Skip to content
2000
image of Selenium Alleviates Oxidative Stress and Inflammation to Promote 
Postpartum Uterine Recovery via GPX1/GPX4/NRF2 Pathway in Mice

Abstract

Background

Selenium is an important trace element that plays crucial roles in metabolism, immune function, and antioxidant defense. As an antioxidant, selenium helps to alleviate postpartum uterine inflammation and promotes uterine recovery. However, the exact mechanism underlying the role of selenium in postpartum uterine recovery is not fully understood.

Objective

This study aimed to identify the underlying mechanism and examine how selenium enhances postpartum uterine healing.

Methods

Female ICR mice aged 8 weeks were classified into five groups: control, postpartum model, low-dose selenium (100 nm), medium-dose selenium (200 nm), and high-dose selenium (400 nm). Endometrial morphology was evaluated by hematoxylin and eosin (H&E) staining. Oxidative stress markers, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), and malondialdehyde (MDA), and inflammatory factors, including tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β), were measured using commercially available kits. GPX1, GPX4, and nuclear factor erythroid 2-related factor 2 (NRF2) expression were determined using real-time PCR and WB.

Results

We found damage and bleeding points in the endometrium and destruction of the ultrastructure of endometrial cells in the postpartum model group; however, mice treated with a high dose (400 nm) of selenium showed alleviated levels of pathological alteration in the endometrium. In addition, the levels of MDA in the postpartum mice group increased, while the SOD, CAT, and GPX levels decreased; however, changes in these oxidative stress markers were reversed after selenium treatment. For inflammatory factors, high levels of TNF-α and IL-1β were observed in postpartum mice, whereas they were decreased in selenium-treated groups. GPX1, GPX4, and NRF2 expression were reduced in postpartum model mice, but upregulated in selenium-treated mice.

Conclusion

Selenium supplementation ameliorated postpartum uterine oxidative stress and inflammation and promoted uterine recovery via the GPX1/GPX4/NRF2 pathway in mice.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010371042250416035948
2025-04-24
2025-08-18
Loading full text...

Full text loading...

References

  1. Vicariotto F. Malfa P. Torricelli M. Lungaro L. Beneficial effects of Limosilactobacillus reuteri PBS072 and Bifidobacterium breve BB077 on mood imbalance, self-confidence, and breastfeeding in women during the first trimester postpartum. Nutrients 2023 15 16 3513
    [Google Scholar]
  2. Zainur R. Postpartum morbidity - What we can do. Med J Malaysia 2006 61 5 651 657
    [Google Scholar]
  3. Batistel F. Osorio J.S. Tariq M.R. Li C. Caputo J. Socha M.T. Loor J.J. Peripheral leukocyte and endometrium molecular biomarkers of inflammation and oxidative stress are altered in peripartal dairy cows supplemented with Zn, Mn, and Cu from amino acid complexes and Co from Co glucoheptonate. J. Anim. Sci. Biotechnol. 2017 8 1 33 10.1186/s40104‑017‑0163‑7 28469842
    [Google Scholar]
  4. Cerri R. Rutigliano H. Lima F. Effect of source of supplemental selenium on uterine health and embryo quality in high-producing dairy cows. Theriogenology 2009 71 7 1127 1137 10.1016/j.theriogenology.2008.12.005 19181374
    [Google Scholar]
  5. Zhang Z. Selenium deficiency facilitates inflammation through the regulation of TLR4 and TLR4-related signaling Pathways in the Mice Uterus Inflammation 2015 38 3 1347 1356 10.1007/s10753‑014‑0106‑9 25577343
    [Google Scholar]
  6. Kuršvietienė L. Mongirdienė A. Selenium anticancer properties and impact on cellular redox status. Antioxidants 2020 9 1 80 10.3390/antiox9010080 31963404
    [Google Scholar]
  7. Mehrpooya M. Majmasanaye M. Faramarzi F. Eshraghi A. Faress F. Investigation of the effect of oral selenium on the reduction of clinical symptoms and joint pain in patients with rheumatoid arthritis in the iranian population. J. Clin. Pharmacol. 2023 63 11 1197 1204 10.1002/jcph.2292 37306592
    [Google Scholar]
  8. Shen Y. Huang H. Wang Y. Yang R. Antioxidant effects of Se-glutathione peroxidase in alcoholic liver disease. J Trace Elem Med Biol 2022 74 127048 10.1016/j.jtemb.2022.127048 35963055
    [Google Scholar]
  9. Adeniran S.O. Zheng P. Feng R. Adegoke E.O. Huang F. Ma M. Wang Z. Ifarajimi O.O. Li X. Zhang G. The antioxidant role of selenium via GPx1 and GPx4 in LPS-induced oxidative stress in bovine endometrial cells. Biol. Trace Elem. Res. 2022 200 3 1140 1155 10.1007/s12011‑021‑02731‑0 33895964
    [Google Scholar]
  10. Kwon W.Y. Suh G.J. Kim K.S. Jung Y.S. Kim S.H. Kim J.S. You K.M. Niacin and selenium attenuate sepsis-induced lung injury by up-regulating nuclear factor erythroid 2–related factor 2 signaling. Crit. Care Med. 2016 44 6 e370 e382 10.1097/CCM.0000000000001422 26646455
    [Google Scholar]
  11. Ma Q. Role of nrf2 in oxidative stress and toxicity. Annu. Rev. Pharmacol. Toxicol. 2013 53 1 401 426 10.1146/annurev‑pharmtox‑011112‑140320 23294312
    [Google Scholar]
  12. Movahedian Ataar A. Eshraghi A. Asgari S. Naderi G. Badiee A. Antioxidant effect of ziziphus vulgaris, portulaca oleracea, berberis integerima and gundelia tournefortti on lipid peroxidation, Hb glycosylation and red blood cell hemolysis. J. Med. Plants 2011 10 40 80 88
    [Google Scholar]
  13. Catalano P.M. Shankar K. Obesity and pregnancy: Mechanisms of short term and long term adverse consequences for mother and child. BMJ 2017 356 j1 10.1136/bmj.j1 28179267
    [Google Scholar]
  14. Al-Gubory K. Fowler P. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Int J Biochem Cell Biol 2010 42 10 1634 1650 10.1016/j.biocel.2010.06.001 20601089
    [Google Scholar]
  15. Dadarwal D. González-Cano P. Dickinson R. Griebel P. Palmer C. Characterization of cytokine gene expression in uterine cytobrush samples of non-endometritic versus endometritic postpartum dairy cows. Theriogenology 2019 126 128 139 10.1016/j.theriogenology.2018.12.011 30551019
    [Google Scholar]
  16. Demirel M.A. Han S. Tokmak A. Ercan Gokay N. Uludag M.O. Yildirir Ustun T. Cicek A.F. Therapeutic effects of resveratrol in Escherichia coli-induced rat endometritis model. Naunyn Schmiedebergs Arch. Pharmacol. 2019 392 12 1577 1589 10.1007/s00210‑019‑01696‑1 31367863
    [Google Scholar]
  17. Imai H. Matsuoka M. Kumagai T. Sakamoto T. Koumura T. Lipid peroxidation-dependent cell death regulated by GPx4 and ferroptosis. Curr. Top. Microbiol. Immunol. 2016 403 143 170 10.1007/82_2016_508 28204974
    [Google Scholar]
  18. Burczynski M. Lin H. Isoform-specific induction of a human aldo-keto reductase by polycyclic aromatic hydrocarbons (PAHs), electrophiles, and oxidative stress: Implications for the alternative pathway of PAH activation catalyzed by human dihydrodiol dehydrogenase. Cancer Res 1999 59 3 607 614 9973208
    [Google Scholar]
  19. Vaghari-Tabari M. Jafari-Gharabaghlou D. Sadeghsoltani F. Hassanpour P. Qujeq D. Rashtchizadeh N. Ghorbanihaghjo A. Zinc and selenium in inflammatory bowel disease: Trace elements with key roles? Biol. Trace Elem. Res. 2021 199 9 3190 3204 10.1007/s12011‑020‑02444‑w 33098076
    [Google Scholar]
  20. Khatti A. Mehrotra S. Patel P.K. Singh G. Maurya V.P. Mahla A.S. Chaudhari R.K. Das G.K. Singh M. Sarkar M. Kumar H. Krishnaswamy N. Supplementation of vitamin E, selenium and increased energy allowance mitigates the transition stress and improves postpartum reproductive performance in the crossbred cow. Theriogenology 2017 104 142 148 10.1016/j.theriogenology.2017.08.014 28843678
    [Google Scholar]
  21. Han F. Low selenium intake is associated with postpartum weight retention in Chinese women and impaired physical development of their offspring. Br J Nutr 2021 126 10 1498 1509 10.1017/S0007114521000015 33427139
    [Google Scholar]
  22. Yang X. He Z. Hu R. Yan J. Zhang Q. Li B. Yuan X. Zhang H. He J. Wu S. Dietary β-carotene on postpartum uterine recovery in mice: Crosstalk between gut microbiota and inflammation. Front. Immunol. 2021 12 744425 10.3389/fimmu.2021.744425 34899699
    [Google Scholar]
  23. Hadrup N. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. J Trace Elem Med Biol 2021 67 126801 10.1016/j.jtemb.2021.126801 34091241
    [Google Scholar]
  24. Hashem K. Hassnin K.M.A. AbdEl-Kawi S.H. The prospective protective effect of selenium nanoparticles against chromium-induced oxidative and cellular damage in rat thyroid. Int. J. Nanomedicine 2013 8 1713 1720 10.2147/IJN.S42736 23658489
    [Google Scholar]
  25. Menon S. Chemopreventive mechanism of action by oxidative stress and toxicity induced surface decorated selenium nanoparticles. J. Trace Elem. Med. Biol. 2020 62 126549 10.1016/j.jtemb.2020.126549 32731109
    [Google Scholar]
  26. Zoidis E. Seremelis I. Kontopoulos N. Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants 2018 7 5 66 10.3390/antiox7050066 29758013
    [Google Scholar]
  27. Stolwijk J. Garje R. Sieren J. Understanding the redox biology of selenium in the search of targeted cancer therapies. Antioxidants 2020 9 5 420 10.3390/antiox9050420 32414091
    [Google Scholar]
  28. Mojadadi A. Au A. Salah W. Witting P. Role for selenium in metabolic homeostasis and human reproduction. Nutrients 2021 13 9 3256 10.3390/nu13093256 34579133
    [Google Scholar]
  29. Duntas L.H. Selenium and inflammation: Underlying anti-inflammatory mechanisms. Horm. Metab. Res. 2009 41 6 443 447 10.1055/s‑0029‑1220724 19418416
    [Google Scholar]
  30. Eshraghi A. Talasaz A.H. Salamzadeh J. Salarifar M. Pourhosseini H. Nozari Y. Bahremand M. Jalali A. Boroumand M.A. Evaluating the effect of intracoronary N-acetylcysteine on platelet activation markers after primary percutaneous coronary intervention in patients with st-elevation myocardial infarction. Am. J. Ther. 2016 23 1 e44 e51 10.1097/MJT.0000000000000309 26291594
    [Google Scholar]
  31. Bi C. Wang H. Wang Y. Sun J. Selenium inhibits Staphylococcus aureus-induced inflammation by suppressing the activation of the NF-κB and MAPK signalling pathways in RAW264.7 macrophages. Eur. J. Pharmacol. 2016 780 159 165 10.1016/j.ejphar.2016.03.044 27036486
    [Google Scholar]
  32. Boitani C. Puglisi R. Selenium, a key element in spermatogenesis and male fertility. Adv. Exp. Med. Biol. 2009 636 65 73 10.1007/978‑0‑387‑09597‑4_4 19856162
    [Google Scholar]
  33. Crites B.R. Carr S.N. Anderson L.H. Matthews J.C. Bridges P.J. Form of dietary selenium affects mRNA encoding interferon-stimulated and progesterone-induced genes in the bovine endometrium and conceptus length at maternal recognition of pregnancy. J. Anim. Sci. 2022 100 7 skac137 10.1093/jas/skac137 35772751
    [Google Scholar]
  34. Li K. Cao Z. Guo Y. Tong C. Yang S. Long M. Li P. He J. Selenium yeast alleviates ochratoxin A-induced apoptosis and oxidative stress via modulation of the PI3K/AKT and Nrf2/Keap1 signaling pathways in the kidneys of chickens. Oxid. Med. Cell. Longev. 2020 2020 1 12 10.1155/2020/4048706 32148649
    [Google Scholar]
  35. Zhang H. Zhao L. Zhang P. Xie Y. Yao X. Pan X. Fu Y. Wei J. Bai H. Shao X. Ye J. Wu C. Effects of selenoprotein extracts from Cardamine hupingshanensis on growth, selenium metabolism, antioxidant capacity, immunity and intestinal health in largemouth bass Micropterus salmoides. Front. Immunol. 2024 15 1342210 10.3389/fimmu.2024.1342210 38318186
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010371042250416035948
Loading
/content/journals/cpb/10.2174/0113892010371042250416035948
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test