzati P.M. Asciutti S. Castellani D. Corazzi N. Giuliano V. Gizzi S. Perriello G. Matteo D.G. Galli F. Setchell K.D.R. Novel soy germ pasta improves endothelial function, blood pressure, and oxidative stress in patients with type 2 diabetes. Diabetes Care 2011 34 9 1946 1948 10.2337/dc11‑0495 21788625
    [Google Scholar]
  226. Choi M.S. Ryu R. Seo Y.R. Jeong T.S. Shin D.H. Park Y.B. Kim S.R. Jung U.J. The beneficial effect of soybean (Glycine max (L.) Merr.) leaf extracts in adults with prediabetes: A randomized placebo controlled trial. Food Funct. 2014 5 7 1621 1630 10.1039/c4fo00199k 24873894
    [Google Scholar]
  227. Cortez-Navarrete M. Martínez-Abundis E. Pérez-Rubio K.G. González-Ortiz M. Méndez-del Villar M. Momordica charantia administration improves insulin secretion in type 2 diabetes mellitus. J. Med. Food 2018 21 7 672 677 10.1089/jmf.2017.0114 29431598
    [Google Scholar]
  228. Dans A.M.L. Villarruz M.V.C. Jimeno C.A. Javelosa M.A.U. Chua J. Bautista R. Velez G.G.B. The effect of Momordica charantia capsule preparation on glycemic control in Type 2 Diabetes Mellitus needs further studies. J. Clin. Epidemiol. 2007 60 6 554 559 10.1016/j.jclinepi.2006.07.009 17493509
    [Google Scholar]
  229. Krawinkel M.B. Ludwig C. Swai M.E. Yang R. Chun K.P. Habicht S.D. Bitter gourd reduces elevated fasting plasma glucose levels in an intervention study among prediabetics in Tanzania. J. Ethnopharmacol. 2018 216 1 7 10.1016/j.jep.2018.01.016 29339109
    [Google Scholar]
  230. Zarezadeh M. Saedisomeolia A. Khorshidi M. Varkane K.H. Arzati M.M. Abdollahi M. Yekaninejad M.S. Hashemi R. Effatpanah M. Honarvar M.N. Asymmetric dimethylarginine and soluble inter-cellular adhesion molecule-1 serum levels alteration following ginger supplementation in patients with type 2 diabetes: A randomized double-blind, placebo-controlled clinical trial. J. Complement. Integr. Med. 2019 16 2 20180019 10.1515/jcim‑2018‑0019 30099412
    [Google Scholar]
  231. Seon-ah Y. . Composition for Anti-Diabetes Using an Extract of Artemisia fukudo. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20240120022A (Accessed on 06/09/2024).
  232. Hideki M.K. Dipeptidyl peptidase-IV inhibitor. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DJP2024063586A (Accessed on 06/09/2024).
  233. Shibata H. Shibata H. Fujita H. Takahashi Y. Onda H. Onda H. Yasunaga A. Yasunaga Y. Usage of curcumin derivative. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DJP2024063586A (Accessed on 06/09/2024).
  234. Li X. Xu X. Liu M. Wang P. Zhong B. Wang G. Plant composite extract with blood glucose reducing and lipid controlling functions, preparation method thereof and obtained product. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN117717171A (Accessed on 06/09/2024).
  235. Zhàn X. Lǚ C.D. Polypeptide extracted from Momordica charantia and its application in treating diabetes. 2024 https://worldwide.espacenet.com/patent/search?q=pn%3DCN117624305A
  236. Lee S. Kim T. A composition for preventing, improving and treating of diabetes comprising extract of pepper leaves and extract of Helianthus tuberosus as effective component. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20240015980A(Accessed on 06/09/2024).
  237. Li J. Zhu W. Zhao L. Sun C. Li Y. Li X. Du J. Apostichopus japonicus active peptide with alpha-amylase inhibition effect and application thereof. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN117247428A (Accessed on 06/09/2024).
  238. Qiu B. Wang X. Yu J. Zhang F. Pu X. Chen X. Luo B. Euphorbia pekinensis extract with hypoglycemic activity and application thereof. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN116808097A (Accessed on 06/09/2024).
  239. Son H. Kim Y. Pharmaceutical composition comprising the extract of kenaf as an effective component for prevention or treatment of diabetes and health functional food comprising the same. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20230133725A (Accessed on 06/09/2024).
  240. Min B. Ha M. Duan C. Choi J. Composition for preventing or treating of diabetes comprising Hedera rhombea Bean. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20230118224A (Accessed on 07/09/2024).
  241. Kim J. Lim H. Kim S. Nam W. Lee J. Kwon H. Jeon Y. Son S. Composition for preventing or treating obesity or diabetes mellitus comprising lotus root extract as an active ingredient. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20230092444A (Accessed on 07/09/2024).
  242. Im P. Choi J. Hwang K. Composition for treating or preventing diabetes comprising extract of aerial bulblet. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20230080987A (Accessed on 07/09/2024).
  243. Kim S. Kim Y. Composition for anti-diabetes comprising powder of buckwheat. 2023 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20230055726A (Accessed on 07/09/2024).
  244. Lee Y. Composition comprising coffee extract for suppressing postprandial blood sugar rise. 2024 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DWO2023158258A1 (Accessed on 07/09/2024).
  245. Yang Z. Tan D. Ran Y. Zhou X. Lu Y. Liu L. Zhao Y. Yang Y. Traditional Chinese medicine extract with blood sugar reducing effect and preparation method and application thereof. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN115518093A (Accessed on 07/09/2024).
  246. Yang J. Chen G. Wang Y. Jujube extract with antioxidant activity and alpha-glucosidase inhibitory activity and application thereof. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN115364147A (Accessed on 07/09/2024).
  247. Bohari P.B.M. Jamalis S.B. Mohssin S.J. Raheem S. Antidiabetic agent from a plant extract of Hibiscus sabdariffa Linn. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DMY193036A (Accessed on 07/09/2024).
  248. Li H. Wu Y. Gong P. Neutral sea cucumber polysaccharide for resisting type II diabetes mellitus, preparation method and application thereof. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN114539440A (Accessed on 07/09/2024).
  249. Kozlova A.P. Lomovsky I.O. Koroshchenko G.A. Abramov S.Y. Lomovsky O.I. Aizman R.I. Pharmaceutical composition based on turmeric for treating diabetes mellitus, production and use thereof. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DRU2768734C1 (Accessed on 07/09/2024).
  250. Jiang M. Li W. Hu L. Gao X. Huang X. Chen Y. Huang Q. Ni C. Li G. Preparation method of Caulis sinomenii extract and application of Caulis sinomenii extract in preparation of anti-T2 DM product. 2022 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN114010668A (Accessed on 07/09/2024).
  251. Lee Y. Composition for anti-diabetes using an extract of Portulaca oleracea, etc. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR102343138B1 (Accessed on 09/09/2024).
  252. Alwin A. Kotha A. Sivaraj C.V. Nachiyar V.C. Elanthendral G. Bavanilatha M. Shobana N. Dhiva S. Shree K.S. Samrot A.V. Santhoshkumar S. Xavier T. A method for preparation of Catharanthus roseus plant extract and its characterization assay. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DAU2021107024A4 (Accessed on 09/09/2024).
  253. Wang M. Yan D. Lin T. Tang J. Application of vinegar-roasted Schisandra polysaccharide extract in preparation of medicine for treating diabetes.. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN113694078A (Accessed on 09/09/2024).
  254. Son H. Jeong J. Park S. Park G. Composition for preventing, improving or treating diabetes comprising Rodgersia podophylla extract. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20210133467A (Accessed on 09/09/2024).
  255. Shi C. Lin Z. Xiao L. Guo Y. Antidiabetic and antihyperlipidemic effects of sulphurenic acid from Antrodia camphorate.. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DTW202140052A (Accessed on 09/09/2024).
  256. Chen G. Zhang X. Li X. Yu Z. Zhou X. Zhang B. Preparation method and application of noni enzyme extract for improving insulin resistance. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DCN113230321A (Accessed on 09/09/2024).
  257. Park Y. Kang T. Park G. Rammitchan R. A pharmaceutical composition comprising the ethanol extract of Robinia pseudoacacia flower for prevention or treatment of diabetes.. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20210078322A (Accessed on 09/09/2024).
  258. Seo J. Shin D. Cha J. Composition comprising extracts of Orostachys japonicus as an active ingredient for preventing, alleviating or treating diabetes. 2021 Available from: https://worldwide.espacenet.com/patent/search?q=pn%3DKR20210075705A (Accessed on 09/09/2024).
  259. Wang H. Chen Y. Wang L. Liu Q. Yang S. Wang C. Advancing herbal medicine: Enhancing product quality and safety through robust quality control practices. Front. Pharmacol. 2023 14 1265178 10.3389/fphar.2023.1265178 37818188
    [Google Scholar]
  260. Sharma S. Current status of herbal product: Regulatory overview. J. Pharm. Bioallied Sci. 2015 7 4 293 296 10.4103/0975‑7406.168030 26681886
    [Google Scholar]
  261. Panossian A. Challenges in phytotherapy research. Front. Pharmacol. 2023 14 1199516 10.3389/fphar.2023.1199516 37324491
    [Google Scholar]
  262. Ahmad S. Parveen A. Parveen B. Parveen R. Challenges and guidelines for clinical trial of herbal drugs. J. Pharm. Bioallied Sci. 2015 7 4 329 333 10.4103/0975‑7406.168035 26681895
    [Google Scholar]
  263. Gatt A.R. Bonanno V.P. Zammit R. Ethical considerations in the regulation and use of herbal medicines in the European Union. Front.Med. Technol. 2024 6 1358956 10.3389/fmedt.2024.1358956 38948354
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010371753250324150813
Loading
/content/journals/cpb/10.2174/0113892010371753250324150813
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test