Skip to content
2000
image of Anti-Cancer Properties and Mechanistic Insights of Dihydroquercetin

Abstract

Dihydroquercetin (DHQ), also known as taxifolin, is a naturally occurring flavonoid compound that serves as an active pharmaceutical ingredient. It is commercially available in the form of dietary supplements. As the reduced form of quercetin, DHQ contains five phenolic hydroxyl groups. This compound is capable of chelating transition metal ions, thereby effectively scavenging free radicals and detoxifying harmful substances while modulating enzyme activities. Consequently, DHQ exhibits potent antioxidant, anti-inflammatory, antiviral, and antibacterial properties. Given its significant pharmacological potential, DHQ exhibits anti-tumor activity against various malignant tumors, including breast cancer, gastric cancer, hepatocellular carcinoma, colonic neoplasms, melanoma, and prostate cancer. DHQ inhibits tumor occurrence and progression by regulating multiple signaling pathways, such as wnt/β-catenin, phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt), mammalian target of rapamycin (mTOR), transforming growth factor-beta (TGF-β), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and mitogen-activated protein kinase (MAPK). The anti-tumor mechanisms of DHQ include inhibition of cell proliferation, invasion, and migration; induction of cell cycle arrest, activation of autophagy, apoptosis, epigenetic modification, suppression of epithelial-mesenchymal transition (EMT), enhancement of chemotherapy efficacy, and augmentation of immune function. In particular, DHQ potentiates the efficacy of chemotherapy drugs and augments immune function. Based on a systematic review of the pharmacological properties and anti-tumor mechanisms of DHQ across multiple malignant tumors, we conclude DHQ to be a promising natural compound with significant potential for anti-tumor therapy.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010366947250415051408
2025-04-24
2025-10-13
Loading full text...

Full text loading...

References

  1. Thilagavathi R. Priyankha S. Kannan M. Prakash M. Selvam C. Compounds from diverse natural origin against triple‐negative breast cancer: A comprehensive review. Chem. Biol. Drug Des. 2023 101 1 218 243 10.1111/cbdd.14172 36323650
    [Google Scholar]
  2. Matsuo Y. Natural products and cancer. Nutrients 2023 15 24 5064 10.3390/nu15245064 38140322
    [Google Scholar]
  3. Cao M. Tang Y. Luo Y. Gu F. Zhu Y. Liu X. Yan C. Hu W. Wang S. Chao X. Xu H. Chen H.B. Wang L. Natural compounds modulating mitophagy: Implications for cancer therapy. Cancer Lett. 2024 582 216590 10.1016/j.canlet.2023.216590 38097131
    [Google Scholar]
  4. Hegde M. Girisa S. Naliyadhara N. Kumar A. Alqahtani M.S. Abbas M. Mohan C.D. Warrier S. Hui K.M. Rangappa K.S. Sethi G. Kunnumakkara A.B. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev. 2023 42 3 765 822 10.1007/s10555‑022‑10068‑w 36482154
    [Google Scholar]
  5. Singh S. Verma R. Exploring the therapeutic potential of flavonoids in the management of cancer. Curr. Pharm. Biotechnol. 2025 26 1 17 47 10.2174/0113892010297456240327062614 38591206
    [Google Scholar]
  6. Stasiłowicz-Krzemień A. Gościniak A. Formanowicz D. Cielecka-Piontek J. Natural guardians: Natural compounds as radioprotectors in cancer therapy. Int. J. Mol. Sci. 2024 25 13 6937 10.3390/ijms25136937 39000045
    [Google Scholar]
  7. Yoon K.D. Lee J.Y. Kim T.Y. Kang H. Ha K.S. Ham T.H. Ryu S.N. Kang M.Y. Kim Y.H. Kwon Y.I. In vitro and in vivo anti-hyperglycemic activities of taxifolin and its derivatives isolated from pigmented rice ( Oryzae sativa L. cv. Superhongmi). J. Agric. Food Chem. 2020 68 3 742 750 10.1021/acs.jafc.9b04962 31880937
    [Google Scholar]
  8. Kim J.W. Im S. Jeong H.R. Jung Y.S. Lee I. Kim K.J. Park S.K. Kim D.O. Neuroprotective effects of korean red pine (Pinus densiflora) bark extract and its phenolics. J. Microbiol. Biotechnol. 2018 28 5 679 687 10.4014/jmb.1801.01053 29539881
    [Google Scholar]
  9. Terekhov R.P. Savina A.D. Pankov D.I. Korochkina M.D. Taldaev A. Yakubovich L.M. Zavadskiy S.P. Zhevlakova A.K. Selivanova I.A. Insights into the stereoisomerism of dihydroquercetin: Analytical and pharmacological aspects. Front Chem. 2024 12 1439167 10.3389/fchem.2024.1439167 39050369
    [Google Scholar]
  10. Liu Y. Shi X. Tian Y. Zhai S. Liu Y. Xiong Z. Chu S. An insight into novel therapeutic potentials of taxifolin. Front. Pharmacol. 2023 14 1173855 10.3389/fphar.2023.1173855 37261284
    [Google Scholar]
  11. Shubina V.S. Kozina V.I. Shatalin Y.V. Comparison of antioxidant properties of a conjugate of taxifolin with glyoxylic acid and selected flavonoids. Antioxidants 2021 10 8 1262 10.3390/antiox10081262 34439510
    [Google Scholar]
  12. Alam Q. Krishnamurthy S. Dihydroquercetin ameliorates LPS-induced neuroinflammation and memory deficit. Curr. Res. Pharmacol. Drug Discov. 2022 3 100091 10.1016/j.crphar.2022.100091 35243333
    [Google Scholar]
  13. Li W. Zhang L. Xu Q. Yang W. Zhao J. Ren Y. Yu Z. Ma L. Taxifolin alleviates DSS-induced ulcerative colitis by acting on gut microbiome to produce butyric acid. Nutrients 2022 14 5 1069 10.3390/nu14051069 35268045
    [Google Scholar]
  14. Sarg N.H. Hersi F.H. Zaher D.M. Hamouda A.O. Ibrahim S.I. El-Seedi H.R. Omar H.A. Unveiling the therapeutic potential of taxifolin in cancer: From molecular mechanisms to immune modulation and synergistic combinations. Phytomedicine 2024 133 155934 10.1016/j.phymed.2024.155934 39128306
    [Google Scholar]
  15. Kozłowska A. Szostak-Wegierek D. Flavonoids--food sources and health benefits. Rocz. Panstw. Zakl. Hig. 2014 65 2 79 85 25272572
    [Google Scholar]
  16. Kopustinskiene D.M. Jakstas V. Savickas A. Bernatoniene J. Flavonoids as anticancer agents. Nutrients 2020 12 2 457 10.3390/nu12020457 32059369
    [Google Scholar]
  17. Beecher G.R. Overview of dietary flavonoids: Nomenclature, occurrence and intake. J. Nutr. 2003 133 10 3248S 3254S 10.1093/jn/133.10.3248S 14519822
    [Google Scholar]
  18. Šamec D. Karalija E. Šola I. Vujčić Bok V. Salopek-Sondi B. The role of polyphenols in abiotic stress response: The influence of molecular structure. Plants 2021 10 1 118 10.3390/plants10010118 33430128
    [Google Scholar]
  19. Maaliki D. Shaito A.A. Pintus G. El-Yazbi A. Eid A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol. 2019 45 57 65 10.1016/j.coph.2019.04.014 31102958
    [Google Scholar]
  20. Bojić M. Maleš Ž. Antolić A. Babić I. Tomičić M. Antithrombotic activity of flavonoids and polyphenols rich plant species. Acta Pharm. 2019 69 4 483 495 10.2478/acph‑2019‑0050 31639083
    [Google Scholar]
  21. Fardoun M.M. Maaliki D. Halabi N. Iratni R. Bitto A. Baydoun E. Eid A.H. Flavonoids in adipose tissue inflammation and atherosclerosis: One arrow, two targets. Clin. Sci. 2020 134 12 1403 1432 10.1042/CS20200356 32556180
    [Google Scholar]
  22. Calis Z. Mogulkoc R. Baltaci A.K. The roles of flavonols/flavonoids in neurodegeneration and neuroinflammation. Mini Rev. Med. Chem. 2020 20 15 1475 1488 10.2174/1389557519666190617150051 31288717
    [Google Scholar]
  23. Badshah S.L. Faisal S. Muhammad A. Poulson B.G. Emwas A.H. Jaremko M. Antiviral activities of flavonoids. Biomed. Pharmacother. 2021 140 111596 10.1016/j.biopha.2021.111596 34126315
    [Google Scholar]
  24. Ninfali P. Antonelli A. Magnani M. Scarpa E.S. Antiviral properties of flavonoids and delivery strategies. Nutrients 2020 12 9 2534 10.3390/nu12092534 32825564
    [Google Scholar]
  25. Nakajima A. Ohizumi Y. Potential benefits of nobiletin, a citrus flavonoid, against alzheimer’s disease and parkinson’s disease. Int. J. Mol. Sci. 2019 20 14 3380 10.3390/ijms20143380 31295812
    [Google Scholar]
  26. Chang H. Lei L. Zhou Y. Ye F. Zhao G. Dietary flavonoids and the risk of colorectal cancer: An updated meta-analysis of epidemiological studies. Nutrients 2018 10 7 950 10.3390/nu10070950 30041489
    [Google Scholar]
  27. Baby J. Devan A.R. Kumar A.R. Gorantla J.N. Nair B. Aishwarya T.S. Nath L.R. Cogent role of flavonoids as key orchestrators of chemoprevention of hepatocellular carcinoma: A review. J. Food Biochem. 2021 45 7 e13761 10.1111/jfbc.13761 34028054
    [Google Scholar]
  28. Jeon J.S. Kwon S. Ban K. Kwon Hong Y. Ahn C. Sung J.S. Choi I. Regulation of the intracellular ROS level is critical for the antiproliferative effect of quercetin in the hepatocellular carcinoma cell line HepG2. Nutr. Cancer 2019 71 5 861 869 10.1080/01635581.2018.1559929 30661409
    [Google Scholar]
  29. Luo H. Jiang B.H. King S.M. Chen Y.C. Inhibition of cell growth and VEGF expression in ovarian cancer cells by flavonoids. Nutr. Cancer 2008 60 6 800 809 10.1080/01635580802100851 19005980
    [Google Scholar]
  30. Liu Y. Tang Z.G. Lin Y. Qu X.G. Lv W. Wang G.B. Li C.L. Effects of quercetin on proliferation and migration of human glioblastoma U251 cells. Biomed. Pharmacother. 2017 92 33 38 10.1016/j.biopha.2017.05.044 28528183
    [Google Scholar]
  31. Belosludtseva N.V. Uryupina T.A. Pavlik L.L. Mikheeva I.B. Talanov E.Y. Venediktova N.I. Serov D.A. Stepanov M.R. Ananyan M.A. Mironova G.D. Pathological alterations in heart mitochondria in a rat model of isoprenaline-induced myocardial injury and their correction with water-soluble taxifolin. Int. J. Mol. Sci. 2024 25 21 11596 10.3390/ijms252111596 39519147
    [Google Scholar]
  32. Shu Z. Yang Y. Yang L. Jiang H. Yu X. Wang Y. Cardioprotective effects of dihydroquercetin against ischemia reperfusion injury by inhibiting oxidative stress and endoplasmic reticulum stress-induced apoptosis via the PI3K/Akt pathway. Food Funct. 2019 10 1 203 215 10.1039/C8FO01256C 30525169
    [Google Scholar]
  33. Zhan Z.Y. Wu M. Shang Y. Jiang M. Liu J. Qiao C.Y. Ye H. Lin Y.C. Piao M.H. Sun R.H. Zhang Z.H. Jiao J.Y. Wu Y.L. Nan J.X. Lian L.H. Taxifolin ameliorate high-fat-diet feeding plus acute ethanol binge-induced steatohepatitis through inhibiting inflammatory caspase-1-dependent pyroptosis. Food Funct. 2021 12 1 362 372 10.1039/D0FO02653K 33325949
    [Google Scholar]
  34. Oi N. Chen H. Ok Kim M. Lubet R.A. Bode A.M. Dong Z. Taxifolin suppresses UV-induced skin carcinogenesis by targeting EGFR and PI3K. Cancer Prev. Res. 2012 5 9 1103 1114 10.1158/1940‑6207.CAPR‑11‑0397 22805054
    [Google Scholar]
  35. Yang C.J. Wang Z.B. Mi Y.Y. Gao M.J. Lv J.N. Meng Y.H. Yang B.Y. Kuang H.X. UHPLC-MS/MS determination, pharmacokinetic, and bioavailability study of taxifolin in rat plasma after oral administration of its nanodispersion. Molecules 2016 21 4 494 10.3390/molecules21040494 27089318
    [Google Scholar]
  36. Stenger Moura F.C. dos Santos Machado C.L. Reisdorfer Paula F. Garcia Couto A. Ricci M. Cechinel-Filho V. Bonomini T.J. Sandjo L.P. Bellé Bresolin T.M. Taxifolin stability: In silico prediction and in vitro degradation with HPLC-UV/UPLC–ESI-MS monitoring. J. Pharm. Anal. 2021 11 2 232 240 10.1016/j.jpha.2020.06.008 34012699
    [Google Scholar]
  37. Fatkullin R. Kalinina I. Naumenko N. Naumenko E. Use of micronization and complex coacervation to preserve antioxidant properties of flavonoids. Int. J. Food Sci. 2023 2023 1 13 10.1155/2023/9456931 37745180
    [Google Scholar]
  38. Zu Y. Wu W. Zhao X. Li Y. Zhong C. Zhang Y. The high water solubility of inclusion complex of taxifolin-γ-CD prepared and characterized by the emulsion solvent evaporation and the freeze drying combination method. Int. J. Pharm. 2014 477 1-2 148 158 10.1016/j.ijpharm.2014.10.027 25455767
    [Google Scholar]
  39. Ding Q. Liu W. Liu X. Ding C. Zhao Y. Dong L. Chen H. Sun S. Zhang Y. Zhang J. Wu M. Polyvinylpyrrolidone-modified taxifolin liposomes promote liver repair by modulating autophagy to inhibit activation of the TLR4/NF-κB signaling pathway. Front. Bioeng. Biotechnol. 2022 10 860515 10.3389/fbioe.2022.860515 35721857
    [Google Scholar]
  40. Ding Q. Chen K. Liu X. Ding C. Zhao Y. Sun S. Zhang Y. Zhang J. Liu S. Liu W. Modification of taxifolin particles with an enteric coating material promotes repair of acute liver injury in mice through modulation of inflammation and autophagy signaling pathway. Biomed. Pharmacother. 2022 152 113242 10.1016/j.biopha.2022.113242 35691160
    [Google Scholar]
  41. Ding Q. Liu X. Liu X. Chai G. Wang N. Ma S. Zhang L. Zhang S. Yang J. Wang Y. Shen L. Ding C. Liu W. Polyvinyl alcohol/carboxymethyl chitosan-based hydrogels loaded with taxifolin liposomes promote diabetic wound healing by inhibiting inflammation and regulating autophagy. Int. J. Biol. Macromol. 2024 263 Pt 1 130226 10.1016/j.ijbiomac.2024.130226 38368971
    [Google Scholar]
  42. Lu Y. Liu X. Zhao T. Ding C. Ding Q. Wang N. Ma S. Ma L. Liu W. Synthesis of taxifolin-loaded polydopamine for chemo-photothermal-synergistic therapy of ovarian cancer. Molecules 2024 29 5 1042 10.3390/molecules29051042 38474556
    [Google Scholar]
  43. Das A. Bhattacharya B. Gayen S. Roy S. Unraveling the chemotherapeutic potential of taxifolin ruthenium-p-cymene complex in breast carcinoma: Insights into AhR signaling pathway in vitro and in vivo. Transl. Oncol. 2024 49 102107 10.1016/j.tranon.2024.102107 39181115
    [Google Scholar]
  44. Yu F. Yu C. Li F. Zuo Y. Wang Y. Yao L. Wu C. Wang C. Ye L. Wnt/β-catenin signaling in cancers and targeted therapies. Signal Transduct. Target. Ther. 2021 6 1 307 10.1038/s41392‑021‑00701‑5 34456337
    [Google Scholar]
  45. Xu C. Xu Z. Zhang Y. Evert M. Calvisi D.F. Chen X. β-Catenin signaling in hepatocellular carcinoma. J. Clin. Invest. 2022 132 4 e154515 10.1172/JCI154515 35166233
    [Google Scholar]
  46. Chen Y. Mei Y. Yang L. Li W. Zhou Y. He S. Liang J. Taxifolin improves inflammatory injury of human bronchial epithelial cells by inhibiting matrix metalloproteinase (MMP) 10 via Wnt/β-catenin pathway. Bioengineered 2022 13 1 1198 1208 10.1080/21655979.2021.2018384 35000533
    [Google Scholar]
  47. Ocak M. Usta D.D. Arik Erol G.N. Kaplanoglu G.T. Konac E. Yar Saglam A.S. Determination of in vitro and in vivo effects of taxifolin and epirubicin on epithelial–mesenchymal transition in mouse breast cancer cells. Technol. Cancer Res. Treat. 2024 23 15330338241241245 10.1177/15330338241241245 38515396
    [Google Scholar]
  48. Xu L. Zhang L. Zhang S. Yang J. Zhu A. Sun J. Kalvakolanu D.V. Cong X. Zhang J. Tang J. Guo B. Taxifolin inhibits melanoma proliferation/migration impeding USP18/Rac1/JNK/β-catenin oncogenic signaling. Phytomedicine 2024 123 155199 10.1016/j.phymed.2023.155199 37995531
    [Google Scholar]
  49. Razak S. Afsar T. Ullah A. Almajwal A. Alkholief M. Alshamsan A. Jahan S. Taxifolin, a natural flavonoid interacts with cell cycle regulators causes cell cycle arrest and causes tumor regression by activating Wnt/ β -catenin signaling pathway. BMC Cancer 2018 18 1 1043 10.1186/s12885‑018‑4959‑4 30367624
    [Google Scholar]
  50. Manigandan K. Manimaran D. Jayaraj R.L. Elangovan N. Dhivya V. Kaphle A. Taxifolin curbs NF-κB-mediated Wnt/β-catenin signaling via up-regulating Nrf2 pathway in experimental colon carcinogenesis. Biochimie 2015 119 103 112 10.1016/j.biochi.2015.10.014 26482805
    [Google Scholar]
  51. Tewari D. Patni P. Bishayee A. Sah A.N. Bishayee A. Natural products targeting the PI3K-Akt-mTOR signaling pathway in cancer: A novel therapeutic strategy. Semin. Cancer Biol. 2022 80 1 17 10.1016/j.semcancer.2019.12.008 31866476
    [Google Scholar]
  52. Yu L. Wei J. Liu P. Attacking the PI3K/Akt/mTOR signaling pathway for targeted therapeutic treatment in human cancer. Semin. Cancer Biol. 2022 85 69 94 10.1016/j.semcancer.2021.06.019 34175443
    [Google Scholar]
  53. Ding C. Zhao Y. Chen X. Zheng Y. Liu W. Liu X. Taxifolin, a novel food, attenuates acute alcohol-induced liver injury in mice through regulating the NF-κB-mediated inflammation and PI3K/Akt signalling pathways. Pharm. Biol. 2021 59 1 866 877 10.1080/13880209.2021.1942504 34225578
    [Google Scholar]
  54. Pan S. Zhao X. Ji N. Shao C. Fu B. Zhang Z. Wang R. Qiu Y. Jin M. Kong D. Inhibitory effect of taxifolin on mast cell activation and mast cell-mediated allergic inflammatory response. Int. Immunopharmacol. 2019 71 205 214 10.1016/j.intimp.2019.03.038 30925321
    [Google Scholar]
  55. Stanciu S. Ionita-Radu F. Stefani C. Miricescu D. Stanescu-Spinu I.I. Greabu M. Ripszky Totan A. Jinga M. Targeting PI3K/AKT/mTOR signaling pathway in pancreatic cancer: From molecular to clinical aspects. Int. J. Mol. Sci. 2022 23 17 10132 10.3390/ijms231710132 36077529
    [Google Scholar]
  56. Morgos D.T. Stefani C. Miricescu D. Greabu M. Stanciu S. Nica S. Stanescu-Spinu I.I. Balan D.G. Balcangiu-Stroescu A.E. Coculescu E.C. Georgescu D.E. Nica R.I. Targeting PI3K/AKT/mTOR and MAPK signaling pathways in gastric cancer. Int. J. Mol. Sci. 2024 25 3 1848 10.3390/ijms25031848 38339127
    [Google Scholar]
  57. Saxton R.A. Sabatini D.M. mTOR signaling in growth, metabolism, and disease. Cell 2017 169 2 361 371 10.1016/j.cell.2017.03.035 28388417
    [Google Scholar]
  58. Hua H. Kong Q. Zhang H. Wang J. Luo T. Jiang Y. Targeting mTOR for cancer therapy. J. Hematol. Oncol. 2019 12 1 71 10.1186/s13045‑019‑0754‑1 31277692
    [Google Scholar]
  59. Yao W. Gong H. Mei H. Shi L. Yu J. Hu Y. Taxifolin targets PI3K and mTOR and inhibits glioblastoma multiforme. J. Oncol. 2021 2021 1 12 10.1155/2021/5560915 34462635
    [Google Scholar]
  60. Mondal S. Adhikari N. Banerjee S. Amin S.A. Jha T. Matrix metalloproteinase-9 (MMP-9) and its inhibitors in cancer: A minireview. Eur. J. Med. Chem. 2020 194 112260 10.1016/j.ejmech.2020.112260 32224379
    [Google Scholar]
  61. Maybee D.V. Ink N.L. Ali M.A.M. Novel roles of MT1-MMP and MMP-2: Beyond the extracellular milieu. Int. J. Mol. Sci. 2022 23 17 9513 10.3390/ijms23179513 36076910
    [Google Scholar]
  62. Rahaman A. Chaudhuri A. Sarkar A. Chakraborty S. Bhattacharjee S. Mandal D.P. Eucalyptol targets PI3K/Akt/mTOR pathway to inhibit skin cancer metastasis. Carcinogenesis 2022 43 6 571 583 10.1093/carcin/bgac020 35165685
    [Google Scholar]
  63. Yang M. Lu Y. Piao W. Jin H. The translational regulation in mTOR pathway. Biomolecules 2022 12 6 802 10.3390/biom12060802 35740927
    [Google Scholar]
  64. Liu X. Liu W. Ding C. Zhao Y. Chen X. Ling D. Zheng Y. Cheng Z. Taxifolin, extracted from waste Larix olgensis roots, attenuates CCl4-induced liver fibrosis by regulating the PI3K/AKT/mTOR and TGF-β1/Smads signaling pathways. Drug Des. Devel. Ther. 2021 15 871 887 10.2147/DDDT.S281369 33664566
    [Google Scholar]
  65. Zhou W. Guo Z.L.M.W.D.C.L.Z.L. Wang M. Taxifolin inhibits the scar cell carcinoma growth by inducing apoptosis, cell cycle arrest and suppression of PI3K/AKT/mTOR pathway. J. BUON 2019 24 2 853 858 31128046
    [Google Scholar]
  66. Kabel A.M. Salama S.A. Borg H.M. Ali D.A. Abd Elmaaboud M.A. Targeting p-AKT/mTOR/MAP kinase signaling, NLRP3 inflammasome and apoptosis by fluvastatin with or without taxifolin mitigates gonadal dysfunction induced by bisphenol-A in male rats. Hum. Exp. Toxicol. 2022 41 09603271221089919 10.1177/09603271221089919 35465754
    [Google Scholar]
  67. Haque M.W. Bose P. Siddique M.U.M. Sunita P. Lapenna A. Pattanayak S.P. Taxifolin binds with LXR (α & β) to attenuate DMBA-induced mammary carcinogenesis through mTOR/Maf-1/PTEN pathway. Biomed. Pharmacother. 2018 105 27 36 10.1016/j.biopha.2018.05.114 29843042
    [Google Scholar]
  68. Feng E. Wang J. Wang X. Wang Z. Chen X. Zhu X. Hou W. Inhibition of HMGB1 might enhance the protective effect of taxifolin in cardiomyocytes via PI3K/AKT signaling pathway. Iran. J. Pharm. Res. 2021 20 2 316 332 34567165
    [Google Scholar]
  69. Shah U. Patel N. Patel M. Rohit S. Solanki N. Patel A. Patel S. Patel V. Patel R. Jawarkar R.D. Computational exploration of naturally occurring flavonoids as TGF‐β inhibitors in breast cancer: Insights from docking and molecular dynamics simulations and in‐vitro cytotoxicity study. Chem. Biodivers. 2024 21 6 e202301903 10.1002/cbdv.202301903 38623839
    [Google Scholar]
  70. Kabel A.M. Salama S.A. Effect of taxifolin/dapagliflozin combination on colistin-induced nephrotoxicity in rats. Hum. Exp. Toxicol. 2021 40 10 1767 1780 10.1177/09603271211010906 33882723
    [Google Scholar]
  71. Kabel A.M. Arab H.H. Abd Elmaaboud M.A. Attenuation of diethyl nitrosamine-induced hepatocellular carcinoma by taxifolin and/or alogliptin: The interplay between toll-like receptor 4, transforming growth factor beta-1, and apoptosis. Hum. Exp. Toxicol. 2021 40 10 1710 1720 10.1177/09603271211008496 33840231
    [Google Scholar]
  72. Liu X. Ma Y. Luo L. Zeng Z. Zong D. Chen Y. Taxifolin ameliorates cigarette smoke-induced chronic obstructive pulmonary disease via inhibiting inflammation and apoptosis. Int. Immunopharmacol. 2023 115 109577 10.1016/j.intimp.2022.109577 36584569
    [Google Scholar]
  73. Wang Y.J. Zhang H.Q. Han H.L. Zou Y.Y. Gao Q.L. Yang G.T. Taxifolin enhances osteogenic differentiation of human bone marrow mesenchymal stem cells partially via NF-κB pathway. Biochem. Biophys. Res. Commun. 2017 490 1 36 43 10.1016/j.bbrc.2017.06.002 28579433
    [Google Scholar]
  74. Cao X. Bi R. Hao J. Wang S. Huo Y. Demoz R.M. Banda R. Tian S. Xin C. Fu M. Pi J. Liu J. A study on the protective effects of taxifolin on human umbilical vein endothelial cells and THP-1 cells damaged by hexavalent chromium: A probable mechanism for preventing cardiovascular disease induced by heavy metals. Food Funct. 2020 11 5 3851 3859 10.1039/D0FO00567C 32319486
    [Google Scholar]
  75. Hou J. Hu M. Zhang L. Gao Y. Ma L. Xu Q. Dietary taxifolin protects against dextran sulfate sodium-induced colitis via NF-κB signaling, enhancing intestinal barrier and modulating gut microbiota. Front. Immunol. 2021 11 631809 10.3389/fimmu.2020.631809 33664740
    [Google Scholar]
  76. Akinmoladun A.C. Famusiwa C.D. Josiah S.S. Lawal A.O. Olaleye M.T. Akindahunsi A.A. Dihydroquercetin improves rotenone‐induced Parkinsonism by regulating NF‐κB‐mediated inflammation pathway in rats. J. Biochem. Mol. Toxicol. 2022 36 5 e23022 10.1002/jbt.23022 35187747
    [Google Scholar]
  77. Gong S. Zheng J. Zhang J. Wang Y. Xie Z. Wang Y. Han J. Taxifolin ameliorates lipopolysaccharide-induced intestinal epithelial barrier dysfunction via attenuating NF-kappa B/MLCK pathway in a Caco-2 cell monolayer model. Food Res. Int. 2022 158 111502 10.1016/j.foodres.2022.111502 35840209
    [Google Scholar]
  78. Ozyurt R. Celik N. Suleyman Z. Cagiran F. Kali Z. Gurkan N. Altindag F. Bulut S. Sarigul C. Dinc K. Suleyman H. Fertility protective effect of taxifolin in cisplatin-induced ovarian damage. Eur. Rev. Med. Pharmacol. Sci. 2022 26 19 7195 7203 36263529
    [Google Scholar]
  79. Liu J.H. Cao L. Zhang C.H. Li C. Zhang Z.H. Wu Q. Dihydroquercetin attenuates lipopolysaccharide-induced acute lung injury through modulating FOXO3-mediated NF-κB signaling via miR-132–3p. Pulm. Pharmacol. Ther. 2020 64 101934 10.1016/j.pupt.2020.101934 32805387
    [Google Scholar]
  80. Zhang H.Q. Wang Y.J. Yang G.T. Gao Q.L. Tang M.X. Taxifolin inhibits receptor activator of NF-κB ligand-induced osteoclastogenesis of human bone marrow-derived macrophages in vitro and prevents lipopolysaccharide-induced bone loss in vivo. Pharmacology 2019 103 1-2 101 109 10.1159/000495254 30522105
    [Google Scholar]
  81. Park S.Y. Kim H.Y. Park H.J. Shin H.K. Hong K.W. Kim C.D. Concurrent treatment with taxifolin and cilostazol on the lowering of β-amyloid accumulation and neurotoxicity via the suppression of P-JAK2/P-STAT3/NF-κB/BACE1 signaling pathways. PLoS One 2016 11 12 e0168286 10.1371/journal.pone.0168286 27977755
    [Google Scholar]
  82. Jiang H. Yu J. Yan Z. Lin Z. Lin M. Mao Y. Hong Z. Lin J. Xue X. Pan X. Pharmacological activation of the Nrf2 pathway by Taxifolin remodels articular cartilage microenvironment for the therapy of Osteoarthritis. Int. Immunopharmacol. 2023 122 110587 10.1016/j.intimp.2023.110587 37399606
    [Google Scholar]
  83. Li G.N. Zhao X.J. Wang Z. Luo M.S. Shi S.N. Yan D.M. Li H.Y. Liu J.H. Yang Y. Tan J.H. Zhang Z.Y. Chen R.Q. Lai H.L. Huang X.Y. Zhou J.F. Ma D. Fang Y. Gao Q.L. Elaiophylin triggers paraptosis and preferentially kills ovarian cancer drug-resistant cells by inducing MAPK hyperactivation. Signal Transduct. Target. Ther. 2022 7 1 317 10.1038/s41392‑022‑01131‑7 36097006
    [Google Scholar]
  84. Moustardas P. Aberdam D. Lagali N. MAPK pathways in ocular pathophysiology: Potential therapeutic drugs and challenges. Cells 2023 12 4 617 10.3390/cells12040617 36831285
    [Google Scholar]
  85. Zhao M. Chen J. Zhu P. Fujino M. Takahara T. Toyama S. Tomita A. Zhao L. Yang Z. Hei M. Zhong L. Zhuang J. Kimura S. Li X.K. Dihydroquercetin (DHQ) ameliorated concanavalin A-induced mouse experimental fulminant hepatitis and enhanced HO-1 expression through MAPK/Nrf2 antioxidant pathway in RAW cells. Int. Immunopharmacol. 2015 28 2 938 944 10.1016/j.intimp.2015.04.032 25916679
    [Google Scholar]
  86. Liu F. Ma Y. Xu Y. Taxifolin shows anticataractogenesis and attenuates diabetic retinopathy in STZ-diabetic rats via suppression of aldose reductase, oxidative stress, and MAPK signaling pathway. Endocr. Metab. Immune Disord. Drug Targets 2020 20 4 599 608 10.2174/1871530319666191018122821 31656158
    [Google Scholar]
  87. Zheng X. Song X. Zhu G. Pan D. Li H. Hu J. Xiao K. Gong Q. Gu Z. Luo K. Li W. Nanomedicine combats drug resistance in lung cancer. Adv. Mater. 2024 36 3 2308977 10.1002/adma.202308977 37968865
    [Google Scholar]
  88. Butt S.S. Khan K. Badshah Y. Rafiq M. Shabbir M. Evaluation of pro-apoptotic potential of taxifolin against liver cancer. PeerJ 2021 9 e11276 10.7717/peerj.11276 34113483
    [Google Scholar]
  89. Wang R. Zhu X. Wang Q. Li X. Wang E. Zhao Q. Wang Q. Cao H. The anti-tumor effect of taxifolin on lung cancer via suppressing stemness and epithelial-mesenchymal transition in vitro and oncogenesis in nude mice. Ann. Transl. Med. 2020 8 9 590 10.21037/atm‑20‑3329 32566617
    [Google Scholar]
  90. Kaewmeesri P. Pocasap P. Kukongviriyapan V. Prawan A. Kongpetch S. Senggunprai L. Anti-metastatic potential of natural triterpenoid cucurbitacin b against cholangiocarcinoma cells by targeting Src protein. Integr. Cancer Ther. 2022 21 15347354221124861 10.1177/15347354221124861 36154723
    [Google Scholar]
  91. Li J. Hu L. Zhou T. Gong X. Jiang R. Li H. Kuang G. Wan J. Li H. Taxifolin inhibits breast cancer cells proliferation, migration and invasion by promoting mesenchymal to epithelial transition via β-catenin signaling. Life Sci. 2019 232 116617 10.1016/j.lfs.2019.116617 31260685
    [Google Scholar]
  92. Suski J.M. Braun M. Strmiska V. Sicinski P. Targeting cell-cycle machinery in cancer. Cancer Cell 2021 39 6 759 778 10.1016/j.ccell.2021.03.010 33891890
    [Google Scholar]
  93. Chen X. Gu N. Xue C. Li B.R. Plant flavonoid taxifolin inhibits the growth, migration and invasion of human osteosarcoma cells. Mol. Med. Rep. 2018 17 2 3239 3245 29257319
    [Google Scholar]
  94. Debnath J. Gammoh N. Ryan K.M. Autophagy and autophagy-related pathways in cancer. Nat. Rev. Mol. Cell Biol. 2023 24 8 560 575 10.1038/s41580‑023‑00585‑z 36864290
    [Google Scholar]
  95. Singh S.S. Vats S. Chia A.Y.Q. Tan T.Z. Deng S. Ong M.S. Arfuso F. Yap C.T. Goh B.C. Sethi G. Huang R.Y.J. Shen H.M. Manjithaya R. Kumar A.P. Dual role of autophagy in hallmarks of cancer. Oncogene 2018 37 9 1142 1158 10.1038/s41388‑017‑0046‑6 29255248
    [Google Scholar]
  96. Liu S. Yao S. Yang H. Liu S. Wang Y. Autophagy: Regulator of cell death. Cell Death Dis. 2023 14 10 648 10.1038/s41419‑023‑06154‑8 37794028
    [Google Scholar]
  97. Zai W. Chen W. Luan J. Fan J. Zhang X. Wu Z. Ding T. Ju D. Liu H. Dihydroquercetin ameliorated acetaminophen-induced hepatic cytotoxicity via activating JAK2/STAT3 pathway and autophagy. Appl. Microbiol. Biotechnol. 2018 102 3 1443 1453 10.1007/s00253‑017‑8686‑6 29243082
    [Google Scholar]
  98. Zhang C. Zhan J. Zhao M. Dai H. Deng Y. Zhou W. Zhao L. Protective mechanism of Taxifolin for chlorpyrifos neurotoxicity in BV2 cells. Neurotoxicology 2019 74 74 80 10.1016/j.neuro.2019.05.010 31152760
    [Google Scholar]
  99. Piao M.H. Wang H. Jiang Y.J. Wu Y.L. Nan J.X. Lian L.H. Taxifolin blocks monosodium urate crystal-induced gouty inflammation by regulating phagocytosis and autophagy. Inflammopharmacology 2022 30 4 1335 1349 10.1007/s10787‑022‑01014‑x 35708797
    [Google Scholar]
  100. Mohammed H.A. Almahmoud S.A. El-Ghaly E.S.M. Khan F.A. Emwas A.H. Jaremko M. Almulhim F. Khan R.A. Ragab E.A. Comparative anticancer potentials of taxifolin and quercetin methylated derivatives against HCT-116 cell lines: Effects of O -methylation on taxifolin and quercetin as preliminary natural leads. ACS Omega 2022 7 50 46629 46639 10.1021/acsomega.2c05565 36570308
    [Google Scholar]
  101. Dostal Z. Sebera M. Srovnal J. Staffova K. Modriansky M. Dual effect of taxifolin on ZEB2 cancer signaling in HepG2 cells. Molecules 2021 26 5 1476 10.3390/molecules26051476 33803107
    [Google Scholar]
  102. Chen S.J. Ren L.K. Fei X.B. Liu P. Wang X. Zhu C.H. Pan Y.Z. A study on the role of Taxifolin in inducing apoptosis of pancreatic cancer cells: Screening results using weighted gene co-expression network analysis. Aging 2024 16 3 2617 2637 10.18632/aging.205500 38305809
    [Google Scholar]
  103. Wang Y. Chen S. Ma T. Long Q. Chen L. Xu K. Cao Y. Promotion of apoptosis in melanoma cells by taxifolin through the PI3K/AKT signaling pathway: Screening of natural products using WGCNA and CMAP platforms. Int. Immunopharmacol. 2024 138 112517 10.1016/j.intimp.2024.112517 38924866
    [Google Scholar]
  104. Parreno V. Loubiere V. Schuettengruber B. Fritsch L. Rawal C.C. Erokhin M. Győrffy B. Normanno D. Di Stefano M. Moreaux J. Butova N.L. Chiolo I. Chetverina D. Martinez A.M. Cavalli G. Transient loss of Polycomb components induces an epigenetic cancer fate. Nature 2024 629 8012 688 696 10.1038/s41586‑024‑07328‑w 38658752
    [Google Scholar]
  105. Chao Y.L. Pecot C.V. Targeting epigenetics in lung cancer. Cold Spring Harb. Perspect. Med. 2021 11 6 a038000 10.1101/cshperspect.a038000 32900703
    [Google Scholar]
  106. Mao D. Liu A.H. Wang Z.P. Zhang X.W. Lu H. Cucurbitacin B inhibits cell proliferation and induces cell apoptosis in colorectal cancer by modulating methylation status of BTG3. Neoplasma 2019 66 4 593 602 10.4149/neo_2018_180929N729 31058532
    [Google Scholar]
  107. Kuang H. Tang Z. Zhang C. Wang Z. Li W. Yang C. Wang Q. Yang B. Kong A.N. Taxifolin activates the Nrf2 anti-oxidative stress pathway in mouse skin epidermal JB6 P+ cells through epigenetic modifications. Int. J. Mol. Sci. 2017 18 7 1546 10.3390/ijms18071546 28714938
    [Google Scholar]
  108. Williams E.D. Gao D. Redfern A. Thompson E.W. Controversies around epithelial–mesenchymal plasticity in cancer metastasis. Nat. Rev. Cancer 2019 19 12 716 732 10.1038/s41568‑019‑0213‑x 31666716
    [Google Scholar]
  109. Masciale V. Grisendi G. Banchelli F. D’Amico R. Maiorana A. Sighinolfi P. Pinelli M. Lovati E. Stefani A. Morandi U. Dominici M. Aramini B. Correlating tumor-infiltrating lymphocytes and lung cancer stem cells: A cross-sectional study. Ann. Transl. Med. 2019 7 22 619 10.21037/atm.2019.11.27 31930020
    [Google Scholar]
  110. Lamouille S. Xu J. Derynck R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 2014 15 3 178 196 10.1038/nrm3758 24556840
    [Google Scholar]
  111. De Wever O. Mareel M. Role of tissue stroma in cancer cell invasion. J. Pathol. 2003 200 4 429 447 10.1002/path.1398 12845611
    [Google Scholar]
  112. Yeung K.T. Yang J. Epithelial–mesenchymal transition in tumor metastasis. Mol. Oncol. 2017 11 1 28 39 10.1002/1878‑0261.12017 28085222
    [Google Scholar]
  113. Singh M. Yelle N. Venugopal C. Singh S.K. EMT: Mechanisms and therapeutic implications. Pharmacol. Ther. 2018 182 80 94 10.1016/j.pharmthera.2017.08.009 28834698
    [Google Scholar]
  114. Hsieh P.L. Liao Y.W. Hsieh C.W. Chen P.N. Yu C.C. Soy isoflavone genistein impedes cancer stemness and mesenchymal transition in head and neck cancer through activating miR-34a/RTCB axis. Nutrients 2020 12 7 1924 10.3390/nu12071924 32610494
    [Google Scholar]
  115. Haider T. Pandey V. Banjare N. Gupta P.N. Soni V. Drug resistance in cancer: Mechanisms and tackling strategies. Pharmacol. Rep. 2020 72 5 1125 1151 10.1007/s43440‑020‑00138‑7 32700248
    [Google Scholar]
  116. Zraik I.M. Heß-Busch Y. Management of chemotherapy side effects and their long-term consequences. Urologe A 2021 60 7 862 871 10.1007/s00120‑021‑01569‑7 34185118
    [Google Scholar]
  117. Bukowski K. Kciuk M. Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020 21 9 3233 10.3390/ijms21093233 32370233
    [Google Scholar]
  118. Cui Q. Wang J.Q. Assaraf Y.G. Ren L. Gupta P. Wei L. Ashby C.R. Jr Yang D.H. Chen Z.S. Modulating ROS to overcome multidrug resistance in cancer. Drug Resist. Updat. 2018 41 1 25 10.1016/j.drup.2018.11.001 30471641
    [Google Scholar]
  119. Mollazadeh S. Sahebkar A. Hadizadeh F. Behravan J. Arabzadeh S. Structural and functional aspects of P-glycoprotein and its inhibitors. Life Sci. 2018 214 118 123 10.1016/j.lfs.2018.10.048 30449449
    [Google Scholar]
  120. García-Carrasco M. Mendoza-Pinto C. Macias Díaz S. Vera-Recabarren M. Vázquez de Lara L. Méndez Martínez S. Soto-Santillán P. González-Ramírez R. Ruiz-Arguelles A. P-glycoprotein in autoimmune rheumatic diseases. Autoimmun. Rev. 2015 14 7 594 600 10.1016/j.autrev.2015.02.006 25712147
    [Google Scholar]
  121. Skinner K.T. Palkar A.M. Hong A.L. Genetics of ABCB1 in cancer. Cancers 2023 15 17 4236 10.3390/cancers15174236 37686513
    [Google Scholar]
  122. Hu B. Zou T. Qin W. Shen X. Su Y. Li J. Chen Y. Zhang Z. Sun H. Zheng Y. Wang C.Q. Wang Z. Li T.E. Wang S. Zhu L. Wang X. Fu Y. Ren X. Dong Q. Qin L.X. Inhibition of EGFR overcomes acquired lenvatinib resistance driven by STAT3–ABCB1 signaling in hepatocellular carcinoma. Cancer Res. 2022 82 20 3845 3857 10.1158/0008‑5472.CAN‑21‑4140 36066408
    [Google Scholar]
  123. Engle K. Kumar G. Cancer multidrug-resistance reversal by ABCB1 inhibition: A recent update. Eur. J. Med. Chem. 2022 239 114542 10.1016/j.ejmech.2022.114542 35751979
    [Google Scholar]
  124. Weng H.J. Tsai T.F. ABCB1 in dermatology: Roles in skin diseases and their treatment. J. Mol. Med. 2021 99 11 1527 1538 10.1007/s00109‑021‑02105‑y 34370042
    [Google Scholar]
  125. Chen H.J. Chung Y.L. Li C.Y. Chang Y.T. Wang C.C.N. Lee H.Y. Lin H.Y. Hung C.C. Taxifolin resensitizes multidrug resistance cancer cells via uncompetitive inhibition of P-glycoprotein function. Molecules 2018 23 12 3055 10.3390/molecules23123055 30469543
    [Google Scholar]
  126. Zhang Z.R. Al Zaharna M. Wong M.M.K. Chiu S.K. Cheung H.Y. Taxifolin enhances andrographolide-induced mitotic arrest and apoptosis in human prostate cancer cells via spindle assembly checkpoint activation. PLoS One 2013 8 1 e54577 10.1371/journal.pone.0054577 23382917
    [Google Scholar]
  127. Xiao Y. Yu D. Tumor microenvironment as a therapeutic target in cancer. Pharmacol. Ther. 2021 221 107753 10.1016/j.pharmthera.2020.107753 33259885
    [Google Scholar]
  128. Li C. Liu J. Zhang C. Cao L. Zou F. Zhang Z. Dihydroquercetin (DHQ) ameliorates LPS-induced acute lung injury by regulating macrophage M2 polarization through IRF4/miR-132-3p/FBXW7 axis. Pulm. Pharmacol. Ther. 2023 83 102249 10.1016/j.pupt.2023.102249 37648017
    [Google Scholar]
  129. Unver E. Tosun M. Olmez H. Kuzucu M. Cimen F.K. Suleyman Z. The effect of taxifolin on cisplatin-induced pulmonary damage in rats: A biochemical and histopathological evaluation. Mediators Inflamm. 2019 2019 1 6 10.1155/2019/3740867 30992689
    [Google Scholar]
  130. Lin X. Dong Y. Gu Y. Kapoor A. Peng J. Su Y. Wei F. Wang Y. Yang C. Gill A. Neira S.V. Tang D. Taxifolin inhibits breast cancer growth by facilitating CD8+ T cell infiltration and inducing a novel set of genes including potential tumor suppressor genes in 1q21.3. Cancers 2023 15 12 3203 10.3390/cancers15123203 37370814
    [Google Scholar]
  131. Yuan X. Li N. Zhang M. Lu C. Du Z. Zhu W. Wu D. Taxifolin attenuates IMQ-induced murine psoriasis-like dermatitis by regulating T helper cell responses via Notch1 and JAK2/STAT3 signal pathways. Biomed. Pharmacother. 2020 123 109747 10.1016/j.biopha.2019.109747 31881484
    [Google Scholar]
  132. Lin X. Dong Y. Gu Y. Wei F. Peng J. Su Y. Wang Y. Yang C. Neira S.V. Kapoor A. Tang D. Taxifolin inhibits the growth of non-small-cell lung cancer via downregulating genes displaying novel and robust associations with immune evasion factors. Cancers 2023 15 19 4818 10.3390/cancers15194818 37835514
    [Google Scholar]
  133. Tang X. Liu L. Li Y. Hao S. Zhao Y. Wu X. Li M. Chen Y. Deng S. Gou S. Cai D. Chen M. Li X. Sun Y. Gu L. Li W. Wang F. Zhang Z. Yao L. Shen J. Xiao Z. Du F. Chemical profiling and investigation of molecular mechanisms underlying anti-hepatocellular carcinoma activity of extracts from Polygonum perfoliatum L. Biomed. Pharmacother. 2023 166 115315 10.1016/j.biopha.2023.115315 37579693
    [Google Scholar]
  134. Bijak M. Silybin, a major bioactive component of milk thistle (Silybum marianum L. Gaernt.)—chemistry, bioavailability, and metabolism. Molecules 2017 22 11 1942 10.3390/molecules22111942 29125572
    [Google Scholar]
  135. Lakeev A.P. Yanovskaya E.A. Yanovsky V.A. Frelikh G.A. Andropov M.O. Novel aspects of taxifolin pharmacokinetics: Dose proportionality, cumulative effect, metabolism, microemulsion dosage forms. J. Pharm. Biomed. Anal. 2023 236 115744 10.1016/j.jpba.2023.115744 37797493
    [Google Scholar]
  136. Bayer J. Högger P. Review of the pharmacokinetics of French maritime pine bark extract (Pycnogenol®) in humans. Front. Nutr. 2024 11 1389422 10.3389/fnut.2024.1389422 38757126
    [Google Scholar]
  137. Kundrapu D.B. Rao P.A. Malla R.R. Enhanced efficacy of quercetin and taxifolin encapsulated with pH-responsive injectable BSA hydrogel for targeting triple-negative breast cancer cells. Int. J. Biol. Macromol. 2025 287 138477 10.1016/j.ijbiomac.2024.138477 39667444
    [Google Scholar]
  138. Liu X.L. Zu S. Yue H. Li A.N. Sun P.P. Li J.G. Yan L. Ma L.N. Zhang S. Taxifolin ameliorates the D-galactose-induced aging of mouse hippocampal neurons HT-22 cells through modulating SIRT1/p53 and PI3K/AKT signaling pathways. J. Asian Nat. Prod. Res. 2024 1 17 10.1080/10286020.2024.2421925 39484819
    [Google Scholar]
  139. Saito S. Tanaka M. Satoh-Asahara N. Carare R.O. Ihara M. Taxifolin: A potential therapeutic agent for cerebral amyloid angiopathy. Front. Pharmacol. 2021 12 643357 10.3389/fphar.2021.643357 33643053
    [Google Scholar]
  140. Shinozaki F. Kamei A. Shimada K. Matsuura H. Shibata T. Ikeuchi M. Yasuda K. Oroguchi T. Kishimoto N. Takashimizu S. Nishizaki Y. Abe K. Correction: Ingestion of taxifolin-rich foods affects brain activity, mental fatigue, and the whole blood transcriptome in healthy young adults: A randomized, double-blind, placebo-controlled, crossover study. Food Funct. 2023 14 9 4440 10.1039/D3FO90030D 37083165
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010366947250415051408
Loading
/content/journals/cpb/10.2174/0113892010366947250415051408
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test