Skip to content
2000
image of Interaction Between Staphylococcus aureus and Microbiota: Invasion or Commensalism

Abstract

The term “Microbiota” refers to the vast array of symbiotic microorganisms that coexist with their hosts in practically all organs. However, the microbiota must obtain nutrition and minerals from its host to survive; instead, they produce beneficial compounds to protect the host and regulate the immune system. Conversely, pathogenic bacteria utilize their enzymes to independently gain sustenance through an invasive process without almost any beneficial compound production. One of the fully equipped pathogens, , is present in nearly every organ and possesses a variety of defense and invasion systems including an enzyme, a mineral collection system, a system for detecting environmental conditions, and broad toxins. The microbiota properly can defend its kingdom against ; however, if necessary, the host immune system is alerted against the pathogen, so this system also acts against the pathogen, a game that can ultimately lead to the death of the pathogen. However, can change the host's conditions in its favor by changing the host's conditions and causing inflammation, a condition that cannot be tolerated by the microbiota. In this review, we will explain how microbiota defend against .

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010364717250404175242
2025-04-14
2025-09-10
Loading full text...

Full text loading...

References

  1. Azimi T. Mirzadeh M. Sabour S. Nasser A. Fallah F. Pourmand M.R. Coagulase-negative staphylococci (CoNS) meningitis: A narrative review of the literature from 2000 to 2020. New Microbes New Infect. 2020 37 100755 10.1016/j.nmni.2020.100755 33014383
    [Google Scholar]
  2. Nasser A. Azimi T. Ostadmohammadi S. Ostadmohammadi S. A comprehensive review of bacterial osteomyelitis with emphasis on Staphylococcus aureus. Microb. Pathog. 2020 148 104431 10.1016/j.micpath.2020.104431 32801004
    [Google Scholar]
  3. Nasser A. Moradi M. Jazireian P. Safari H. Alizadeh-Sani M. Pourmand M.R. Azimi T. Staphylococcus aureus versus neutrophil: Scrutiny of ancient combat. Microb. Pathog. 2019 131 259 269 10.1016/j.micpath.2019.04.026 31002964
    [Google Scholar]
  4. Chewning J.H. Weaver C.T. Development and survival of Th17 cells within the intestines: The influence of microbiome- and diet-derived signals. J. Immunol. 2014 193 10 4769 4777 10.4049/jimmunol.1401835 25381358
    [Google Scholar]
  5. Dang A.T. Marsland B.J. Microbes, metabolites, and the gut–lung axis. Mucosal Immunol. 2019 12 4 843 850 10.1038/s41385‑019‑0160‑6 30976087
    [Google Scholar]
  6. Bendjeddou K. Hamma-Faradji S. Meddour A.A. Belguesmia Y. Cudennec B. Bendali F. Daube G. Taminiau B. Drider D. Gut microbiota, body weight and histopathological examinations in experimental infection by methicillin-resistant Staphylococcus aureus: Antibiotic versus bacteriocin. Benef. Microbes 2021 12 3 295 306 10.3920/BM2020.0155 33789553
    [Google Scholar]
  7. Dong D. Ni Q. Wang C. Zhang L. Li Z. Jiang C. EnqiangMao; Peng, Y. Effects of intestinal colonization by Clostridium difficile and Staphylococcus aureus on microbiota diversity in healthy individuals in China. BMC Infect. Dis. 2018 18 1 207 10.1186/s12879‑018‑3111‑z 29724187
    [Google Scholar]
  8. Kim M.H. Choi S.J. Choi H.I. Choi J.P. Park H.K. Kim E.K. Kim M.J. Moon B.S. Min T. Rho M. Cho Y.J. Yang S. Kim Y.K. Kim Y.Y. Pyun B.Y. Lactobacillus plantarum-derived extracellular vesicles protect atopic dermatitis induced by Staphylococcus aureus-derived extracellular vesicles. Allergy Asthma Immunol. Res. 2018 10 5 516 532 10.4168/aair.2018.10.5.516 30088371
    [Google Scholar]
  9. Nakatsuji T. Chen T.H. Narala S. Chun K.A. Two A.M. Yun T. Shafiq F. Kotol P.F. Bouslimani A. Melnik A.V. Latif H. Kim J.N. Lockhart A. Artis K. David G. Taylor P. Streib J. Dorrestein P.C. Grier A. Gill S.R. Zengler K. Hata T.R. Leung D.Y.M. Gallo R.L. Antimicrobials from human skin commensal bacteria protect against Staphylococcus aureus and are deficient in atopic dermatitis. Sci. Transl. Med. 2017 9 378 eaah4680 10.1126/scitranslmed.aah4680 28228596
    [Google Scholar]
  10. Nakatsuji T. Hata T.R. Tong Y. Cheng J.Y. Shafiq F. Butcher A.M. Salem S.S. Brinton S.L. Spergel R.A.K. Johnson K. Jepson B. Calatroni A. David G. Ramirez-Gama M. Taylor P. Leung D.Y.M. Gallo R.L. Development of a human skin commensal microbe for bacteriotherapy of atopic dermatitis and use in a phase 1 randomized clinical trial. Nat. Med. 2021 27 4 700 709 10.1038/s41591‑021‑01256‑2 33619370
    [Google Scholar]
  11. Harms J.M. Wilson D.N. Schluenzen F. Connell S.R. Stachelhaus T. Zaborowska Z. Spahn C.M.T. Fucini P. Translational regulation via L11: Molecular switches on the ribosome turned on and off by thiostrepton and micrococcin. Mol. Cell 2008 30 1 26 38 10.1016/j.molcel.2008.01.009 18406324
    [Google Scholar]
  12. Krauss S. Zipperer A. Wirtz S. Saur J. Konnerth M.C. Heilbronner S. Salazar T.B.O. Grond S. Krismer B. Peschel A. Secretion of and self-resistance to the novel fibupeptide antimicrobial lugdunin by distinct ABC transporters in Staphylococcus lugdunensis. Antimicrob. Agents Chemother. 2020 65 1 e01734 e20 10.1128/AAC.01734‑20 33106269
    [Google Scholar]
  13. Bonelli R.R. Schneider T. Sahl H.G. Wiedemann I. Insights into in vivo activities of lantibiotics from gallidermin and epidermin mode-of-action studies. Antimicrob. Agents Chemother. 2006 50 4 1449 1457 10.1128/AAC.50.4.1449‑1457.2006 16569864
    [Google Scholar]
  14. Brown M.M. Kwiecinski J.M. Cruz L.M. Shahbandi A. Todd D.A. Cech N.B. Horswill A.R. Novel peptide from commensal Staphylococcus simulans blocks methicillin-resistant Staphylococcus aureus quorum sensing and protects host skin from damage. Antimicrob. Agents Chemother. 2020 64 6 e00172 e20 10.1128/AAC.00172‑20 32253213
    [Google Scholar]
  15. Brauweiler A.M. Goleva E. Leung D.Y.M. Th2 cytokines increase Staphylococcus aureus alpha toxin-induced keratinocyte death through the signal transducer and activator of transcription 6 (STAT6). J. Invest. Dermatol. 2014 134 8 2114 2121 10.1038/jid.2014.43 24468745
    [Google Scholar]
  16. Francuzik W. Franke K. Schumann R. Heine G. Worm M. Propionibacterium acnes abundance correlates inversely with Staphylococcus aureus: Data from atopic dermatitis skin microbiome. Acta Derm. Venereol. 2018 98 5 490 495 10.2340/00015555‑2896 29379979
    [Google Scholar]
  17. Kong H.H. Oh J. Deming C. Conlan S. Grice E.A. Beatson M.A. Nomicos E. Polley E.C. Komarow H.D. Murray P.R. Turner M.L. Segre J.A. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 2012 22 5 850 859 10.1101/gr.131029.111 22310478
    [Google Scholar]
  18. Claesen J. Spagnolo J.B. Ramos S.F. Kurita K.L. Byrd A.L. Aksenov A.A. Melnik A.V. Wong W.R. Wang S. Hernandez R.D. Donia M.S. Dorrestein P.C. Kong H.H. Segre J.A. Linington R.G. Fischbach M.A. Lemon K.P. A Cutibacterium acnes antibiotic modulates human skin microbiota composition in hair follicles. Sci. Transl. Med. 2020 12 570 eaay5445 10.1126/scitranslmed.aay5445 33208503
    [Google Scholar]
  19. Ramsey M.M. Freire M.O. Gabrilska R.A. Rumbaugh K.P. Lemon K.P. Staphylococcus aureus shifts toward commensalism in response to Corynebacterium species. Front. Microbiol. 2016 7 1230 10.3389/fmicb.2016.01230 27582729
    [Google Scholar]
  20. Jochim A. Shi T. Belikova D. Schwarz S. Peschel A. Heilbronner S. Methionine limitation impairs pathogen expansion and biofilm formation capacity. Appl. Environ. Microbiol. 2019 85 9 e00177 e19 10.1128/AEM.00177‑19 30824455
    [Google Scholar]
  21. Sugimoto S. Iwamoto T. Takada K. Okuda K. Tajima A. Iwase T. Mizunoe Y. Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J. Bacteriol. 2013 195 8 1645 1655 10.1128/JB.01672‑12 23316041
    [Google Scholar]
  22. Selva L. Viana D. Regev-Yochay G. Trzcinski K. Corpa J.M. Lasa; Novick, R.P.; Penadés, J.R. Killing niche competitors by remote-control bacteriophage induction. Proc. Natl. Acad. Sci. USA 2009 106 4 1234 1238 10.1073/pnas.0809600106 19141630
    [Google Scholar]
  23. Cole A.M. Tahk S. Oren A. Yoshioka D. Kim Y.H. Park A. Ganz T. Determinants of Staphylococcus aureus nasal carriage. Clin. Diagn. Lab. Immunol. 2001 8 6 1064 1069 10.1128/CDLI.8.6.1064‑1069.2001 11687441
    [Google Scholar]
  24. Cogen A.L. Yamasaki K. Sanchez K.M. Dorschner R.A. Lai Y. MacLeod D.T. Torpey J.W. Otto M. Nizet V. Kim J.E. Gallo R.L. Selective antimicrobial action is provided by phenol-soluble modulins derived from Staphylococcus epidermidis, a normal resident of the skin. J. Invest. Dermatol. 2010 130 1 192 200 10.1038/jid.2009.243 19710683
    [Google Scholar]
  25. Dauros-Singorenko P. Wiles S. Swift S. Staphylococcus aureus biofilms and their response to a relevant in vivo iron source. Front. Microbiol. 2020 11 509525 10.3389/fmicb.2020.509525 33408695
    [Google Scholar]
  26. Elmore B.O. Triplett K.D. Hall P.R. Apolipoprotein B48, the structural component of chylomicrons, is sufficient to antagonize staphylococcus aureus quorum-sensing. PLoS One 2015 10 5 e0125027 10.1371/journal.pone.0125027 25942561
    [Google Scholar]
  27. Stubbendieck R.M. Bacterial competition mediated by siderophore production among the human nasal microbiota. bioRxiv 2018 432948
    [Google Scholar]
  28. Yi L. Luo L. Chen J. Sun H. Wang X. Yi Y. Lv X. Cell wall and DNA damage of Staphylococcus aureus by bacteriocin BM1157. Lebensm. Wiss. Technol. 2020 134 109842 10.1016/j.lwt.2020.109842
    [Google Scholar]
  29. Li H.W. Xiang Y-Z. Zhang M. Jiang Y-H. Zhang Y. Liu Y-Y. Lin L-B. Zhang Q-L. A novel bacteriocin from Lactobacillus salivarius against Staphylococcus aureus: Isolation, purification, identification, antibacterial and antibiofilm activity. Lebensm. Wiss. Technol. 2021 140 110826 10.1016/j.lwt.2020.110826
    [Google Scholar]
  30. Paik W. Alonzo F. III Knight K.L. Probiotic exopolysaccharide protects against systemic Staphylococcus aureus infection, inducing dual-functioning macrophages that restrict bacterial growth and limit inflammation. Infect. Immun. 2018 87 1 e00791 e18 30396894
    [Google Scholar]
  31. Piewngam P. Zheng Y. Nguyen T.H. Dickey S.W. Joo H.S. Villaruz A.E. Glose K.A. Fisher E.L. Hunt R.L. Li B. Chiou J. Pharkjaksu S. Khongthong S. Cheung G.Y.C. Kiratisin P. Otto M. Pathogen elimination by probiotic Bacillus via signalling interference. Nature 2018 562 7728 532 537 10.1038/s41586‑018‑0616‑y 30305736
    [Google Scholar]
  32. Du Y. Li H. Xu W. Hu X. Wu T. Chen J. Cell surface-associated protein elongation factor Tu interacts with fibronectin mediating the adhesion of Lactobacillus plantarum HC-2 to Penaeus vannamei intestinal epithelium and inhibiting the apoptosis induced by LPS and pathogen in Caco-2 cells. Int. J. Biol. Macromol. 2023 224 32 47 10.1016/j.ijbiomac.2022.11.252 36442565
    [Google Scholar]
  33. Al-Rikabi J.M.F. Majeed K.R. Al-Fekaik D.F. Bioactive peptides with the inhibitory activity that are produced by lactic acid bacteria; their importance and mechanism. Texas J. Agricult. Biol. Sci. 2022 10 44 51
    [Google Scholar]
  34. Schaefer L. Auchtung T.A. Hermans K.E. Whitehead D. Borhan B. Britton R.A. The antimicrobial compound reuterin (3-hydroxypropionaldehyde) induces oxidative stress via interaction with thiol groups. Microbiology 2010 156 6 1589 1599 10.1099/mic.0.035642‑0 20150236
    [Google Scholar]
  35. O’Shea E.F. O’Connor P.M. O’Sullivan O. Cotter P.D. Ross R.P. Hill C. Bactofencin A, a new type of cationic bacteriocin with unusual immunity. MBio 2013 4 6 e00498 e13 10.1128/mBio.00498‑13 24169573
    [Google Scholar]
  36. Bédard F. Fliss I. Biron E. Structure–activity relationships of the bacteriocin bactofencin A and its interaction with the bacterial membrane. ACS Infect. Dis. 2019 5 2 199 207 10.1021/acsinfecdis.8b00204 30540905
    [Google Scholar]
  37. Jiang Y.H. Ying J.P. Xin W.G. Yang L.Y. Li X.Z. Zhang Q.L. Antibacterial activity and action target of phenyllactic acid against Staphylococcus aureus and its application in skim milk and cheese. J. Dairy Sci. 2022 105 12 9463 9475 10.3168/jds.2022‑22262 36270872
    [Google Scholar]
  38. Zhu Y. Zhang S. Antibacterial activity and mechanism of lacidophilin from Lactobacillus pentosus against Staphylococcus aureus and Escherichia coli. Front. Microbiol. 2020 11 582349 10.3389/fmicb.2020.582349 33193219
    [Google Scholar]
  39. Kobatake E. Kabuki T. S-layer protein of Lactobacillus helveticus SBT2171 promotes human β-defensin 2 expression via TLR2–JNK signaling. Front. Microbiol. 2019 10 2414 10.3389/fmicb.2019.02414 31681252
    [Google Scholar]
  40. Cobo E. Chadee K. Antimicrobial human β-defensins in the colon and their role in infectious and non-infectious diseases. Pathogens 2013 2 1 177 192 10.3390/pathogens2010177 25436887
    [Google Scholar]
  41. Johansson M.A. Björkander S. Forsberg M.M. Qazi K.R. Celades S.M. Bittmann J. Eberl M. Sverremark-Ekström E. Probiotic lactobacilli modulate Staphylococcus aureus-induced activation of conventional and unconventional T cells and NK cells. Front. Immunol. 2016 7 273 10.3389/fimmu.2016.00273 27462316
    [Google Scholar]
  42. Celebioglu H.U. Svensson B. Dietary nutrients, proteomes, and adhesion of probiotic lactobacilli to mucin and host epithelial cells. Microorganisms 2018 6 3 90 10.3390/microorganisms6030090 30134518
    [Google Scholar]
  43. Carneiro C.R.W. Postol E. Nomizo R. Reis L.F.L. Brentani R.R. Identification of enolase as a laminin-binding protein on the surface of Staphylococcus aureus. Microbes Infect. 2004 6 6 604 608 10.1016/j.micinf.2004.02.003 15158195
    [Google Scholar]
  44. Nishiyama K. Nakazato A. Ueno S. Seto Y. Kakuda T. Takai S. Yamamoto Y. Mukai T. Cell surface‐associated aggregation‐promoting factor fromLactobacillus gasseriSBT 2055 facilitates host colonization and competitive exclusion ofCampylobacter jejuni. Mol. Microbiol. 2015 98 4 712 726 10.1111/mmi.13153 26239091
    [Google Scholar]
  45. Souza R.F.S. Rault L. Seyffert N. Azevedo V. Loir L.Y. Even S. Lactobacillus casei BL23 modulates the innate immune response in Staphylococcus aureus-stimulated bovine mammary epithelial cells. Benef. Microbes 2018 9 6 985 996 10.3920/BM2018.0010 30041534
    [Google Scholar]
  46. Kwak Y.K. Vikström E. Magnusson K.E. Vécsey-Semjén B. Colque-Navarro P. Möllby R. The Staphylococcus aureus alpha-toxin perturbs the barrier function in Caco-2 epithelial cell monolayers by altering junctional integrity. Infect. Immun. 2012 80 5 1670 1680 10.1128/IAI.00001‑12 22354024
    [Google Scholar]
  47. Brell B. Temmesfeld-Wollbrück B. Altzschner I. Frisch E. Schmeck B. Hocke A.C. Suttorp N. Hippenstiel S. Adrenomedullin reduces Staphylococcus aureus α-toxin–induced rat ileum microcirculatory damage. Crit. Care Med. 2005 33 4 819 826 10.1097/01.CCM.0000159194.53695.7A 15818111
    [Google Scholar]
  48. Martínez-Herrero S. Martínez A. Adrenomedullin: Not just another gastrointestinal peptide. Biomolecules 2022 12 2 156 10.3390/biom12020156 35204657
    [Google Scholar]
  49. Allaker R.P. Grosvenor P.W. McAnerney D.C. Sheehan B.E. Srikanta B.H. Pell K. Kapas S. Mechanisms of adrenomedullin antimicrobial action. Peptides 2006 27 4 661 666 10.1016/j.peptides.2005.09.003 16226342
    [Google Scholar]
  50. Sanz A.J. Aidy E.S. Microbiota and gut neuropeptides: A dual action of antimicrobial activity and neuroimmune response. Psychopharmacology (Berl.) 2019 236 5 1597 1609 10.1007/s00213‑019‑05224‑0 30997526
    [Google Scholar]
  51. He F. Wu X. Zhang Q. Li Y. Ye Y. Li P. Chen S. Peng Y. Hardeland R. Xia Y. Bacteriostatic potential of melatonin: Therapeutic standing and mechanistic insights. Front. Immunol. 2021 12 683879 10.3389/fimmu.2021.683879 34135911
    [Google Scholar]
  52. Chen Z. Wang K. Guo J. Zhou J. Loor J.J. Yang Z. Yang Y. Melatonin Maintains Homeostasis and Potentiates the Anti-inflammatory Response in Staphylococcus aureus -Induced Mastitis through microRNA-16b/YAP1. J. Agric. Food Chem. 2022 70 48 15255 15270 10.1021/acs.jafc.2c05904 36399659
    [Google Scholar]
  53. Caire R. Audoux E. Thomas M. Dalix E. Peyron A. Rodriguez K. Pordone N. Guillemot J. Dickerscheit Y. Marotte H. Vandenesch F. Laurent F. Josse J. Verhoeven P.O. YAP promotes cell-autonomous immune responses to tackle intracellular Staphylococcus aureus in vitro. Nat. Commun. 2022 13 1 6995 10.1038/s41467‑022‑34432‑0 36384856
    [Google Scholar]
  54. Coelho M.L.V. Coutinho B.G. Cabral da Silva Santos O. Nes I.F. Bastos M.C.F. Immunity to the Staphylococcus aureus leaderless four-peptide bacteriocin aureocin A70 is conferred by AurI, an integral membrane protein. Res. Microbiol. 2014 165 1 50 59 10.1016/j.resmic.2013.11.001 24239961
    [Google Scholar]
  55. Li K. Ran X. Han J. Ding H. Wang X. Li Y. Guo W. Li X. Guo W. Fu S. Bi J. Astragalus polysaccharide alleviates mastitis disrupted by Staphylococcus aureus infection by regulating gut microbiota and SCFAs metabolism. Int. J. Biol. Macromol. 2025 286 138422 10.1016/j.ijbiomac.2024.138422 39647752
    [Google Scholar]
  56. Kaewsrichan J. Peeyananjarassri K. Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol. Med. Microbiol. 2006 48 1 75 83 10.1111/j.1574‑695X.2006.00124.x 16965354
    [Google Scholar]
  57. Zárate G. Nader-Macias M.E. Influence of probiotic vaginal lactobacilli on in vitro adhesion of urogenital pathogens to vaginal epithelial cells. Lett. Appl. Microbiol. 2006 43 2 174 180 10.1111/j.1472‑765X.2006.01934.x 16869901
    [Google Scholar]
  58. Yi L. Dang J. Zhang L. Wu Y. Liu B. Lü X. Purification, characterization and bactericidal mechanism of a broad spectrum bacteriocin with antimicrobial activity against multidrug-resistant strains produced by Lactobacillus coryniformis XN8. Food Control 2016 67 53 62 10.1016/j.foodcont.2016.02.008
    [Google Scholar]
  59. Jiang X. Yan X. Gu S. Yang Y. Zhao L. He X. Chen H. Ge J. Liu D. Biosurfactants of Lactobacillus helveticus for biodiversity inhibit the biofilm formation of Staphylococcus aureus and cell invasion. Future Microbiol. 2019 14 13 1133 1146 10.2217/fmb‑2018‑0354 31512521
    [Google Scholar]
  60. Sharma J. Sundar D. Srivastava P. Biosurfactants: Potential agents for controlling cellular communication, motility, and antagonism. Front. Mol. Biosci. 2021 8 727070 10.3389/fmolb.2021.727070 34708073
    [Google Scholar]
  61. Pascual L.M. Daniele M.B. Ruiz F. Giordano W. Pájaro C. Barberis L. Lactobacillus rhamnosus L60, a potential probiotic isolated from the human vagina. J. Gen. Appl. Microbiol. 2008 54 3 141 148 10.2323/jgam.54.141 18654035
    [Google Scholar]
  62. Martín C. Fernández-Vega I. Suárez J.E. Quirós L.M. Adherence of Lactobacillus salivarius to heLa cells promotes changes in the expression of the genes involved in biosynthesis of their ligands. Front. Immunol. 2020 10 3019 10.3389/fimmu.2019.03019 31998306
    [Google Scholar]
  63. Fallgren C. Andersson A. Ljungh Å. The role of glycosaminoglycan binding of staphylococci in attachment to eukaryotic host cells. Curr. Microbiol. 2001 43 1 57 63 10.1007/s002840010260 11375665
    [Google Scholar]
  64. Bandzerewicz A. Gadomska-Gajadhur A. Into the tissues: Extracellular matrix and its artificial substitutes: Cell signalling mechanisms. Cells 2022 11 5 914 10.3390/cells11050914 35269536
    [Google Scholar]
  65. Ocaña V.S. Holgado R.D.A.A. Nader-Macías M.E. Growth inhibition of Staphylococcus aureus by H2O2-producing Lactobacillus paracasei subsp. paracasei isolated from the human vagina. FEMS Immunol. Med. Microbiol. 1999 23 2 87 92 10.1016/S0928‑8244(98)00116‑3 10076905
    [Google Scholar]
  66. Delpech P. Bornes S. Alaterre E. Bonnet M. Gagne G. Montel M.C. Delbès C. Staphylococcus aureus transcriptomic response to inhibition by H2O2-producing Lactococcus garvieae. Food Microbiol. 2015 51 163 170 10.1016/j.fm.2015.05.014 26187841
    [Google Scholar]
  67. Wall T. Båth K. Britton R.A. Jonsson H. Versalovic J. Roos S. The early response to acid shock in Lactobacillus reuteri involves the ClpL chaperone and a putative cell wall-altering esterase. Appl. Environ. Microbiol. 2007 73 12 3924 3935 10.1128/AEM.01502‑06 17449683
    [Google Scholar]
  68. Klaenhammer T.R. Barrangou R. Buck B.L. Azcarate-Peril M.A. Altermann E. Genomic features of lactic acid bacteria effecting bioprocessing and health. FEMS Microbiol. Rev. 2005 29 3 393 409 10.1016/j.fmrre.2005.04.007 15964092
    [Google Scholar]
  69. Li J. Wang W. Xu S.X. Magarvey N.A. McCormick J.K. Lactobacillus reuteri -produced cyclic dipeptides quench agr -mediated expression of toxic shock syndrome toxin-1 in staphylococci. Proc. Natl. Acad. Sci. USA 2011 108 8 3360 3365 10.1073/pnas.1017431108 21282650
    [Google Scholar]
  70. Gauguet S. D’Ortona S. Ahnger-Pier K. Duan B. Surana N.K. Lu R. Cywes-Bentley C. Gadjeva M. Shan Q. Priebe G.P. Pier G.B. Intestinal microbiota of mice influences resistance to Staphylococcus aureus pneumonia. Infect. Immun. 2015 83 10 4003 4014 10.1128/IAI.00037‑15 26216419
    [Google Scholar]
  71. Zhao C. Wu K. Hao K. 2023
  72. Zhao W. Wang J. Li X. Li Y. Ye C. Deoxycholic acid inhibits Staphylococcus aureus-induced endometritis through regulating TGR5/PKA/NF-κB signaling pathway. Int. Immunopharmacol. 2023 118 110004 10.1016/j.intimp.2023.110004 36958214
    [Google Scholar]
  73. Campbell C. McKenney P.T. Konstantinovsky D. Isaeva O.I. Schizas M. Verter J. Mai C. Jin W.B. Guo C.J. Violante S. Ramos R.J. Cross J.R. Kadaveru K. Hambor J. Rudensky A.Y. Bacterial metabolism of bile acids promotes generation of peripheral regulatory T cells. Nature 2020 581 7809 475 479 10.1038/s41586‑020‑2193‑0 32461639
    [Google Scholar]
  74. Sannasiddappa T.H. Lund P.A. Clarke S.R. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front. Microbiol. 2017 8 1581 10.3389/fmicb.2017.01581 28878747
    [Google Scholar]
  75. Tomlinson K.L. Lung T.W.F. Dach F. Annavajhala M.K. Gabryszewski S.J. Groves R.A. Drikic M. Francoeur N.J. Sridhar S.H. Smith M.L. Khanal S. Britto C.J. Sebra R. Lewis I. Uhlemann A.C. Kahl B.C. Prince A.S. Riquelme S.A. Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nat. Commun. 2021 12 1 1399 10.1038/s41467‑021‑21718‑y 33658521
    [Google Scholar]
  76. Zhang Y. Chen R. Zhang D. Qi S. Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed. Pharmacother. 2023 160 114295 10.1016/j.biopha.2023.114295 36709600
    [Google Scholar]
  77. Duncan D. Auclair K. Itaconate: An antimicrobial metabolite of macrophages. Can. J. Chem. 2022 100 2 104 113 10.1139/cjc‑2021‑0117
    [Google Scholar]
  78. Arumugam P. Kielian T. Metabolism shapes immune responses to Staphylococcus aureus. J. Innate Immun. 2024 16 1 12 30 10.1159/000535482 38016430
    [Google Scholar]
  79. Tomlinson K.L. Riquelme S.A. Baskota S.U. Drikic M. Monk I.R. Stinear T.P. Lewis I.A. Prince A.S. Staphylococcus aureus stimulates neutrophil itaconate production that suppresses the oxidative burst. Cell Rep. 2023 42 2 112064 10.1016/j.celrep.2023.112064 36724077
    [Google Scholar]
  80. Kang J. Dietz M.J. Li B. Antimicrobial peptide LL-37 is bactericidal against Staphylococcus aureus biofilms. PLoS One 2019 14 6 e0216676 10.1371/journal.pone.0216676 31170191
    [Google Scholar]
  81. Lobel L. Garrett W.S. Butyrate makes macrophages “go nuclear” against bacterial pathogens. Immunity 2019 50 2 275 278 10.1016/j.immuni.2019.01.015 30784572
    [Google Scholar]
  82. Schulthess J. Pandey S. Capitani M. Rue-Albrecht K.C. Arnold I. Franchini F. Chomka A. Ilott N.E. Johnston D.G.W. Pires E. McCullagh J. Sansom S.N. Arancibia-Cárcamo C.V. Uhlig H.H. Powrie F. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 2019 50 2 432 445.e7 10.1016/j.immuni.2018.12.018 30683619
    [Google Scholar]
  83. Park J.W. Kim H.Y. Kim M.G. Jeong S. Yun C.H. Han S.H. Short-chain fatty acids inhibit staphylococcal lipoprotein-induced nitric oxide production in murine macrophages. Immune Netw. 2019 19 2 e9 10.4110/in.2019.19.e9 31089436
    [Google Scholar]
  84. Naik S. Bouladoux N. Linehan J.L. Han S.J. Harrison O.J. Wilhelm C. Conlan S. Himmelfarb S. Byrd A.L. Deming C. Quinones M. Brenchley J.M. Kong H.H. Tussiwand R. Murphy K.M. Merad M. Segre J.A. Belkaid Y. Commensal–dendritic-cell interaction specifies a unique protective skin immune signature. Nature 2015 520 7545 104 108 10.1038/nature14052 25539086
    [Google Scholar]
  85. Ulas T. Pirr S. Fehlhaber B. Bickes M.S. Loof T.G. Vogl T. Mellinger L. Heinemann A.S. Burgmann J. Schöning J. Schreek S. Pfeifer S. Reuner F. Völlger L. Stanulla M. Köckritz-Blickwede V.M. Glander S. Barczyk-Kahlert K. Kaisenberg V.C.S. Friesenhagen J. Fischer-Riepe L. Zenker S. Schultze J.L. Roth J. Viemann D. S100-alarmin-induced innate immune programming protects newborn infants from sepsis. Nat. Immunol. 2017 18 6 622 632 10.1038/ni.3745 28459433
    [Google Scholar]
  86. Bitschar K. Wolz C. Krismer B. Peschel A. Schittek B. Keratinocytes as sensors and central players in the immune defense against Staphylococcus aureus in the skin. J. Dermatol. Sci. 2017 87 3 215 220 10.1016/j.jdermsci.2017.06.003 28655473
    [Google Scholar]
  87. Simanski M. Erkens A. Rademacher F. Harder J. Staphylococcus epidermidis-induced interleukin-1 beta and human beta-defensin-2 expression in human keratinocytes is regulated by the host molecule A20 (TNFAIP3). Acta Derm. Venereol. 2019 99 2 181 187 10.2340/00015555‑3073 30328471
    [Google Scholar]
  88. Erdei L. Bolla B.S. Bozó R. Tax G. Urbán E. Kemény L. Szabó K. TNIP1 regulates cutibacterium acnes-induced innate immune functions in epidermal keratinocytes. Front. Immunol. 2018 9 2155 10.3389/fimmu.2018.02155 30319618
    [Google Scholar]
  89. Sanford J.A. Zhang L.J. Williams M.R. Gangoiti J.A. Huang C.M. Gallo R.L. Inhibition of HDAC8 and HDAC9 by microbial short-chain fatty acids breaks immune tolerance of the epidermis to TLR ligands. Sci. Immunol. 2016 1 4 eaah4609 10.1126/sciimmunol.aah4609 28783689
    [Google Scholar]
  90. Sanford J.A. O’Neill A.M. Zouboulis C.C. Gallo R.L. Short-chain fatty acids from cutibacterium acnes activate both a canonical and epigenetic inflammatory response in human sebocytes. J. Immunol. 2019 202 6 1767 1776 10.4049/jimmunol.1800893 30737272
    [Google Scholar]
  91. Focken J. Schittek B. Crosstalk between keratinocytes and neutrophils shapes skin immunity against S. aureus infection. Front. Immunol. 2024 15 1275153 10.3389/fimmu.2024.1275153 38440739
    [Google Scholar]
  92. Li D. Lei H. Li Z. Li H. Wang Y. Lai Y. A novel lipopeptide from skin commensal activates TLR2/CD36-p38 MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One 2013 8 3 e58288 10.1371/journal.pone.0058288 23472173
    [Google Scholar]
  93. Li M. Cha D.J. Lai Y. Villaruz A.E. Sturdevant D.E. Otto M. The antimicrobial peptide‐sensing system aps of Staphylococcus aureus. Mol. Microbiol. 2007 66 5 1136 1147 10.1111/j.1365‑2958.2007.05986.x 17961141
    [Google Scholar]
  94. Koymans K.J. Feitsma L.J. Brondijk T.H.C. Aerts P.C. Lukkien E. Lössl P. Kessel V.K.P.M. Haas D.C.J.C. Strijp V.J.A.G. Huizinga E.G. Structural basis for inhibition of TLR2 by staphylococcal superantigen-like protein 3 (SSL3). Proc. Natl. Acad. Sci. USA 2015 112 35 11018 11023 10.1073/pnas.1502026112 26283364
    [Google Scholar]
  95. Wang B. McHugh B.J. Qureshi A. Campopiano D.J. Clarke D.J. Fitzgerald J.R. Dorin J.R. Weller R. Davidson D.J. IL-1β–induced protection of keratinocytes against Staphylococcus aureus-Secreted Proteases Is Mediated by Human β-Defensin 2. J. Invest. Dermatol. 2017 137 1 95 105 10.1016/j.jid.2016.08.025 27702565
    [Google Scholar]
  96. Shelley J.R. McHugh B.J. Wills J. Dorin J.R. Weller R. Clarke D.J. Davidson D.J. A mechanistic evaluation of human beta defensin 2 mediated protection of human skin barrier in vitro. Sci. Rep. 2023 13 1 2271 10.1038/s41598‑023‑29558‑0 36755116
    [Google Scholar]
  97. Pastar I. O’Neill K. Padula L. Head C.R. Burgess J.L. Chen V. Garcia D. Stojadinovic O. Hower S. Plano G.V. Thaller S.R. Tomic-Canic M. Strbo N. Staphylococcus epidermidis boosts innate immune response by activation of gamma delta T cells and induction of perforin-2 in human skin. Front. Immunol. 2020 11 550946 10.3389/fimmu.2020.550946 33042139
    [Google Scholar]
  98. Strbo N. Pastar I. Romero L. Chen V. Vujanac M. Sawaya A.P. Jozic I. Ferreira A.D.F. Wong L.L. Head C. Stojadinovic O. Garcia D. O’Neill K. Drakulich S. Taller S. Kirsner R.S. Tomic-Canic M. Single cell analyses reveal specific distribution of anti‐bacterial molecule Perforin‐2 in human skin and its modulation by wounding and Staphylococcus aureus infection. Exp. Dermatol. 2019 28 3 225 232 10.1111/exd.13870 30609079
    [Google Scholar]
  99. Uluçkan Ö. Jiménez M. Roediger B. Schnabl J. Díez-Córdova L.T. Troulé K. Weninger W. Wagner E.F. Cutaneous immune cell-microbiota interactions are controlled by epidermal JunB/AP-1. Cell Rep. 2019 29 4 844 859.e3 10.1016/j.celrep.2019.09.042 31644908
    [Google Scholar]
  100. Zhao Y. Sun H. Chen Y. Niu Q. Dong Y. Li M. Yuan Y. Yang X. Sun Q. Butyrate protects against MRSA pneumonia via regulating gut-lung microbiota and alveolar macrophage M2 polarization. MBio 2023 14 5 e01987 e23 10.1128/mbio.01987‑23 37754570
    [Google Scholar]
  101. García-Muñoz Rodrigo F. Martí U.L. Onrubia S.M. Luján B.M. Henríquez G.G. Suárez R.D. Lung Microbiota and Ventilator-Associated Pneumonia in the Neonatal Period. Pathogens 2024 13 3 220 10.3390/pathogens13030220 38535563
    [Google Scholar]
  102. Bosch A.A.T.M. Levin E. Houten V.M.A. Hasrat R. Kalkman G. Biesbroek G. Piters S.D.W.A.A. Groot D.P.K.C.M. Pernet P. Keijser B.J.F. Sanders E.A.M. Bogaert D. Development of upper respiratory tract microbiota in infancy is affected by mode of delivery. EBioMedicine 2016 9 336 345 10.1016/j.ebiom.2016.05.031 27333043
    [Google Scholar]
  103. Krismer B. Weidenmaier C. Zipperer A. Peschel A. The commensal lifestyle of Staphylococcus aureus and its interactions with the nasal microbiota. Nat. Rev. Microbiol. 2017 15 11 675 687 10.1038/nrmicro.2017.104 29021598
    [Google Scholar]
  104. Bäumler A.J. Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016 535 7610 85 93 10.1038/nature18849 27383983
    [Google Scholar]
  105. McKenney E.S. Kendall M.M. Microbiota and pathogen ‘pas de deux’: Setting up and breaking down barriers to intestinal infection. Pathog. Dis. 2016 74 5 ftw051 10.1093/femspd/ftw051 27252177
    [Google Scholar]
  106. Kayama H. Takeda K. Manipulation of epithelial integrity and mucosal immunity by host and microbiota‐derived metabolites. Eur. J. Immunol. 2020 50 7 921 931 10.1002/eji.201948478 32511746
    [Google Scholar]
  107. Hu J. Deng F. Zhao B. Lin Z. Sun Q. Yang X. Wu M. Qiu S. Chen Y. Yan Z. Luo S. Zhao J. Liu W. Li C. Liu K.X. Lactobacillus murinus alleviate intestinal ischemia/reperfusion injury through promoting the release of interleukin-10 from M2 macrophages via Toll-like receptor 2 signaling. Microbiome 2022 10 1 38 10.1186/s40168‑022‑01227‑w 35241180
    [Google Scholar]
  108. Pidwill G.R. Gibson J.F. Cole J. Renshaw S.A. Foster S.J. The role of macrophages in Staphylococcus aureus infection. Front. Immunol. 2021 11 620339 10.3389/fimmu.2020.620339 33542723
    [Google Scholar]
  109. Brann K.R. Fullerton M.S. Onyilagha F.I. Prince A.A. Kurten R.C. Rom J.S. Blevins J.S. Smeltzer M.S. Voth D.E. Infection of primary human alveolar macrophages alters Staphylococcus aureus toxin production and activity. Infect. Immun. 2019 87 7 e00167 e19 10.1128/IAI.00167‑19 31010814
    [Google Scholar]
  110. Anand S. Mande S.S. Diet, microbiota and gut-lung connection. Front. Microbiol. 2018 9 2147 10.3389/fmicb.2018.02147 30283410
    [Google Scholar]
  111. Rios D. Wood M.B. Li J. Chassaing B. Gewirtz A.T. Williams I.R. Antigen sampling by intestinal M cells is the principal pathway initiating mucosal IgA production to commensal enteric bacteria. Mucosal Immunol. 2016 9 4 907 916 10.1038/mi.2015.121 26601902
    [Google Scholar]
  112. Matsuno K. Ueta H. Shu Z. Xue-Dong X. Sawanobori Y. Kitazawa Y. Bin Y. Yamashita M. Shi C. The microstructure of secondary lymphoid organs that support immune cell trafficking. Arch. Histol. Cytol. 2010 73 1 1 21 10.1679/aohc.73.1 21471663
    [Google Scholar]
  113. Hu X. Mu R. Xu M. Yuan X. Jiang P. Guo J. Cao Y. Zhang N. Fu Y. Gut microbiota mediate the protective effects on endometritis induced by Staphylococcus aureus in mice. Food Funct. 2020 11 4 3695 3705 10.1039/C9FO02963J 32307472
    [Google Scholar]
  114. Nowrouzian F.L. Ljung A. Hesselmar B. Nilsson S. Adlerberth I. Wold A.E. Bacterial carriage of genes encoding fibronectin-binding proteins is associated with long-term persistence of Staphylococcus aureus in the nasal and gut microbiota of infants. Appl. Environ. Microbiol. 2021 87 15 e00671 e21 10.1128/AEM.00671‑21 34020939
    [Google Scholar]
  115. Nasser A. Jahanbakhshi S. Dallal S.M.M. Banar M. Sattari-Maraji A. Azimi T. Staphylococcus aureus dormancy: Waiting for insurgency. Curr. Pharm. Biotechnol. 2023 24 15 1898 1915 10.2174/1389201024666230411110002 37055886
    [Google Scholar]
  116. Nasser A. Azizian R. Tabasi M. Khezerloo J.K. Heravi F.S. Kalani M.T. Sadeghifard N. Amini R. Pakzad I. Radmanesh A. Jalilian F.A. Specification of bacteriophage isolated against clinical methicillin-resistant staphylococcus aureus. Osong Public Health Res. Perspect. 2019 10 1 20 24 10.24171/j.phrp.2019.10.1.05 30847267
    [Google Scholar]
  117. Nasser A. Dallal M.M.S. Jahanbakhshi S. Azimi T. Nikouei L. Staphylococcus aureus: Biofilm formation and strategies against it. Curr. Pharm. Biotechnol. 2022 23 5 664 678 10.2174/1389201022666210708171123 34238148
    [Google Scholar]
  118. Rezaei F. Nasser A. Jalilian F.A. Hobbs Z. Azizian R. Using phage as a highly specific antibiotic alternative against methicillin resistance Staphylococcus aureus (MRSA). Biosci. Biotechnol. Res. Asia 2014 11 2 523 529 10.13005/bbra/1302
    [Google Scholar]
  119. Fernández-García V. González-Ramos S. Martín-Sanz P. Portillo F.G. Laparra J.M. Boscá L. NOD1 in the interplay between microbiota and gastrointestinal immune adaptations. Pharmacol. Res. 2021 171 105775 10.1016/j.phrs.2021.105775 34273489
    [Google Scholar]
  120. Roa-Tort K. Saavedra Y. Villanueva-Martínez A. Ganem-Rondero A. Pérez-Carranza L.A. la Rosa-Vázquez D.J.M. Ugalde-Femat G. Molina-Alejandre O. Becerril-Osnaya A.A. Rivera-Fernández J.D. In Vitro Antimicrobial Photodynamic Therapy for Pseudomonas aeruginosa (P. aeruginosa) and methicillin-resistant Staphylococcus aureus (MRSA) Inhibition Using a Green Light Source. Pharmaceutics 2024 16 4 518 10.3390/pharmaceutics16040518 38675180
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010364717250404175242
Loading
/content/journals/cpb/10.2174/0113892010364717250404175242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test