Skip to content
2000
image of Unraveling the Mechanism of Tangmaikang Granules in Treating Diabetic Kidney Disease Based On UPLC-MS/MS, Network Pharmacology, Molecular Docking, Molecular Dynamics Simulations, and Experimental Validation

Abstract

Background

Diabetic Kidney Disease (DKD) is a major cause of End-Stage Renal Disease (ESRD) and lacks effective treatments. Tangmaikang Granules (TMK), a multi-herb traditional Chinese medicine formulation, have shown potential in managing DKD. However, the precise active components, molecular mechanisms, and therapeutic advantages of TMK remain unclear.

Objective

This study tests the hypothesis that TMK granules exert protective effects on DKD by targeting multiple pathways involved in oxidative stress, inflammation, and apoptosis in podocytes through a multi-targeted approach. The aim was to identify TMK’s bioactive components, evaluate its therapeutic potential, and uncover its molecular mechanisms in DKD.

Methods

The bioactive constituents in TMK were determined through ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Drug targets were identified using SwissTargetPrediction and SuperPred, whereas DKD-associated targets were obtained from the GeneCards, DisGeNET, OMIM, and TTD databases. A Protein-Protein Interaction (PPI) network was constructed, and key targets were identified via topological analysis. Molecular docking and dynamics simulations were performed to evaluate stable binding interactions. GO and KEGG pathway enrichment analyses were conducted to uncover relevant signaling pathways. TMK's effects on oxidative stress, inflammation, and apoptosis in podocytes were assessed using CCK-8, flow cytometry, RT-qPCR, ELISA, and Western blot assays.

Results

Thirty active compounds and 384 potential therapeutic targets were identified, with eight key targets. Pathway enrichment analysis revealed TMK’s involvement in AGE-RAGE, EGFR, HIF-1, and apoptosis pathways, affecting inflammatory cytokine responses and oxidative stress. In vitro experiments demonstrated that TMK significantly reduced oxidative stress, inflammation, and apoptosis in podocytes by inhibiting the MAPK and NF-κB pathways.

Conclusion

TMK granules target DKD through a multi-component, multi-target strategy, effectively mitigating oxidative stress and suppressing inflammatory and apoptotic pathways. This study integrates advanced computational and experimental methods, demonstrating TMK’s unique therapeutic potential and providing a robust foundation for its clinical application in DKD management.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010369197250321083806
2025-03-27
2025-09-07
Loading full text...

Full text loading...

References

  1. Alicic R.Z. Rooney M.T. Tuttle K.R. Diabetic kidney disease. Clin. J. Am. Soc. Nephrol. 2017 12 12 2032 2045 10.2215/CJN.11491116 28522654
    [Google Scholar]
  2. Naaman S.C. Bakris G.L. Diabetic nephropathy: Update on pillars of therapy slowing progression. Diabetes Care 2023 46 9 1574 1586 10.2337/dci23‑0030 37625003
    [Google Scholar]
  3. Wang N. Zhang C. Recent advances in the management of diabetic kidney disease: Slowing progression. Int. J. Mol. Sci. 2024 25 6 3086 10.3390/ijms25063086 38542060
    [Google Scholar]
  4. Bikbov B. Purcell C.A. Levey A.S. Smith M. Abdoli A. Abebe M. Adebayo O.M. Afarideh M. Agarwal S.K. Agudelo-Botero M. Ahmadian E. Al-Aly Z. Alipour V. Almasi-Hashiani A. Al-Raddadi R.M. Alvis-Guzman N. Amini S. Andrei T. Andrei C.L. Andualem Z. Anjomshoa M. Arabloo J. Ashagre A.F. Asmelash D. Ataro Z. Atout M.M.W. Ayanore M.A. Badawi A. Bakhtiari A. Ballew S.H. Balouchi A. Banach M. Barquera S. Basu S. Bayih M.T. Bedi N. Bello A.K. Bensenor I.M. Bijani A. Boloor A. Borzì A.M. Cámera L.A. Carrero J.J. Carvalho F. Castro F. Catalá-López F. Chang A.R. Chin K.L. Chung S-C. Cirillo M. Cousin E. Dandona L. Dandona R. Daryani A. Das Gupta R. Demeke F.M. Demoz G.T. Desta D.M. Do H.P. Duncan B.B. Eftekhari A. Esteghamati A. Fatima S.S. Fernandes J.C. Fernandes E. Fischer F. Freitas M. Gad M.M. Gebremeskel G.G. Gebresillassie B.M. Geta B. Ghafourifard M. Ghajar A. Ghith N. Gill P.S. Ginawi I.A. Gupta R. Hafezi-Nejad N. Haj-Mirzaian A. Haj-Mirzaian A. Hariyani N. Hasan M. Hasankhani M. Hasanzadeh A. Hassen H.Y. Hay S.I. Heidari B. Herteliu C. Hoang C.L. Hosseini M. Hostiuc M. Irvani S.S.N. Islam S.M.S. Jafari Balalami N. James S.L. Jassal S.K. Jha V. Jonas J.B. Joukar F. Jozwiak J.J. Kabir A. Kahsay A. Kasaeian A. Kassa T.D. Kassaye H.G. Khader Y.S. Khalilov R. Khan E.A. Khan M.S. Khang Y-H. Kisa A. Kovesdy C.P. Kuate Defo B. Kumar G.A. Larsson A.O. Lim L-L. Lopez A.D. Lotufo P.A. Majeed A. Malekzadeh R. März W. Masaka A. Meheretu H.A.A. Miazgowski T. Mirica A. Mirrakhimov E.M. Mithra P. Moazen B. Mohammad D.K. Mohammadpourhodki R. Mohammed S. Mokdad A.H. Morales L. Moreno Velasquez I. Mousavi S.M. Mukhopadhyay S. Nachega J.B. Nadkarni G.N. Nansseu J.R. Natarajan G. Nazari J. Neal B. Negoi R.I. Nguyen C.T. Nikbakhsh R. Noubiap J.J. Nowak C. Olagunju A.T. Ortiz A. Owolabi M.O. Palladino R. Pathak M. Poustchi H. Prakash S. Prasad N. Rafiei A. Raju S.B. Ramezanzadeh K. Rawaf S. Rawaf D.L. Rawal L. Reiner R.C. Jr Rezapour A. Ribeiro D.C. Roever L. Rothenbacher D. Rwegerera G.M. Saadatagah S. Safari S. Sahle B.W. Salem H. Sanabria J. Santos I.S. Sarveazad A. Sawhney M. Schaeffner E. Schmidt M.I. Schutte A.E. Sepanlou S.G. Shaikh M.A. Sharafi Z. Sharif M. Sharifi A. Silva D.A.S. Singh J.A. Singh N.P. Sisay M.M.M. Soheili A. Sutradhar I. Teklehaimanot B.F. Tesfay B. Teshome G.F. Thakur J.S. Tonelli M. Tran K.B. Tran B.X. Tran Ngoc C. Ullah I. Valdez P.R. Varughese S. Vos T. Vu L.G. Waheed Y. Werdecker A. Wolde H.F. Wondmieneh A.B. Wulf Hanson S. Yamada T. Yeshaw Y. Yonemoto N. Yusefzadeh H. Zaidi Z. Zaki L. Zaman S.B. Zamora N. Zarghi A. Zewdie K.A. Ärnlöv J. Coresh J. Perico N. Remuzzi G. Murray C.J.L. Vos T. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020 395 10225 709 733 10.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  5. Lu Z. Zhong Y. Liu W. Xiang L. Deng Y. The efficacy and mechanism of chinese herbal medicine on diabetic kidney disease. J. Diabetes Res. 2019 2019 1 14 10.1155/2019/2697672 31534972
    [Google Scholar]
  6. Liu X. Ge M. Zhai X. Xiao Y. Zhang Y. Xu Z. Zhou Z. Mei Z. Yang X. Traditional Chinese medicine for the treatment of diabetic kidney disease: A study-level pooled analysis of 44 randomized controlled trials. Front. Pharmacol. 2022 13 1009571 10.3389/fphar.2022.1009571 36313382
    [Google Scholar]
  7. Shen S. Zhong H. Zhou X. Li G. Zhang C. Zhu Y. Yang Y. Advances in Traditional Chinese Medicine research in diabetic kidney disease treatment. Pharm. Biol. 2024 62 1 222 232 10.1080/13880209.2024.2314705 38357845
    [Google Scholar]
  8. Zhang X.E. Pang Y. Bo Q. Hu S.Y. Xiang J.Y. Yang Z.R. Zhang X.M. Chen A.J. Zeng J.H. Ma X. Guo J. Protective effect of paeoniflorin in diabetic nephropathy: A preclinical systematic review revealing the mechanism of action. PLoS One 2023 18 9 e0282275 10.1371/journal.pone.0282275 37733659
    [Google Scholar]
  9. Watanabe K. Sato E. Mishima E. Miyazaki M. Tanaka T. What’s new in the molecular mechanisms of diabetic kidney disease: Recent advances. Int. J. Mol. Sci. 2022 24 1 570 10.3390/ijms24010570 36614011
    [Google Scholar]
  10. Hu Q. Chen Y. Deng X. Li Y. Ma X. Zeng J. Zhao Y. Diabetic nephropathy: Focusing on pathological signals, clinical treatment, and dietary regulation. Biomed. Pharmacother. 2023 159 114252 10.1016/j.biopha.2023.114252 36641921
    [Google Scholar]
  11. Tang G. Li S. Zhang C. Chen H. Wang N. Feng Y. Clinical efficacies, underlying mechanisms and molecular targets of Chinese medicines for diabetic nephropathy treatment and management. Acta Pharm. Sin. B 2021 11 9 2749 2767 10.1016/j.apsb.2020.12.020 34589395
    [Google Scholar]
  12. Zhao Q. Study on the effect of tangmaikang granules on improving ‘xiaoke’ symptoms in diabetic rats. J Tradit Chin Med. 2012 39 01 169 171
    [Google Scholar]
  13. L, Z., Effect of Tangmaikang Granules on Insulin Resistance in Newly Diagnosed Type 2 Diabetes Patients. Medicine, G. U. o. CED (Denver Colo.) 2012
    [Google Scholar]
  14. Xie W.Y. Zhang C. Xin J.Y. Li W.H. Zhang T.J. Systematic review and Meta-analysis of efficacy and safety of Tangmaikang Granules in treatment of diabetic peripheral neuropathy. Zhongguo Zhongyao Zazhi 2023 48 2 542 554 36725244
    [Google Scholar]
  15. Qun C. Aolei S.U. Jiagui M.A. Pharmacy D.O. Effect of tangmaikang on the kidney function in TypeIIDiabetic rats of the deficiency of both Qi and Yin with blood stasis syndrome. Guangming J. Chin. Med. 2016
    [Google Scholar]
  16. Kokkonen M. Jestoi M. Determination of ergot alkaloids from grains with UPLC‐MS/MS. J. Sep. Sci. 2010 33 15 2322 2327 10.1002/jssc.201000114 20572264
    [Google Scholar]
  17. Zhao L. Zhang H. Li N. Chen J. Xu H. Wang Y. Liang Q. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J. Ethnopharmacol. 2023 309 116306 10.1016/j.jep.2023.116306 36858276
    [Google Scholar]
  18. Singh S.B.Q. Singh D.B. Molecular docking and molecular dynamics simulation. Bioinformatics. Elsevier 2022 291 304
    [Google Scholar]
  19. Yang Y.Q. Tan H.B. Zhang X.Y. Zhang Y.Z. Lin Q.Y. Huang M.Y. Lin Z.Y. Mo J.Z. Zhang Y. Lan T. Bei W.J. Guo J. The Chinese medicine Fufang Zhenzhu Tiaozhi capsule protects against renal injury and inflammation in mice with diabetic kidney disease. J. Ethnopharmacol. 2022 292 115165 10.1016/j.jep.2022.115165 35247475
    [Google Scholar]
  20. Zheng S. Xu Y. Zhang Y. Long C. Chen G. Jin Z. Jiang S. Chen J. Qin Y. Efficacy and safety of traditional Chinese medicine decoction as an adjuvant treatment for diabetic nephropathy: A systematic review and meta-analysis of randomized controlled trials. Front. Pharmacol. 2024 15 1327030 10.3389/fphar.2024.1327030 38783937
    [Google Scholar]
  21. Gopathy S.S.S. Amudha P. Vidya R. Jayalakshmi M. Kulanthaivel L. Phytochemicals and Natural Extracts, Secondary Metabolites of Plants and Improvement of Brain Function. Springer Singapore 2024 199 219 10.1007/978‑981‑99‑7269‑2_10
    [Google Scholar]
  22. Liu C. Cong Z. Wang S. Zhang X. Song H. Xu T. Kong H. Gao P. Liu X. A review of the botany, ethnopharmacology, phytochemistry, pharmacology, toxicology and quality of Anemarrhena asphodeloides Bunge. J Ethnopharmacol. 2023 302 Pt A 115857 10.1016/j.jep.2022.115857
    [Google Scholar]
  23. Qin L. Du F. Yang N. Zhang C. Wang Z. Zheng X. Tang J. Yang L. Dong C. Transcriptome analyses revealed the key metabolic genes and transcription factors involved in terpenoid biosynthesis in sacred lotus. Molecules 2022 27 14 4599 10.3390/molecules27144599 35889471
    [Google Scholar]
  24. Rajput A. Sharma P. Singh D. Singh S. Kaur P. Attri S. Mohana P. Kaur H. Rashid F. Bhatia A. Jankowski J. Arora V. Tuli H.S. Arora S. Role of polyphenolic compounds and their nanoformulations: A comprehensive review on cross-talk between chronic kidney and cardiovascular diseases. Naunyn Schmiedebergs Arch. Pharmacol. 2023 396 5 901 924 10.1007/s00210‑023‑02410‑y 36826494
    [Google Scholar]
  25. Asche C. Antitumour Quinones. Mini Rev. Med. Chem. 2005 5 5 449 467 10.2174/1389557053765556 15892687
    [Google Scholar]
  26. Heryanto R In silico prediction of sodium-glucose co-transporter-2 (SGLT2) inhibition activity by allium fistulosum compound based on skelspheres molecular descriptor. Ind. J. Med. Chem. Bio 2023 2 1
    [Google Scholar]
  27. Song Y.H. Kim D.W. Curtis-Long M.J. Park C. Son M. Kim J.Y. Yuk H.J. Lee K.W. Park K.H. Cinnamic acid amides from Tribulus terrestris displaying uncompetitive α-glucosidase inhibition. Eur. J. Med. Chem. 2016 114 201 208 10.1016/j.ejmech.2016.02.044 26974386
    [Google Scholar]
  28. Zhao Z. Ma R. Ma Y. Zhao L. Wang L. Fang Y. Zhang Y. Wu X. Wang X. Discovery of nine dipeptidyl peptidase-4 inhibitors from Coptis chinensis using virtual screening, bioactivity evaluation, and binding studies. Molecules 2024 29 10 2304 10.3390/molecules29102304 38792165
    [Google Scholar]
  29. Qu M. Wang Y. Cao S. Liu Y. Liu D. Qiu F. Kang N. Main alkaloids of Rhizoma Coptidis improved palmitic acid induced insulin resistance in HepG2 cells via AMPK and MAPK signaling pathway. Asian J. Tradit. Med. 2020 15 5 239 254
    [Google Scholar]
  30. Li C.L. Tan L.H. Wang Y.F. Luo C.D. Chen H.B. Lu Q. Li Y.C. Yang X.B. Chen J.N. Liu Y.H. Xie J.H. Su Z.R. Comparison of anti-inflammatory effects of berberine, and its natural oxidative and reduced derivatives from Rhizoma Coptidis in vitro and in vivo. Phytomedicine 2019 52 272 283 10.1016/j.phymed.2018.09.228 30599908
    [Google Scholar]
  31. Tan L. Wang Y. Ai G. Luo C. Chen H. Li C. Zeng H. Xie J. Chen J. Su Z. Dihydroberberine, a hydrogenated derivative of berberine firstly identified in Phellodendri Chinese Cortex, exerts anti-inflammatory effect via dual modulation of NF-κB and MAPK signaling pathways. Int. Immunopharmacol. 2019 75 105802 10.1016/j.intimp.2019.105802 31401380
    [Google Scholar]
  32. He H. Deng J. Yang M. An L. Ye X. Li X. Jatrorrhizine from Rhizoma Coptidis exerts an anti-obesity effect in db/db mice. J. Ethnopharmacol. 2022 298 115529 10.1016/j.jep.2022.115529 35835345
    [Google Scholar]
  33. Hao M. Jiao K. Jatrorrhizine reduces myocardial infarction-induced apoptosis and fibrosis through inhibiting p53 and TGF-β1/Smad2/3 pathways in mice. Acta Cir. Bras. 2022 37 7 e370705 10.1590/acb370705 36327404
    [Google Scholar]
  34. Wang S. Xu C.L. Luo T. Wang H.Q. Effects of Jatrorrhizine on inflammatory response induced by H2O2 in microglia by regulating the MAPK/NF-κB/NLRP3 signaling pathway. Mol. Neurobiol. 2023 60 10 5725 5737 10.1007/s12035‑023‑03385‑w 37338804
    [Google Scholar]
  35. Wang E. Wang L. Ding R. Zhai M. Ge R. Zhou P. Wang T. Fang H. Wang J. Huang J. Astragaloside IV acts through multi-scale mechanisms to effectively reduce diabetic nephropathy. Pharmacol. Res. 2020 157 104831 10.1016/j.phrs.2020.104831 32339782
    [Google Scholar]
  36. Xu W. Shao X. Tian L. Gu L. Zhang M. Wang Q. Wu B. Wang L. Yao J. Xu X. Mou S. Ni Z. Astragaloside IV ameliorates renal fibrosis via the inhibition of mitogen-activated protein kinases and antiapoptosis in vivo and in vitro. J. Pharmacol. Exp. Ther. 2014 350 3 552 562 10.1124/jpet.114.214205 24951279
    [Google Scholar]
  37. Wang L. Chi Y.F. Yuan Z.T. Zhou W.C. Yin P.H. Zhang X.M. Peng W. Cai H. Astragaloside IV inhibits renal tubulointerstitial fibrosis by blocking TGF-β/Smad signaling pathway in vivo and in vitro. Exp. Biol. Med. 2014 239 10 1310 1324 10.1177/1535370214532597 24879422
    [Google Scholar]
  38. Leng B. Tang F. Lu M. Zhang Z. Wang H. Zhang Y. Astragaloside IV improves vascular endothelial dysfunction by inhibiting the TLR4/NF-κB signaling pathway. Life Sci. 2018 209 111 121 10.1016/j.lfs.2018.07.053 30081006
    [Google Scholar]
  39. Kashihara N. Haruna Y. Kondeti V.K. Kanwar Y.S. Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 2010 17 34 4256 4269 10.2174/092986710793348581 20939814
    [Google Scholar]
  40. Jin Q. Liu T. Qiao Y. Liu D. Yang L. Mao H. Ma F. Wang Y. Peng L. Zhan Y. Oxidative stress and inflammation in diabetic nephropathy: Role of polyphenols. Front. Immunol. 2023 14 1185317 10.3389/fimmu.2023.1185317 37545494
    [Google Scholar]
  41. Dai H. Liu Q. Liu B. Research progress on mechanism of podocyte depletion in diabetic nephropathy. J. Diabetes Res. 2017 2017 1 10 10.1155/2017/2615286 28791309
    [Google Scholar]
  42. Donath M.Y. Shoelson S.E. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 2011 11 2 98 107 10.1038/nri2925 21233852
    [Google Scholar]
  43. Caamaño J. Hunter C.A. NF-kappaB family of transcription factors: Central regulators of innate and adaptive immune functions. Clin. Microbiol. Rev. 2002 15 3 414 429 10.1128/CMR.15.3.414‑429.2002 12097249
    [Google Scholar]
  44. Su S. Ma Z. Wu H. Xu Z. Yi H. Oxidative stress as a culprit in diabetic kidney disease. Life Sci. 2023 322 121661 10.1016/j.lfs.2023.121661 37028547
    [Google Scholar]
  45. Schulze-Osthoff K. Ferrari D. Riehemann K. Wesselborg S. Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology 1997 198 1-3 35 49 10.1016/S0171‑2985(97)80025‑3 9442376
    [Google Scholar]
  46. Barros J.B.S. Santos R.D.S. Reis A.A.D.S. Implication of the MAPK signalling pathway in the pathogenesis of diabetic nephropathy. EMJ Diabet. 2019 7 1 107 114
    [Google Scholar]
  47. Erekat N.S. Programmed cell death in diabetic nephropathy: A review of apoptosis, autophagy, and necroptosis. Med. Sci. Monit. 2022 28 e937766 10.12659/MSM.937766 35989481
    [Google Scholar]
  48. Chi Y. Zhang X. Liang D. Wang Y. Cai X. Dong J. Li L. Chi Z. ZnT8 exerts anti-apoptosis of kidney tubular epithelial cell in diabetic kidney disease through TNFAIP3-NF-κB signal pathways. Biol. Trace Elem. Res. 2023 201 5 2442 2457 10.1007/s12011‑022‑03361‑w 35871203
    [Google Scholar]
  49. Mohandes S. Doke T. Hu H. Mukhi D. Dhillon P. Susztak K. Molecular pathways that drive diabetic kidney disease. J. Clin. Invest. 2023 133 4 e165654 10.1172/JCI165654 36787250
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010369197250321083806
Loading
/content/journals/cpb/10.2174/0113892010369197250321083806
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test