Skip to content
2000
image of The Biological Effects of Nano-curcumins against Drugs and Chemicals-Induced Nephrotoxicity: A Systematic Review

Abstract

Introduction/Objective

Drug and chemical nephrotoxicity is a common cause of kidney disorders. This systematic review aimed to evaluate the recent progress in applying nano-curcumins (nano-CURs) to prevent and mitigate drug and chemical-induced nephrotoxicity, highlighting their underlying protective mechanisms and therapeutic potential.

Methods

A comprehensive search of experimental and clinical studies was conducted in various databases, including Web of Science, PubMed/MEDLINE, Scopus, Embase, and Cochrane Library. The studies were analyzed for improvements in bioavailability, mechanisms of action, and outcomes in reducing kidney damage. After extracting the data and entering it into an Excel sheet, the essential information and the related knowledge on consequences and mechanisms were collected. The collected information was discussed and analyzed.

Results

The antioxidant property of nano-CURs in dealing with nephrotoxicity is one of their most critical nephroprotective properties. They also exhibit potent anti-inflammatory, anti-apoptotic, and anti-pyroptotic effects. Moreover, nano-CURs improve mitochondrial function, modulate kidney biochemical markers, modulate electrolyte imbalance, reduce endoplasmic reticulum (ER) stress, and improve kidney histopathological changes and autophagy, offering protection against nephrotoxicity induced by various drugs and chemicals. Nano-CURs significantly improve histopathological changes. Animal models have demonstrated reduced oxidative stress, inflammation, and apoptosis, causing improved renal function and histological outcomes.

Conclusion

Nano-CURs have shown promising nephroprotective effects in experimental studies. However, these results have not been significant in clinical trial studies. Future research should focus on clinical trials and optimizing formulations for broader therapeutic applications.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010360420250409111751
2025-04-30
2025-09-11
Loading full text...

Full text loading...

References

  1. Isiiko J. Atwiine B. Oloro J. Prevalence and risk factors of nephrotoxicity among adult cancer patients at mbarara regional referral hospital. Cancer Manag. Res. 2021 13 7677 7684 10.2147/CMAR.S326052 34675664
    [Google Scholar]
  2. Barnett L.M.A. Cummings B.S. Nephrotoxicity and renal pathophysiology: A contemporary perspective. Toxicol. Sci. 2018 164 2 379 390 10.1093/toxsci/kfy159 29939355
    [Google Scholar]
  3. Campbell R.E. Chen C.H. Edelstein C.L. Overview of antibiotic-induced nephrotoxicity. Kidney Int. Rep. 2023 8 11 2211 2225 10.1016/j.ekir.2023.08.031 38025228
    [Google Scholar]
  4. Chen C. Xie D. Gewirtz D.A. Li N. Nephrotoxicity in cancer treatment: An update. Adv. Cancer Res. 2022 155 77 129 10.1016/bs.acr.2022.03.005 35779877
    [Google Scholar]
  5. Hałka J. Spaleniak S. Kade G. Antosiewicz S. Sigorski D. The nephrotoxicity of drugs used in causal oncological therapies. Curr. Oncol. 2022 29 12 9681 9694 10.3390/curroncol29120760 36547174
    [Google Scholar]
  6. Małyszko J. Kozłowska K. Kozłowski L. Małyszko J. Nephrotoxicity of anticancer treatment. Nephrol. Dial. Transplant. 2017 32 6 924 936 28339935
    [Google Scholar]
  7. Al-Kuraishy H.M. Al-Naimi M.S. Rasheed H.A. Hussien N.R. Al-Gareeb A. Nephrotoxicity: Role and significance of renal biomarkers in the early detection of acute renal injury. J. Adv. Pharm. Technol. Res. 2019 10 3 95 99 10.4103/japtr.JAPTR_336_18 31334089
    [Google Scholar]
  8. Kwiatkowska E. Domański L. Dziedziejko V. Kajdy A. Stefańska K. Kwiatkowski S. The mechanism of drug nephrotoxicity and the methods for preventing kidney damage. Int. J. Mol. Sci. 2021 22 11 6109 10.3390/ijms22116109 34204029
    [Google Scholar]
  9. Fahimi D. Mohajeri S. Hajizadeh N. Madani A. Esfahani T.S. Ataei N. Mohsseni P. Honarmand M. Comparison between fractional excretions of urea and sodium in children with acute kidney injury. Pediatr. Nephrol. 2009 24 12 2409 2412 10.1007/s00467‑009‑1271‑1 19756765
    [Google Scholar]
  10. Chiruvella V. Annamaraju P. Guddati A.K. Management of nephrotoxicity of chemotherapy and targeted agents: 2020. Am. J. Cancer Res. 2020 10 12 4151 4164 33414992
    [Google Scholar]
  11. Dobrek L. A synopsis of current theories on drug-induced nephrotoxicity. Life 2023 13 2 325 10.3390/life13020325 36836682
    [Google Scholar]
  12. Santos M.L.C. Brito B.B. Silva F.A.F. Botelho A.C.S. Melo F.F. Nephrotoxicity in cancer treatment: An overview. World J. Clin. Oncol. 2020 11 4 190 204 10.5306/wjco.v11.i4.190 32355641
    [Google Scholar]
  13. Mirhoseini M. Momeni A. Beigi F. Esfahani M. Kheiri S. Amiri M. Seidain Z. Effect of N-acetyl cysteine in prevention of contrast nephropathy on patients under intravenous pyelography and contrast CT. Adv. Biomed. Res. 2012 1 1 28 10.4103/2277‑9175.98153 23210087
    [Google Scholar]
  14. Aghamohammadi H. Mehrabi S. Mohammad Ali Beigi F. Prevention of bradycardia by atropine sulfate during urological laparoscopic surgery: A randomized controlled trial. Urol. J. 2009 6 2 92 95 19472126
    [Google Scholar]
  15. Mohajeri S. Salehifard A. Rabiei A. Anuria in solitary kidney patient with gastroenteritis: A case report study. Shahrekord Univ. Med. Sci. J. 2023 25 3 156 158 10.34172/jsums.2023.715
    [Google Scholar]
  16. Mohajeri S. Hemmati P. Sedehi M. The association between fever and pyuria in children older than one month. J. Renal Inj. Prev. 2019 8 3 240 242 10.15171/jrip.2019.45
    [Google Scholar]
  17. Fang C. Lou D. Zhou L. Wang J. Yang B. He Q. Wang J. Weng Q. Natural products: Potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol. Sin. 2021 42 12 1951 1969 10.1038/s41401‑021‑00620‑9 33750909
    [Google Scholar]
  18. Cacciola N.A. Cuciniello R. Petillo G.D. Piccioni M. Filosa S. Crispi S. An overview of the enhanced effects of curcumin and chemotherapeutic agents in combined cancer treatments. Int. J. Mol. Sci. 2023 24 16 12587 10.3390/ijms241612587 37628772
    [Google Scholar]
  19. Boroumand N. Samarghandian S. Hashemy S.I. Immunomodulatory, anti-inflammatory, and antioxidant effects of curcumin. Journal of Herbmed Pharmacology 2018 7 4 211 219 10.15171/jhp.2018.33
    [Google Scholar]
  20. Haripriya V. Mahalaxmi S. Vidhya S. Purushothaman P.V. Antibacterial efficacy of curcumin, allicin, gingerol and cinnamon against Enterococcus faecalis: An in vitro study. J. Herb. Pharmacol. 2023 12 4 560 566 10.34172/jhp.2023.46064
    [Google Scholar]
  21. Bagherniya M. Soleimani D. Rouhani M.H. Askari G. Sathyapalan T. Sahebkar A. The use of curcumin for the treatment of renal disorders: A systematic review of randomized controlled trials. Adv. Exp. Med. Biol. 2021 1291 327 343 10.1007/978‑3‑030‑56153‑6_19 34331699
    [Google Scholar]
  22. Alvarenga L. Salarolli R. Cardozo L.F.M.F. Santos R.S. Brito D.J.S. Kemp J.A. Reis D. Paiva D.B.R. Stenvinkel P. Lindholm B. Fouque D. Mafra D. Impact of curcumin supplementation on expression of inflammatory transcription factors in hemodialysis patients: A pilot randomized, double-blind, controlled study. Clin. Nutr. 2020 39 12 3594 3600 10.1016/j.clnu.2020.03.007 32204978
    [Google Scholar]
  23. Alves C.R. Fernandes P.R. Fonseca-Santos B. Victorelli D.F. Chorilli M. A critical review of the properties and analytical methods for the determination of curcumin in biological and pharmaceutical matrices. Crit. Rev. Anal. Chem. 2019 49 2 138 149 10.1080/10408347.2018.1489216 30252504
    [Google Scholar]
  24. Kotha R.R. Luthria D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules 2019 24 16 2930 10.3390/molecules24162930 31412624
    [Google Scholar]
  25. Prasad S. Aggarwal B.B. Chapter 13 turmeric, the golden spice: From traditional medicine to modern medicine. In: Herbal Medicine: Biomolecular and Clinical Aspects, 2nd ed; Benzie, I.F.F.; Wachtel-Galor, S., Eds.; CRC Press/Taylor & Francis: Boca Raton, FL, 2011 10.1201/b10787‑14
    [Google Scholar]
  26. Urošević M. Nikolić L. Gajić I. Nikolić V. Dinić A. Miljković V. Curcumin: Biological activities and modern pharmaceutical forms. Antibiotics (Basel) 2022 11 2 135 10.3390/antibiotics11020135 35203738
    [Google Scholar]
  27. Sohn S.I. Priya A. Balasubramaniam B. Muthuramalingam P. Sivasankar C. Selvaraj A. Valliammai A. Jothi R. Pandian S. Biomedical applications and bioavailability of curcumin—an updated overview. Pharmaceutics 2021 13 12 2102 10.3390/pharmaceutics13122102 34959384
    [Google Scholar]
  28. Hu Y. Song J. Feng A. Li J. Li M. Shi Y. Sun W. Li L. Recent advances in nanotechnology-based targeted delivery systems of active constituents in natural medicines for cancer treatment. Molecules 2023 28 23 7767 10.3390/molecules28237767 38067497
    [Google Scholar]
  29. boroughani, M.; Moaveni, A.K.; Hatami, P.; Abasi, M.N.; Seyedoshohadaei, S.A.; Pooladi, A.; Moradi, Y.; Darehbagh, R.R. Nanocurcumin in cancer treatment: A comprehensive systematic review. Disc. Oncol. 2024 15 1 515 10.1007/s12672‑024‑01272‑x 39349709
    [Google Scholar]
  30. Prasad S. DuBourdieu D. Srivastava A. Kumar P. Lall R. Metal–curcumin complexes in therapeutics: An approach to enhance pharmacological effects of curcumin. Int. J. Mol. Sci. 2021 22 13 7094 10.3390/ijms22137094 34209461
    [Google Scholar]
  31. Nosrati H. Danafar H. Rezaeejam H. Gholipour N. Rahimi-Nasrabadi M. Evaluation radioprotective effect of curcumin conjugated albumin nanoparticles. Bioorg. Chem. 2020 100 103891 10.1016/j.bioorg.2020.103891 32422388
    [Google Scholar]
  32. Stohs S.J. Chen O. Ray S.D. Ji J. Bucci L.R. Preuss H.G. Highly bioavailable forms of curcumin and promising avenues for curcumin-based research and application: A review. Molecules 2020 25 6 1397 10.3390/molecules25061397 32204372
    [Google Scholar]
  33. El-Desoky G.E. Wabaidur S.M. AlOthman Z.A. Habila M.A. Evaluation of Nano‐curcumin effects against Tartrazine‐induced abnormalities in liver and kidney histology and other biochemical parameters. Food Sci. Nutr. 2022 10 5 1344 1356 10.1002/fsn3.2790 35592283
    [Google Scholar]
  34. Shafabakhsh R. Asemi Z. Reiner Z. Soleimani A. Aghadavod E. Bahmani F. The effects of nano-curcumin on metabolic status in patients with diabetes on hemodialysis, a randomized, double blind, placebo-controlled trial. Iran. J. Kidney Dis. 2020 14 4 290 299 32655024
    [Google Scholar]
  35. Abd El-Rahman S.N. Al-Jameel S.S. Efficacy of nano curcumin in F-2 isoprostanes in male rats treated with Cisplatin and Methotrexate as chemotherapy drugs. Inter. J. Sud. Res. 2014 4 2 155 179 10.47556/J.IJSR.4.2.2014.5
    [Google Scholar]
  36. El-Rahman S. Al-Jameel S. Protection of curcumin and curcumin nanoparticles against cisplatin induced nephrotoxicity in male rats. Scholars Acad. J. Biosci. 2014 2 3 214 223
    [Google Scholar]
  37. Sari S.D.P. Maknun L.U. Louisa M. Estuningyta A. Soetikno V. Effects of nanocurcumin against cisplatin induced-nephrotoxicity in rats. Adv. Sci. Lett. 2017 23 7 6823 6827 10.1166/asl.2017.9407
    [Google Scholar]
  38. Pandhita B.A.W. Soetikno V. Louisa M. Effect of nanocurcumin on cisplatin-induced acute kidney injury: A focus on NRF2 and Keap. Inter. J. App. Pharmaceut. 2018 10 1 152 154 10.22159/ijap.2018.v10s1.32
    [Google Scholar]
  39. Rahmi D.N.I. Louisa M. Soetikno V. Effects of curcumin and nanocurcumin on cisplatin-induced nephrotoxicity in rat: Copper transporter 1 and organic cation transporter 2 as drug transporters. Inter. J. App. Pharmaceut. 2018 10 1 172 174 10.22159/ijap.2018.v10s1.37
    [Google Scholar]
  40. Hamano N. Böttger R. Lee S.E. Yang Y. Kulkarni J.A. Ip S. Cullis P.R. Li S.D. Robust microfluidic technology and new lipid composition for fabrication of curcumin-loaded liposomes: Effect on the anticancer activity and safety of cisplatin. Mol. Pharm. 2019 16 9 3957 3967 10.1021/acs.molpharmaceut.9b00583 31381352
    [Google Scholar]
  41. Louisa M. Sandhiutami N.M.D. Arozal W. Rahmat D. Mandy T. Comparative effect of curcumin and nanocurcumin on nephroprotection at cisplatin-induced rats. J. Pharm. Bioallied Sci. 2019 11 8 Suppl. 4 567 10.4103/jpbs.JPBS_208_19 32148365
    [Google Scholar]
  42. Sumbung N.K. Waworuntu B.M. Soetikno V. Louisa M. Comparative effects of curcumin and nanocurcumin on cisplatin-induced Acute Kidney Injury. J. Int. Dent. Med. Res. 2019 12 2 803 808
    [Google Scholar]
  43. Chen Y. Chen C. Zhang X. He C. Zhao P. Li M. Fan T. Yan R. Lu Y. Lee R.J. Khan M.W. Sarfraz M. Ma X. Yang T. Xiang G. Platinum complexes of curcumin delivered by dual-responsive polymeric nanoparticles improve chemotherapeutic efficacy based on the enhanced anti-metastasis activity and reduce side effects. Acta Pharm. Sin. B 2020 10 6 1106 1121 10.1016/j.apsb.2019.10.011 32642416
    [Google Scholar]
  44. El-Gizawy M.M. Hosny E.N. Mourad H.H. Abd-El Razik A.N. Curcumin nanoparticles ameliorate hepatotoxicity and nephrotoxicity induced by cisplatin in rats. Naunyn Schmiedebergs Arch. Pharmacol. 2020 393 10 1941 1953 10.1007/s00210‑020‑01888‑0 32447466
    [Google Scholar]
  45. Sandoughdaran S. Razzaghdoust A. Tabibi A. Basiri A. Simforoosh N. Mofid B. Randomized, double-blind pilot study of nanocurcumin in bladder cancer patients receiving induction chemotherapy. Urol. J. 2021 18 3 295 300 32350847
    [Google Scholar]
  46. Lan T. Guo H. Lu X. Geng K. Wu L. Luo Y. Zhu J. Shen X. Guo Q. Wu S. Dual-responsive curcumin-loaded nanoparticles for the treatment of cisplatin-induced acute kidney injury. Biomacromolecules 2022 23 12 5253 5266 10.1021/acs.biomac.2c01083 36382792
    [Google Scholar]
  47. Mehrab H. Sharifi M. Akhavan A. Aarabi M.H. Mansourian M. Mosavi E. Moghaddas A. Curcumin supplementation prevents cisplatin-induced nephrotoxicity: A randomized, double-blinded, and placebo-controlled trial. Res. Pharm. Sci. 2023 18 6 648 662 10.4103/1735‑5362.389952 39005571
    [Google Scholar]
  48. Hosseini S. Rahsepar S. Naghipour S. Elyasi S. Is oral nano-curcumin formulation a safe and effective measure for preventing cisplatin-induced nephrotoxicity in cancer patients? Anticancer Drugs 2024 35 9 859 866 10.1097/CAD.0000000000001639 39017207
    [Google Scholar]
  49. Bulboacă A.E. Porfire A. Bolboacă S.D. Nicula C.A. Feștilă D.G. Roman A. Râjnoveanu R.M. Râjnoveanu A. Dogaru G. Boarescu P.M. Rus V. Bulboacă C.A. Bulboacă A.I. Stănescu I. Protective effects of liposomal curcumin on oxidative stress/antioxidant imbalance, metalloproteinases 2 and -9, histological changes and renal function in experimental nephrotoxicity induced by gentamicin. Antioxidants 2021 10 2 325 10.3390/antiox10020325 33671770
    [Google Scholar]
  50. Ali M.F. Sadek A.S. Elghfar A.S.K. Taha M. Nano-curcumin attenuates nephropathic lesions induced by chronic ketoprofen administration in rats: Role of cyclooxygenase-1. J. Adv. Vet. Res. 2022 12 5 524 534
    [Google Scholar]
  51. Seifi S. Vajdi N. Samakkhah A.S. Mirzakhani N. Protective effect of nanocurcumin on acetaminophen-induced hepatic and renal toxicities in pigeons. Vet. Res. Forum 2024 15 3 145 150 38770380
    [Google Scholar]
  52. Anwar M. Muhammad F. Akhtar B. Rehman U.S. Saleemi M.K. Nephroprotective effects of curcumin loaded chitosan nanoparticles in cypermethrin induced renal toxicity in rabbits. Environ. Sci. Pollut. Res. Int. 2020 27 13 14771 14779 10.1007/s11356‑020‑08051‑5 32056099
    [Google Scholar]
  53. Ebaid H. Al-Tamimi J. Habila M. Hassan I. Rady A. Alhazza I.M. Potential therapeutic effect of synthesized AgNP using curcumin extract on CCl4-induced nephrotoxicity in male mice. J. King Saud Univ. Sci. 2021 33 2 101356 10.1016/j.jksus.2021.101356
    [Google Scholar]
  54. Mohamed N.R. Badr T.M. Elnagar M.R. Efficiency of curcumin and chitosan nanoparticles against toxicity of potassium dichromate in male mice. Int. J. Pharm. Pharm. Sci. 2021 13 2 14 23 10.22159/ijpps.2021v13i2.40224
    [Google Scholar]
  55. Rahdar A. Hajinezhad M.R. Sargazi S. Zaboli M. Barani M. Baino F. Bilal M. Sanchooli E. Biochemical, ameliorative and cytotoxic effects of newly synthesized curcumin microemulsions: Evidence from in vitro and in vivo studies. Nanomaterials (Basel) 2021 11 3 817 10.3390/nano11030817 33806829
    [Google Scholar]
  56. Louisa M. Wanafri E. Arozal W. Sandhiutami N.M.D. Basalamah A.M. Nanocurcumin preserves kidney function and haematology parameters in DMBA-induced ovarian cancer treated with cisplatin via its antioxidative and anti-inflammatory effect in rats. Pharm. Biol. 2023 61 1 298 305 10.1080/13880209.2023.2166965 36708211
    [Google Scholar]
  57. Abd-Elhakim Y.M. Mohamed A.A.R. Noreldin A.E. Khamis T. Eskandrani A.A. Shamlan G. Alansari W.S. Alotaibi B.S. Alosaimi M.E. Hakami M.A. Abuzahrah S.S. Fenpropathrin provoked kidney damage via controlling the NLRP3/Caspase-1/GSDMD–mediated pyroptosis: The palliative role of curcumin-loaded chitosan nanoparticles. Toxicol. Appl. Pharmacol. 2024 484 116869 10.1016/j.taap.2024.116869 38382713
    [Google Scholar]
  58. Tousson E. El-Sayed I.E.T. Elsharkawy H.N. Ahmed A.S. Ameliorating and therapeutic impact of curcumin nanoparticles against aluminum oxide nanoparticles induced kidney toxicity, DNA damage, oxidative stress, PCNA and TNFα alteration in male rats. Environ. Toxicol. 2024 39 11 5140 5149 10.1002/tox.24392 39105312
    [Google Scholar]
  59. Youssef H. Mansour Y.A. EL-Leithy, E.M.; Galal, M. Effect of silica nanoparticles on kidney of albino rats with the potential ameliorative efficacy of liposomal curcumin. J. Adv. Vet. Res. 2024 14 5 807 812
    [Google Scholar]
  60. Moazeni M. Alibeigi M.F. Sayadi M. Mofrad P.E. Kheiri S. Darvishi M. The serum lead level in patients with retained lead pellets. Arch. Trauma Res. 2014 3 2 e18950 10.5812/atr.18950 25147780
    [Google Scholar]
  61. Popoola A.B. Ademilusi E.O. Adedeji T.G. Fasanmade A.A. Effect of silymarin on blood coagulation profile and osmotic fragility in carbon tetrachloride induced hepatotoxicity in male Wistar rats. Toxicol. Rep. 2022 9 1325 1330 10.1016/j.toxrep.2022.06.005 36518474
    [Google Scholar]
  62. Nolin T.D. Himmelfarb J. Mechanisms of drug-induced nephrotoxicity. Handb. Exp. Pharmacol. 2010 196 196 111 130 10.1007/978‑3‑642‑00663‑0_5 20020261
    [Google Scholar]
  63. Pazhayattil G.S. Shirali A.C. Drug-induced impairment of renal function. Int. J. Nephrol. Renovasc. Dis. 2014 7 457 468 25540591
    [Google Scholar]
  64. Daehn I.S. Duffield J.S. The glomerular filtration barrier: A structural target for novel kidney therapies. Nat. Rev. Drug Discov. 2021 20 10 770 788 10.1038/s41573‑021‑00242‑0 34262140
    [Google Scholar]
  65. Kim S.Y. Moon A.R. Drug-induced nephrotoxicity and its biomarkers. Biomol. Ther. (Seoul) 2012 20 3 268 272 10.4062/biomolther.2012.20.3.268 24130922
    [Google Scholar]
  66. Perazella M.A. Pharmacology behind common drug nephrotoxicities. Clin. J. Am. Soc. Nephrol. 2018 13 12 1897 1908 10.2215/CJN.00150118 29622670
    [Google Scholar]
  67. Hall A.M. Seigneux D.S. Metabolic mechanisms of acute proximal tubular injury. Pflugers Arch. 2022 474 8 813 827 10.1007/s00424‑022‑02701‑y 35567641
    [Google Scholar]
  68. Turgut F. Awad A. Abdel-Rahman E. Acute kidney injury: Medical causes and pathogenesis. J. Clin. Med. 2023 12 1 375 10.3390/jcm12010375 36615175
    [Google Scholar]
  69. Loutzenhiser R. Griffin K. Williamson G. Bidani A. Renal autoregulation: New perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2006 290 5 R1153 R1167 10.1152/ajpregu.00402.2005 16603656
    [Google Scholar]
  70. Dalal R. Bruss Z.S. Sehdev J.S. Physiology, renal blood flow and filtration. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  71. Klotman P.E. Yarger W.E. Reduction of renal blood flow and proximal bicarbonate reabsorption in rats by gentamicin. Kidney Int. 1983 24 5 638 643 10.1038/ki.1983.205 6663986
    [Google Scholar]
  72. Chakurkar V. Kulkarni S. Lobo V. Renal microvascular ischemia secondary to nonsteroidal anti-inflammatory drugs. Indian J. Nephrol. 2021 31 4 383 385 10.4103/ijn.IJN_211_20 34584355
    [Google Scholar]
  73. Bonventre J.V. Yang L. Cellular pathophysiology of ischemic acute kidney injury. J. Clin. Invest. 2011 121 11 4210 4221 10.1172/JCI45161 22045571
    [Google Scholar]
  74. Rashid H. Jali A. Akhter M.S. Abdi S.A.H. Molecular mechanisms of oxidative stress in acute kidney injury: Targeting the loci by resveratrol. Int. J. Mol. Sci. 2023 25 1 3 10.3390/ijms25010003 38203174
    [Google Scholar]
  75. Lee H. Jose P.A. Coordinated contribution of NADPH oxidase- and mitochondria-derived reactive oxygen species in metabolic syndrome and its implication in renal dysfunction. Front. Pharmacol. 2021 12 670076 10.3389/fphar.2021.670076 34017260
    [Google Scholar]
  76. Almanza A. Carlesso A. Chintha C. Creedican S. Doultsinos D. Leuzzi B. Luís A. McCarthy N. Montibeller L. More S. Papaioannou A. Püschel F. Sassano M.L. Skoko J. Agostinis P. Belleroche D.J. Eriksson L.A. Fulda S. Gorman A.M. Healy S. Kozlov A. Muñoz-Pinedo C. Rehm M. Chevet E. Samali A. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. FEBS J. 2019 286 2 241 278 10.1111/febs.14608 30027602
    [Google Scholar]
  77. Jiang H. Zuo J. Li B. Chen R. Luo K. Xiang X. Lu S. Huang C. Liu L. Tang J. Gao F. Drug-induced oxidative stress in cancer treatments: Angel or devil? Redox Biol. 2023 63 102754 10.1016/j.redox.2023.102754 37224697
    [Google Scholar]
  78. Gai Z. Gui T. Kullak-Ublick G.A. Li Y. Visentin M. The role of mitochondria in drug-induced kidney injury. Front. Physiol. 2020 11 1079 10.3389/fphys.2020.01079 33013462
    [Google Scholar]
  79. Carlsen L. El-Deiry W.S. Differential p53-mediated cellular responses to DNA-damaging therapeutic agents. Int. J. Mol. Sci. 2021 22 21 11828 10.3390/ijms222111828 34769259
    [Google Scholar]
  80. Burat B. Faucher Q. Čechová P. Arnion H. Meo D.F. Sauvage F.L. Marquet P. Essig M. Cyclosporine A inhibits MRTF‐SRF signaling through Na +/K + ATPase inhibition and actin remodeling. FASEB Bioadv. 2019 1 9 561 578 10.1096/fba.2019‑00027 32123851
    [Google Scholar]
  81. Bhatia D. Capili A. Choi M.E. Mitochondrial dysfunction in kidney injury, inflammation, and disease: Potential therapeutic approaches. Kidney Res. Clin. Pract. 2020 39 3 244 258 10.23876/j.krcp.20.082 32868492
    [Google Scholar]
  82. Hassanein E.H.M. Mohamed W.R. Ahmed O.S. Abdel-Daim M.M. Sayed A.M. The role of inflammation in cadmium nephrotoxicity: NF-κB comes into view. Life Sci. 2022 308 120971 10.1016/j.lfs.2022.120971 36130617
    [Google Scholar]
  83. Kadatane S.P. Satariano M. Massey M. Mongan K. Raina R. The role of inflammation in CKD. Cells 2023 12 12 1581 10.3390/cells12121581 37371050
    [Google Scholar]
  84. Ren N. Wang W.F. Zou L. Zhao Y.L. Miao H. Zhao Y.Y. The nuclear factor kappa B signaling pathway is a master regulator of renal fibrosis. Front. Pharmacol. 2024 14 1335094 10.3389/fphar.2023.1335094 38293668
    [Google Scholar]
  85. Hosohata K. Role of oxidative stress in drug-induced kidney injury. Int. J. Mol. Sci. 2016 17 11 1826 10.3390/ijms17111826 27809280
    [Google Scholar]
  86. Amador-Martínez I. Aparicio-Trejo O.E. Bernabe-Yepes B. Aranda-Rivera A.K. Cruz-Gregorio A. Sánchez-Lozada L.G. Pedraza-Chaverri J. Tapia E. Mitochondrial impairment: A link for inflammatory responses activation in the cardiorenal syndrome type 4. Int. J. Mol. Sci. 2023 24 21 15875 10.3390/ijms242115875 37958859
    [Google Scholar]
  87. Priyadarsini K. The chemistry of curcumin: From extraction to therapeutic agent. Molecules 2014 19 12 20091 20112 10.3390/molecules191220091 25470276
    [Google Scholar]
  88. National center for biotechnology information. 2024. Retrieved from: https://pubchem.ncbi.nlm.nih.gov/compound/Curcumin
  89. Chopra H. Dey P.S. Das D. Bhattacharya T. Shah M. Mubin S. Maishu S.P. Akter R. Rahman M.H. Karthika C. Murad W. Qusty N. Qusti S. Alshammari E.M. Batiha G.E.S. Altalbawy F.M.A. Albooq M.I.M. Alamri B.M. Curcumin nanoparticles as promising therapeutic agents for drug targets. Molecules 2021 26 16 4998 10.3390/molecules26164998 34443593
    [Google Scholar]
  90. Karthikeyan A. Senthil N. Min T. Nanocurcumin: A promising candidate for therapeutic applications. Front. Pharmacol. 2020 11 487 10.3389/fphar.2020.00487 32425772
    [Google Scholar]
  91. Jiang Z. Gan J. Wang L. Lv C. Binding of curcumin to barley protein Z improves its solubility, stability and bioavailability. Food Chem. 2023 399 133952 10.1016/j.foodchem.2022.133952 35998492
    [Google Scholar]
  92. Ban C. Jo M. Park Y.H. Kim J.H. Han J.Y. Lee K.W. Kweon D.H. Choi Y.J. Enhancing the oral bioavailability of curcumin using solid lipid nanoparticles. Food Chem. 2020 302 125328 10.1016/j.foodchem.2019.125328 31404868
    [Google Scholar]
  93. Sivadasan D. Ramakrishnan K. Mahendran J. Ranganathan H. Karuppaiah A. Rahman H. Solid lipid nanoparticles: Applications and prospects in cancer treatment. Int. J. Mol. Sci. 2023 24 7 6199 10.3390/ijms24076199 37047172
    [Google Scholar]
  94. Khan S. Sharma A. Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv. Pharm. Bull. 2023 13 3 446 460 10.34172/apb.2023.056 37646052
    [Google Scholar]
  95. Ghadi A. Mahjoub S. Tabandeh F. Talebnia F. Synthesis and optimization of chitosan nanoparticles: Potential applications in nanomedicine and biomedical engineering. Caspian J. Intern. Med. 2014 5 3 156 161 25202443
    [Google Scholar]
  96. Thang N.H. Chien T.B. Cuong D.X. Polymer-based hydrogels applied in drug delivery: An overview. Gels 2023 9 7 523 10.3390/gels9070523 37504402
    [Google Scholar]
  97. Trivedi R. Kompella U.B. Nanomicellar formulations for sustained drug delivery: Strategies and underlying principles. Nanomedicine (Lond.) 2010 5 3 485 505 10.2217/nnm.10.10 20394539
    [Google Scholar]
  98. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  99. Azad A.K. Lai J. Sulaiman W.M.A.W. Almoustafa H. Alshehade S.A. Kumarasamy V. Subramaniyan V. The fabrication of polymer-based curcumin-loaded formulation as a drug delivery system: An updated review from 2017 to the present. Pharmaceutics 2024 16 2 160 10.3390/pharmaceutics16020160 38399221
    [Google Scholar]
  100. Afzal S. Manap A.A.S. Attiq A. Albokhadaim I. Kandeel M. Alhojaily S.M. From imbalance to impairment: The central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front. Pharmacol. 2023 14 1269581 10.3389/fphar.2023.1269581 37927596
    [Google Scholar]
  101. Algefare A.I. Renoprotective and oxidative stress-modulating effects of taxifolin against cadmium-induced nephrotoxicity in mice. Life 2022 12 8 1150 10.3390/life12081150 36013329
    [Google Scholar]
  102. Cai Y. Huang C. Zhou M. Xu S. Xie Y. Gao S. Yang Y. Deng Z. Zhang L. Shu J. Yan T. Wan C.C. Role of curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine 2022 104 154306 10.1016/j.phymed.2022.154306 35809376
    [Google Scholar]
  103. Aguilar Diaz De Leon J. Borges C.R. Evaluation of oxidative stress in biological samples using the thiobarbituric acid reactive substances assay. J. Vis. Exp. 2020 159 10.3791/61122‑v 32478759
    [Google Scholar]
  104. Wang P. Ouyang J. Jia Z. Zhang A. Yang Y. Roles of DNA damage in renal tubular epithelial cells injury. Front. Physiol. 2023 14 1162546 10.3389/fphys.2023.1162546 37089416
    [Google Scholar]
  105. Strzalka W. Ziemienowicz A. Proliferating cell nuclear antigen (PCNA): A key factor in DNA replication and cell cycle regulation. Ann. Bot. 2011 107 7 1127 1140 10.1093/aob/mcq243 21169293
    [Google Scholar]
  106. Laurindo L.F. Carvalho D.G.M. Zanuso O.D.B. Figueira M.E. Direito R. Goulart A.D.R. Buglio D.S. Barbalho S.M. Curcumin-based nanomedicines in the treatment of inflammatory and immunomodulated diseases: An evidence-based comprehensive review. Pharmaceutics 2023 15 1 229 10.3390/pharmaceutics15010229 36678859
    [Google Scholar]
  107. Attaluri S. Arora M. Madhu L.N. Kodali M. Shuai B. Melissari L. Upadhya R. Rao X. Bates A. Mitra E. Ghahfarouki K.R. Ravikumar M.N.V. Shetty A.K. Oral nano-curcumin in a model of chronic gulf war illness alleviates brain dysfunction with modulation of oxidative stress, mitochondrial function, neuroinflammation, neurogenesis, and gene expression. Aging Dis. 2022 13 2 583 613 10.14336/AD.2021.0829 35371600
    [Google Scholar]
  108. Arnhold J. The dual role of myeloperoxidase in immune response. Int. J. Mol. Sci. 2020 21 21 8057 10.3390/ijms21218057 33137905
    [Google Scholar]
  109. Witkowska-Sędek E. Pyrżak B. Chronic inflammation and the growth hormone/insulin-like growth factor-1 axis. Cent. Eur. J. Immunol. 2020 45 4 469 475 10.5114/ceji.2020.103422 33613096
    [Google Scholar]
  110. Cheng Z. Limbu M. Wang Z. Liu J. Liu L. Zhang X. Chen P. Liu B. MMP-2 and 9 in chronic kidney disease. Int. J. Mol. Sci. 2017 18 4 776 10.3390/ijms18040776 28397744
    [Google Scholar]
  111. Rein J.L. Coca S.G. “I don’t get no respect”: The role of chloride in acute kidney injury. Am. J. Physiol. Renal Physiol. 2019 316 3 F587 F605 10.1152/ajprenal.00130.2018 30539650
    [Google Scholar]
  112. Ning B. Guo C. Kong A. Li K. Xie Y. Shi H. Gu J. .Calcium signaling mediates cell death and crosstalk with autophagy in kidney disease. cells, 2021 10 11 3204 10.3390/cells10113204 34831428
  113. Contreras R.G. Torres-Carrillo A. Flores-Maldonado C. Shoshani L. Ponce A. Na+/K+-ATPase: More than an electrogenic pump. Int. J. Mol. Sci. 2024 25 11 6122 10.3390/ijms25116122 38892309
    [Google Scholar]
  114. Bonventre J.V. Vaidya V.S. Schmouder R. Feig P. Dieterle F. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol. 2010 28 5 436 440 10.1038/nbt0510‑436 20458311
    [Google Scholar]
  115. Hussar P. Apoptosis regulators bcl-2 and caspase-3. Encyclopedia 2022 2 4 1624 1636 10.3390/encyclopedia2040111
    [Google Scholar]
  116. Gallant J.E. Parish M.A. Keruly J.C. Moore R.D. Changes in renal function associated with tenofovir disoproxil fumarate treatment, compared with nucleoside reverse-transcriptase inhibitor treatment. Clin. Infect. Dis. 2005 40 8 1194 1198 10.1086/428840 15791522
    [Google Scholar]
  117. Peyrou M. Cribb A.E. Effect of endoplasmic reticulum stress preconditioning on cytotoxicity of clinically relevant nephrotoxins in renal cell lines. Toxicol. In Vitro 2007 21 5 878 886 10.1016/j.tiv.2007.03.001 17416481
    [Google Scholar]
  118. Hsu S.K. Li C.Y. Lin I.L. Syue W.J. Chen Y.F. Cheng K.C. Teng Y.N. Lin Y.H. Yen C.H. Chiu C.C. Inflammation-related pyroptosis, a novel programmed cell death pathway, and its crosstalk with immune therapy in cancer treatment. Theranostics 2021 11 18 8813 8835 10.7150/thno.62521 34522213
    [Google Scholar]
  119. Frank D. Vince J.E. Pyroptosis versus necroptosis: Similarities, differences, and crosstalk. Cell Death Differ. 2019 26 1 99 114 10.1038/s41418‑018‑0212‑6 30341423
    [Google Scholar]
  120. Lin T.A. Wu V.C.C. Wang C.Y. Autophagy in chronic kidney diseases. Cells 2019 8 1 61 10.3390/cells8010061 30654583
    [Google Scholar]
  121. Havasi A. Dong Z. Autophagy and tubular cell death in the kidney. Semin. Nephrol. 2016 36 3 174 188 10.1016/j.semnephrol.2016.03.005 27339383
    [Google Scholar]
  122. Shim M.S. Liton P.B. The physiological and pathophysiological roles of the autophagy lysosomal system in the conventional aqueous humor outflow pathway: More than cellular clean up. Prog. Retin. Eye Res. 2022 90 101064 10.1016/j.preteyeres.2022.101064 35370083
    [Google Scholar]
  123. Ricciardi C.A. Gnudi L. The endoplasmic reticulum stress and the unfolded protein response in kidney disease: Implications for vascular growth factors. J. Cell. Mol. Med. 2020 24 22 12910 12919 10.1111/jcmm.15999 33067928
    [Google Scholar]
  124. Cheng K.K. Yeung C.F. Ho S.W. Chow S.F. Chow A.H.L. Baum L. Highly stabilized curcumin nanoparticles tested in an in vitro blood-brain barrier model and in Alzheimer’s disease Tg2576 mice. AAPS J. 2013 15 2 324 336 10.1208/s12248‑012‑9444‑4 23229335
    [Google Scholar]
  125. Yang D. Wang L. Zhang L. Wang M. Li D. Liu N. Liu D. Zhao M. Yao X. Construction, characterization and bioactivity evaluation of curcumin nanocrystals with extremely high solubility and dispersion prepared by ultrasound-assisted method. Ultrason. Sonochem. 2024 104 106835 10.1016/j.ultsonch.2024.106835 38460473
    [Google Scholar]
  126. Iavicoli I. Fontana L. Nordberg G. The effects of nanoparticles on the renal system. Crit. Rev. Toxicol. 2016 46 6 490 560 10.1080/10408444.2016.1181047 27195425
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010360420250409111751
Loading
/content/journals/cpb/10.2174/0113892010360420250409111751
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: nanoparticles ; Curcumin ; nephrotoxicity ; chemotherapy ; acute kidney injury
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test