Pharmaceutical Nanotechnology - Online First
Description text for Online First listing goes here...
42 results
-
-
Nanocarriers in Atopic Dermatitis Therapy: A Comprehensive Exploration
Authors: Meriem Rezigue, Rasha M. Bashatwah, Khaled I. Seetan and Alaa A. A. AljabaliAvailable online: 09 July 2025More LessIn this comprehensive exploration of advanced nanocarriers for atopic dermatitis (AD) therapy, we explored a spectrum of innovative delivery systems, each with unique attributes poised to revolutionize topical drug administration. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), have emerged as stalwarts offering controlled drug release and enhanced skin penetration. Vesicular systems such as liposomes, ethosomes, transfersomes, and niosomes are versatile in their ability to encapsulate hydrophilic and lipophilic agents and overcome barriers to drug permeation. Microemulsions and nanoemulsions exhibit good stability and effective drug permeation, whereas the addition of polymeric nanoparticles allows for efficient targeting with less toxicity. AuNPs and AgNPs allow for targeted delivery and immune modulation, whereas skin lipids restore this barrier. siRNA-silenced genes are involved in inflammation, whereas immunobiologics reset immune responses. These nanocarriers offer tremendous opportunities for the personalized treatment of AD, reduction in systemic exposure, and enhancement of therapeutic efficacy. Overcoming formulation hurdles and instability concerns, in addition to an in-depth understanding of the possibility of achieving game-changing improvements in the management of AD, has placed nanocarriers at the forefront of new and personalized therapeutic approaches that would redefine the care of patients affected by this devastating disease.
-
-
-
Functionalized Nanofibers: Revolutionizing Drug Delivery Systems and Biomedical Applications
Available online: 03 July 2025More LessThis review article examines functionalized nanofibers and their potential to revolutionize drug delivery systems and enhance their biomedical applications. By leveraging the high surface-area-to-volume ratio and tunable physicochemical properties of nanofibers, the limitations of conventional drug delivery methods can be addressed. These nanofibers can be engineered for the controlled and sustained release of drugs, growth factors, and bioactive agents to improve treatment efficacy and mitigate side effects. Furthermore, the versatility of functionalized nanofibers in various biomedical fields has been investigated. In tissue engineering, nanofibers serve as scaffolds that emulate the extracellular matrix and facilitate cell adhesion, proliferation, and differentiation, thus demonstrating the potential for regenerating tissues and organs, including bone, cartilage, and nerve repair. This review also explores their application in wound healing, where nanofiber dressings incorporating antimicrobial agents and growth factors can expedite healing, prevent infections, and minimize scarring, benefiting patients with chronic wounds, burns, and other complex skin injuries. Additionally, this article discusses the potential of functionalized nanofibers for developing innovative medical devices with therapeutic and diagnostic functions. The integration of sensing elements and drug-releasing components into nanofiber platforms has resulted in multifunctional devices capable of monitoring physiological parameters, detecting biomarkers, and delivering targeted therapies based on biological cues. The versatility of these nanofibers may enable the development of combination products that can incorporate multiple therapeutic modalities into a single platform, potentially enhancing the management of complex diseases and improving patient outcomes. The article aims to provide a comprehensive overview of the current state and future trajectory of electrospinning technology.
-
-
-
Exosomes as Next-Generation Carriers for Brain Drug Delivery: Engineering, Formulation, Characterization, and Neurotherapeutic Applications
Authors: Vani. D, Ethiraj. T, Sutha Ponnusamy, Devi. R and Aswathi Elisabeth PhilipAvailable online: 03 July 2025More LessBackgroundExosomes, nanoscale extracellular vesicles, have emerged as promising drug delivery carriers due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic cargo efficiently. Their biocompatibility and capacity for engineering make them ideal candidates for treating neurological disorders.
MethodsThis review examines various strategies for exosome engineering, including donor cell selection, isolation techniques, and cargo loading methods. Key characterization techniques such as nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), electron microscopy, and biomarker profiling are discussed. Additionally, in-vitro and in-vivo models used to evaluate exosome-mediated drug delivery efficacy are analyzed.
ResultsExosomes have demonstrated significant potential in neurotherapeutic applications, including targeted drug delivery for neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, glioblastoma therapy, and neural repair in stroke models. Clinical studies and experimental models confirm their ability to encapsulate and protect therapeutic molecules, enhance drug stability, and ensure precise targeting. However, challenges such as large-scale production, reproducibility, and safety concerns remain.
ConclusionExosomes represent a transformative approach to overcoming BBB-related drug delivery challenges, providing a natural, non-invasive platform for neurological therapies. Advances in engineering techniques and characterization will be critical to optimizing their therapeutic potential and clinical translation.
-
-
-
Calcium Nanoliposome Improves Glycemic Control in a Mouse Diabetes Mellitus Model
Authors: Parhan, Rachmat Mauludin and Kusnandar AnggadiredjaAvailable online: 03 July 2025More LessIntroductionIntracellular calcium in pancreatic beta cells plays a crucial role in insulin synthesis and secretion. Diabetes impairs this calcium-mediated action, necessitating an effective delivery system such as liposomes to facilitate calcium uptake.
MethodsCalcium lactate nanoliposomes (6.25 mg/mL) were prepared via the thin-film hydration method using lecithin and cholesterol as bilayer lipids. Their glucose-lowering efficacy was tested in hyperglycemic mice induced by oral glucose (1 g/kg) and intraperitoneal streptozotocin (45 mg/kg). Pancreatic calcium levels were measured using X-ray fluorescence to verify calcium delivery to beta cells.
ResultsThe nanoliposomes exhibited a diameter of 172.1 nm, zeta potential of -53.45 mV, polydispersity index of 0.203, and pH 7.2. Entrapment efficiency was 93.42%, with stable pH and particle size over six cycles. Treatment with calcium nanoliposomes significantly reduced blood glucose levels in both diabetic and glucose-loaded mice. Pancreatic calcium concentrations were higher in animals receiving calcium nanoliposomes compared to controls.
DiscussionCalcium nanoliposomes induced a significant glucose reduction relative to controls (empty liposomes, distilled water, and calcium in distilled water). Encapsulation within liposomal vesicles enhanced calcium delivery to pancreatic beta cells, increasing intracellular calcium and stimulating insulin production and release. This was corroborated by elevated pancreatic calcium levels observed via X-ray fluorescence in treated animals.
ConclusionCalcium nanoliposomes effectively improve glycemic control in diabetic and glucose-challenged animal models by enhancing calcium delivery to pancreatic beta cells.
-
-
-
Nano-Pickering Emulsion using Solid Particles of Typhonium flagelliforme Extract as a Stabilizer: Optimization using Response Surface Methodology and Elucidation of Antioxidant and Antibacterial Activities
Authors: Hetty Lendora Maha, Irda Fidrianny, Satrialdi , and Tri SuciatiAvailable online: 22 May 2025More LessBackgroundTyphonium flagelliforme (TF) is a plant known for its high polyphenol content, making it a good option for stabilizing nano-Pickering emulsion systems. Nano-Pickering emulsions use solid particles for better stability and functional properties than conventional ones.
ObjectiveThis study aimed to develop a nano-Pickering emulsion stabilized by TF particles using the Response Surface Methodology (RSM).
MethodsThe RSM was used to determine the best formulation and manufacturing process for TF-based nano-Pickering emulsion (TFNPE). The optimal formula was tested for physical stability, in vitro antioxidant activity, and antibacterial activity using the agar diffusion method against several bacteria.
ResultsThe droplet size and distribution of TFNPE were affected by solid particle content, chitosan concentration, and sonication intensity. The optimal formula had 1.84% solid particles, 0.26% chitosan, and 50% sonication intensity. TFNPE remained stable at 4 ± 2°C for six months and showed increased antioxidant capacity (204.76 ± 3.57 mg AEAC/g) relative to TF extract (176.65 ± 2.86 mg AEAC/g). TFNPE also exhibited antibacterial activity against Cutibacterium acnes, Staphylococcus aureus, and Staphylococcus epidermidis, with inhibition zones of 12.9 ± 0.5 mm, 14.81 ± 0.1 mm and 16.27 ± 0.3 mm, respectively.
ConclusionThe experimental results were well fitted with the selected statistical model. These findings confirmed TFE's ability to act as a stabilizer for Pickering emulsions and determined its significant anti-acne potential due to its antioxidant and antibacterial properties.
-
-
-
High Flavonoid Content in Apium graveolens Nanocrystals Improves Colitis in Dextran Sodium Sulfate-induced Colitis Mice
Available online: 12 May 2025More LessAimTo develop medicinal plant nanoparticles as colitis alternative/supplementary therapy.
BackgroundLimited reports about the effectiveness of medicinal plant nanocrystals in treating or preventing colitis.
ObjectivesWe investigated the effect of nanonizing Apium graveolens (AG) on improving dextran sodium sulfate (DSS)- induced colitis.
MethodsNanonization was performed via the bead milling process. The nanocrystal product was characterized (i.e., particle size, zeta potential (ZP), polydispersity index (PDI) values) and freeze-dried. Total flavonoids and phenolic compounds in nanocrystal products were compared with ethanolic extract of AG (AGEE). Anti-colitis activity of AG-nanocrystal water suspensions (AGNS) was compared to AG bulk powder suspensions (AGBS). Colitis severity was determined via physiological, macroscopic, and microscopic colon assessment. In addition, the fecal Enterobacteriaceae population and urine glucose levels were determined.
ResultsThe AG nanoparticle products are 200-400 nm, with PDI values 0.5-0.6, and ZP values -12 to -20 mV. The total flavonoid and phenolic compounds of AGNS were 115.12±4.32 ppm and 37.11±0.34 ppm, respectively. This value is higher compared to the content in AGEE. AGNS (350 mg/kg) improves physiological (i.e., fecal blood), macroscopic (i.e., length, diameter), and microscopic (i.e., structure and immune cell infiltration) colon conditions in a comparable level to the positive control of 5-aminosalicylic acid (100 mg/kg). AGNS have a compelling ability to restore colon microscopic and Enterobacteriaceae population compared to AGBS (700 mg/kg). AGNS (350 mg/kg) also recovered colon permeability as marked by the lower urine glucose concentration (9.90±0.15 mg/dL) compared to colitis mice (12.43±0.09 mg/dL).
ConclusionThe nanonization of AG contributes to improved anti-colitis activities compared to AGBS. Nanonization of medicinal plants will reduce organic solvent extraction, which supports the sustainable development goals.
-
-
-
Nano Milling Application of Mutamba (West Indian Elm) Leaves Extract to Enhance its In Vitro Bioactivity
Available online: 29 April 2025More LessBackgroundGuazuma ulmifolia or mutamba has been traditionally used for many years as a slimming agent. Various studies reported the antihyperlipidemic activity of mutamba leaves extract due to its flavonoid content.
ObjectiveThis research was conducted to improve the bioactivity of mutamba leaves extract by applying ball-milling technology.
MethodsUnground dried mutamba leaves were extracted in ethanol 40%. The resulting extract (ME) was nano-milled and characterized for its physicochemical parameters. The ball milling process was optimized by performing in various durations, ball and powder ratios, and rotation speed.
ResultsThe optimized process of ball milling produced nano-extract (NanoME) with a particle size of 492,57±55,96 nm, confirmed with particle size and SEM. Compared with ME, the crystallinity and thermal behavior of NanoME did not change by particle size reduction. The reduction of particle size also did not improve the HMG-CoA reductase inhibitor activity. ME and NanoME showed comparable activity compared to Pravastatin. However, the bioactivities of NanoME, including DPPH antioxidant activities, improved 8-fold compared to ME.
ConclusionThe improvement of these activities was attributed to the increase in their flavonoid content. This study emphasizes the role of particle size reduction or nano-extract preparation in increasing the biological activity of plant extracts.
-
-
-
Response Surface Optimization, Fabrication and In-vitro Investigation of Elastic Nanovesicles Loaded with Flunarizine
Authors: Mahmood A. Haiss and Shaimaa N. Abd AlhammidAvailable online: 18 April 2025More LessBackgroundDifferent variables have been used for the preparation of elastic nanovesicles. In this work, the ethanol injection method has been used to prepare flunarizine spanlastic nanovesicles and study the potential of these variables on vesicle size, encapsulation efficiency, and vesicle elasticity.
ObjectiveThe objective of this study was to encapsulate flunarizine dihydrochloride (FHC), a medication with low solubility in water, within nano-elastic vesicles made from Span 60. These vesicles, known as nano-spanlastics, were developed to provide non-invasive trans-nasal delivery and offer a potential therapeutic option for migraines. The ideal formula for flunarizine spanlastic nanovesicles should have the lowest possible particle size and PdI, highest possible zeta potential, vesicle elasticity, drug entrapment, and dissolving efficiency.
MethodsAn experimental design was followed during the preparation of flunarizine-loaded nanospanlastics utilizing the ethanol injection method and a number of edge activators (EAs). To investigate how the independent parameters affected the features of elastic vesicles and choose the best formula, Design-Expert®, software was used. The screening of 18 formulation and process aspects affecting vesicle size, polydispersity index, deformability index, zeta potential, drug entrapment, and in-vitro release was made easier by the experimental design.
ResultsThe selected Flunarizine spanlastic nanovesicles exhibited a vesicle size of 135 ± 2.81 nm, PdI 0.2462 ± 0.01, ZP -28 ± 0.92 mV, relative deformability of 13.96 ± 0.76 g, EE% of 78.37 ± 1.42, and dissolution efficiency of about 90%.
ConclusionThe successful preparation of Flunarizine-loaded spanlastic nanovesicles using ethanol injection method significantly improved the drug's solubility. Flunarizine spanlastic formulations made up of Span 60 and EAs (Tween 40 and SDC) were prepared using various weight ratios of Span 60: EA. The study presented a viable and successful method for nasal delivery of the medication for migraine treatment.
-
-
-
Advanced Preparation Techniques for Polymeric Nanoparticles and their Application in Drug Delivery
Authors: Harish Bhardwaj, Soniya Sarthi and Rajendra Kumar JangdeAvailable online: 15 April 2025More LessNanotechnology has advanced significantly in recent decades, with the production and design of nanomaterials becoming a focal point of research. Nanomedicine, a key component of this field, involves the development of nanoscale materials for applications in imaging and drug delivery. Current research predominantly focuses on the synthesis of precisely characterized nanomaterials, particularly in terms of their size and morphology, as these parameters play a critical role in determining the behavior of nanomaterials in vivo. This paper reviews various methods for the preparation of polymeric nanoparticles, including solvent evaporation, nanoprecipitation, emulsification/solvent diffusion, salting out, dialysis, supercritical fluid technology (SCF), and monomer polymerization techniques. Additionally, it discusses approaches such as emulsion, mini-emulsion, microemulsion, interfacial polymerization, controlled/living radical polymerization, and ionic gelation/coacervation. Each preparation method is described in terms of its characteristics, advantages, limitations, and potential applications. The paper also explores pharmaceutical considerations and challenges associated with novel drug delivery systems. Recent literature examples are presented to highlight the impact of preparation techniques on the physicochemical properties of nanoparticles.
-
-
-
Aptamer-Decorated Nanocarrier for Selectively Targeting Cancer Cells
Authors: Thangavel Lakshmipriya and Subash C.B. GopinathAvailable online: 12 March 2025More Less
-
-
-
Advancements in Nanoparticle-based Targeted Drug Delivery Systems for Breast Cancer
Authors: Roshni Kunte, Prafulla Sabale, Suchita Waghmare, Manasi Nikam Jiwankar and Vidya SabaleAvailable online: 11 March 2025More LessCancer is a leading cause of death and life-threatening disease globally. It is connected to persistent tissue damage and unregulated cellular proliferation. In females, breast cancer plays a crucial role in death rates. Chemotherapy, alongside surgery, radiation, and hormone therapy, is a first-line treatment, but its non-specific action harms both cancerous and healthy cells, causing severe side effects. The treatment options for breast cancer are based on the disease stage, which spans from stages 0 to IV. To mitigate this issue, novel strategies focusing on specific targets have been introduced in recent times. Advanced nanocarriers are focused on tumor-specific drug delivery using active targeting based on ligand-receptor identification, this approach has the potential to demonstrate enhanced efficacy compared to passive targeting strategies in the context of therapy for human breast cancer. Surface alteration can assist overcome this issue. This overview focuses on modified nano-sized carriers, including liposomes, micelles, polymeric nanocarriers, carbon dots, and gold nanoparticles. It has been studied to improve therapeutics efficacy, bioavailability, and pharmacokinetics features via mechanisms. The primary aim is no longer confined to merely enveloping cancer medications in novel formulations for diverse delivery pathways; instead, the emphasis lies on precise cancer targeting. This review focuses on the stages of breast cancer, obstacles, types of breast cancer therapies, techniques, and various nanocarriers using ligand-mediated drug delivery systems and their mechanisms.
-
-
-
Nano Drug Delivery Carriers (Nanocarriers): A Promising Targeted Strategy in Tuberculosis and Pain Treatment
Authors: Rahul Pal, Prachi Pandey, Himmat Singh Chawra and Zuber KhanAvailable online: 07 March 2025More LessTuberculosis (TB) and chronic pain are global health concerns that affect millions of people, often requiring long-term, effective treatment strategies. The conventional therapies used to manage these conditions come with significant limitations. In TB, long treatment durations, poor compliance, drug resistance, and toxicity of first-line drugs are key challenges. Similarly, pain management faces issues, such as inadequate targeting, systemic side effects, and tolerance to analgesics, limiting traditional therapy efficacy.
The objective of this review is to explore the potential of nanocarriers as a targeted drug delivery strategy for improving treatment outcomes in TB and pain management. It aims to explore how these advanced systems improve drug bioavailability (BA), control release, reduce side effects, and enhance therapeutic outcomes.
This systematic review used databases like PubMed, Elsevier, Scopus, Google Scholar, Google Patents, and ResearchGate, etc., to collect original review articles from the past 15 years (September 1, 2007 to September 1, 2024).
The review also revealed that these advanced systems offer promising solutions for overcoming the limitations of conventional therapies, such as poor patient compliance and drug toxicity. Nanocarriers represent a transformative approach in both TB and pain management, with the potential to revolutionize treatment paradigms and improve patient outcomes. In conclusion, nanocarriers represent a highly promising approach for advancing treatment strategies in both TB and pain management. The review underscores that nanocarrier systems, such as nanoemulsion, nanosuspension, nanocrystal, liposomes, niosomes, dendrimer, and polymeric nanoparticles, offer substantial improvements in drug delivery by enhancing BA, ensuring targeted release, and reducing systemic side effects.
-
-
-
Revealing the Antidiabetic Potential of Herbal Nanoparticles
Available online: 20 February 2025More LessDiabetes is a chronic metabolic disorder that is characterized by high postprandial blood sugar levels and increased fasting, which disrupts physiological balance and causes organ damage. Owing to the global health risk of type 2 diabetes, natural remedies have shown promise as viable alternatives because of their outstanding antidiabetic properties. Nevertheless, the therapeutic use of these compounds is rather restricted due to their inadequate solubility, instability in the gastrointestinal tract, low absorption, and other related factors. Currently, the development of nanoscale systems is a notable approach to enhancing the delivery of phytochemicals. This study aims to investigate the advancements in drug delivery techniques using nanoparticles, with a particular focus on enhancing the effectiveness of herbal remedies in the treatment of diabetes. This study aims to enrich our understanding of nanotechnology's potential in enlightening drug delivery systems by employing database repositories like PubMed, Scopus, Google Scholar, and Web of Science. Based on their categorization and structure, nano-systems are classified into liposomes, nanostructured lipid carriers, phytosomes, niosomes, solid lipid nanoparticles, self-nano emulsifying drug delivery systems, and inorganic nano-carriers. This study intricately describes the formulation process, selection criteria, and mechanism of herb-loaded nanoparticles using an example of the pharmacokinetic and pharmacodynamic properties of antidiabetic herbal drugs. Researchers have proven that nano-formulations of herb-loaded antidiabetic drugs improve compliance and therapeutic efficacy by resolving pharmacokinetic and biopharmaceutical issues. We could expect the creation of nano-formulations to be a viable method for optimizing the therapeutic effectiveness of plant-produced antidiabetic compounds.
-
-
-
Cancer Therapy with Polymeric Nanocarriers and the Transition to Targeted Cancer Therapy: Advances and Future Directions
Available online: 04 February 2025More LessThe development of targeted cancer therapies has become crucial in addressing the limitations of conventional chemotherapy, particularly its lack of specificity and severe side effects. Polymeric nanocarriers have emerged as a transformative solution, providing enhanced drug solubility, selective targeting, and controlled release of therapeutics. This review discusses recent advances in polymeric nanocarriers, emphasizing their capacity to incorporate multiple drugs and optimize delivery through both active and passive targeting strategies, and especially the transition to targeted cancer therapy through the various applied methods in the field. Mechanisms such as the enhanced permeability and retention (EPR) effect for passive targeting, and the use of ligands, peptides, and proteins for active targeting, are explored in depth. Furthermore, the potential of these nanocarriers to improve therapeutic outcomes through targeting specific cellular and subcellular sites, including the nucleus, mitochondria, and endoplasmic reticulum, is examined. These innovations pave the way for the development of safer and more effective cancer treatments with the potential to enhance clinical outcomes.
-
-
-
Revolutionizing Drug Delivery: A Design Professional's Approach to Drug-loaded Transferosomal Vesicles for Transdermal Use
Available online: 27 January 2025More LessAimThis study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.
BackgroundOral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.
ObjectiveThe objective of this study is to develop and evaluate transferosomal transdermal patches containing LXM and TCS, incorporating Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers. The aim is to enhance the skin permeation of these drugs while mitigating gastric irritation associated with their oral administration.
MethodTransferosomes were made by the thin film hydration tactic, with nine formulations based on three independent variables: phosphatidylcholine, span 80, and sonication time. Entrapment efficiency and drug release at 6th h were assessed as dependent variables. The optimized combination was then formulated into transdermal patches via central composite design, evaluating the impact of AVLM and LO on lornoxicam discharge and other physicochemical properties.
ResultsThe average weight and thickness of the patches ranged from 7.52±0.75 to 8.07±0.11g and from 1.69±0.01 to 1.82±0.02mm, respectively, representing minimal variance. The LXM/TCS content homogeneity ranged from 92.84±3.55 to 94.07±4.61% for LXM and from 90.17±1.98 to 93.18±2.98% for TCS, demonstrating robust uniformity. Higher proportions of phosphatidylcholine and span 80, along with lesser sonication time, led to improved entrapment of lornoxicam. In vitro, discharge studies demonstrated optimal discharge with a higher proportion of phosphatidylcholine, a medium proportion of span 80, and a longer sonication time. The transferosomal patches exhibited zero-order discharge kinetics, with LXM & TCS discharge % at 24, 48, and 72 h.
ConclusionThe study concludes that formulation TDP-8, which incorporates 3g of Aloe vera leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers, demonstrated favorable discharge characteristics. This indicates its potential as an effective transdermal delivery system for LXM and TCS, offering a promising substitute for pain and inflammation relief while minimizing gastric irritation. The study succeeded in developing and evaluating transferosomal transdermal patches for LXM and TCS, providing an alternative delivery method that minimizes gastric irritation.
-
-
-
Metallic Nanostructures: An Updated Review on Synthesis, Stability, Safety, and Applications with Tremendous Multifunctional Opportunities
Available online: 27 January 2025More LessMetallic nanostructures play a vital role in technological advancement, providing exceptional performance and improved adaptability in comparison to their bulk equivalents. Conventional synthesis techniques frequently depend on dangerous reducing agents to transform metal ions into Nanoparticles (NPs), which presents considerable environmental and health issues. In contrast, the approach of green synthesis, which emphasizes the use of non-toxic reagents, has garnered significant interest as a sustainable method for the fabrication of Metallic Nanoparticles (MNPs). This sustainable approach utilizes biological sources, like actinomycetes, algae, fungi, polymers, crops, waste biomass, and yeast, recognized for their excellent biocompatibility, availability, affordability, and efficiency. Biological extracts act as reducing and stabilizing agents, with the metabolites and enzymes present in these extracts aiding in the conversion of metal ions into nanoparticles. This review offers an in-depth examination of different MNPs, such as copper, gold, platinum, silver, and zinc, emphasizing their distinct characteristics and a variety of synthesis methods. The review further explores the diverse applications of MNPs in biomimetics, agriculture, and various industrial sectors, including energy, catalysis, and wastewater treatment, along with optical enhancement. This review explores stability and toxicity profiles, filling a significant gap in the existing knowledge base and providing valuable insights into the broad applicability of MNPs.
-
-
-
Unraveling the Mysteries of Brain Cancer from Diagnosis to Treatment
Authors: Dyandevi Mathure, Sejal Bhandare, Dipanjan Karati, Mohammad Adnan and Dileep KumarAvailable online: 24 January 2025More LessEven with recent advancements in surgery and multimodal adjuvant therapy, brain cancer treatment is still difficult. The blood-brain barrier and the potentially deadly medications' non-specificity have made pharmacological treatment for brain cancer particularly ineffective. The nanoparticle has surfaced as a viable brain delivery vector that can solve the issues with existing approaches. Furthermore, it is possible to integrate many functions into a single nanoplatform to enable tumor-specific diagnosis, therapy, and follow-up observation. Conventional technology does not allow for such multitasking. Recent developments in brain cancer treatment and detection using nanoparticles are discussed in this study. The benefits of delivery via nanoparticles are discussed, along with the kinds of nanoparticle systems being studied and their potential uses.
-
-
-
Development of Nanoemulsion-Based Gel of Betulin for the Treatment of Psoriasis-Like Skin Inflammation in a Small Animal Model
Authors: Dev Prakash and Anjali ChaudharyAvailable online: 30 December 2024More LessIntroduction/ BackgroundThis study aimed to introduce a gel (NEG) formulation containing betulin-loaded nanoemulsions for topical psoriasis treatment.
Materials and MethodsThe prepared nanoemulsions were optimized for smaller particle size and higher drug content using a response surface methodology that exhibited uniform distribution and high drug loading (21.17±3.55%).
ResultsThe gel demonstrated skin-compatible pH and good spreadability. The developed gel showed slower release compared to nanoemulsion. In vivo pharmacokinetics demonstrated elevated AUC (55835.1 µg/cm2.h) and extended Tmax (720 min) for the gel than NE, indicating extended skin retention. Improved skin hydration (35%) and lipid content (28%) were observed, along with significant reductions in PASI scores and cytokine levels.
DiscussionProvided with enhanced skin retention, improved hydration, and lipid content, along with significant therapeutic efficacy in psoriasis treatment, betulin-loaded nanoemulsion gel demonstrated prolonged drug release and notably reduced PASI scores and cytokine levels, highlighting its effectiveness against psoriasis.
ConclusionThis highlights the promising potential of NEG for topical psoriasis management.
-
-
-
A Comprehensive Review of Strategies of Topical Niosomes and Their Synergistic Effect for Enhanced Therapeutic Outcomes
Authors: N. Bharathi Sai Thilagam, V.P. Karthik, R. Gnanasambandan and C. SowmyaAvailable online: 30 December 2024More LessThe review aims to assess the potential of niosomes—nonionic surfactant-based vesicular systems—as carriers for topical and transdermal drug delivery. Niosomes enable targeted and controlled drug release while minimizing systemic toxicity. The investigation centers on their structure, stability, and capacity to entrap both hydrophilic and lipophilic drugs, as well as their use in managing various dermatological and systemic disorders. Recent studies have examined the formulation of niosomes, particularly highlighting the roles of nonionic surfactants and cholesterol in enhancing the stability and entrapment efficiency of these vesicles. Research on permeability enhancers has been reviewed for their ability to work together to improve drug transport and bioavailability. It also provides a detailed discussion on the use of niosomes in treating various dermatological conditions, as well as their applications in systemic diseases, with a particular focus on co-delivery systems in cancer therapies. Niosomes exhibit efficacy in drug delivery by providing an increase in penetration through the stratum corneum, targeting hydrophilic and lipophilic drugs for dermatological and systemic applications. The Development of niosomal therapy has expanded into immunization, anti-inflammatory treatments, and the control of pigmentation. Permeability enhancers further increase their efficacy, bioavailability, and tissue localization. Anticancer treatment using niosomes for co-delivery of agents demonstrates synergistic effects with reduced side effects. Niosomes have tremendous potential in advancing topical and transdermal drug delivery, offering controlled, targeted release and improved patient outcomes. With optimized fabrication and comprehensive toxicity evaluation, niosomes can potentially revolutionize topical therapies, making them safer, more effective, and patient-friendly for a range of next-generation treatment options across dermatology and beyond.
-
-
-
An Enhanced Scrutiny of Mechanistic and Translational Approaches to Extinguish Cancer Hypoxia
Authors: Arun Radhakrishnan, Nikhitha K Shanmukhan and Linda Christabel.SAvailable online: 26 December 2024More LessCancer continues to pose a formidable challenge in global health due to its incidence and increasing resistance to conventional therapies. A key factor driving this resistance is tumor hypoxia, characterized by reduced oxygen levels within cancer cells. This hypoxic environment triggers a variety of adaptive mechanisms, significantly compromising the efficacy of cancer treatments. Notably, hypoxia promotes metastasis and reshapes the tumor microenvironment (TME), thereby aggravating treatment resistance. Central to this process are hypoxia-inducible factors (HIFs), which mediate cellular adaptations such as metabolic shifts and enhanced survival pathways. These adaptations render therapies like chemotherapy, radiotherapy, and photodynamic therapy (PDT) less effective. Additionally, hypoxia-induced vascular irregularities further impede drug delivery, amplifying the therapeutic challenge. This review provides a comprehensive examination of the roles of hypoxia in cancer, its contributions to drug resistance, and its interplay with apoptosis and autophagy. By evaluating novel mechanistic and translational approaches to target hypoxia, this study highlights the potential to improve therapeutic outcomes and offers insights into overcoming treatment resistance in cancer.
-
-
-
A Comprehensive Review on Plant Bioactive Compounds-Based Novel Drug Delivery System for the Treatment of Rheumatoid Arthritis
Authors: Akshat Agrawal, Vijayalakshmi Ghosh, Ajazuddin and Parag JainAvailable online: 23 December 2024More LessRheumatoid Arthritis (RA) is a chronic autoimmune disorder characterized by inflammation in the joints, leading to pain, swelling, stiffness, and eventual joint damage. This condition occurs when the body's immune system mistakenly attacks the synovium, the lining of the membranes surrounding the joints. Treatment focuses on reducing inflammation, alleviating pain, and preventing joint damage through a combination of medications, physical therapy, and lifestyle modifications. Recently, biological therapies have been introduced, including Tumour Necrosis Factor (TNF) blockers (such as etanercept, infliximab, and adalimumab), IL-6 inhibitors (tocilizumab), and interleukin-1 inhibitors (anakinra). These treatments can lead to various side effects. The use of herbal-based treatments, such as secondary metabolites, has gained popularity due to their better tolerability, safety, and effectiveness compared to conventional therapies. However, there are also some limitations, like poor bioavailability and permeability and lower stability; to overcome these issues, Novel Drug Delivery Systems (NDDS) have been introduced as better treatment options in recent years. Polymer science advancements and nanotechnology applications have opened new avenues for RA treatment, emphasizing the development of smart drug delivery systems. These systems aim to improve therapeutic outcomes while minimizing adverse effects. Additionally, newly synthesized biocompatible drug delivery systems, combined with anti-inflammatory drugs composed of secondary metabolites, offer potential solutions for RA.
-
-
-
Current Updates on Nanotechnology-based Drug Delivery Platforms for Treating Alzheimer’s with Herbal Drugs
Available online: 23 December 2024More LessAlzheimer's disease (AD) is an irreversible brain disorder that led to memory loss and disrupts daily life. Earlier strategies to treat AD such as acetylcholinesterase inhibitor (AChEI) drugs are not showing effectiveness due to the inability to cross the blood-brain barrier. Moreover, traditional AChEI provides limited efficacy in terms of bioavailability and solubility for treating AD treatment. Many of the current drugs such as donepezil taken to treat the disease exhibited harmful side effects. Hence, researchers are keen to find the alternative effective therapeutic agents for treating AD. This review summarizes the recent advancement in nanotechnology-based drug delivery systems of herbal drugs such as Curcumin, Ginkgo biloba, Salvia officinalis, etc for the prevention and cure of AD. Herbal drugs proved useful in treating neuronal disorders such as AD but exhibited some limitations like low bioavailability via oral drug delivery. Such limitations were overcome by tagging these drugs by nanoparticles which enables them to cross the blood-brain barrier and offer the delivery of greater concentration of herbal drugs to the brain. Inorganic nanoparticle-based drug-delivery systems such as gold nanoparticles and magnetic nanoparticles, organic nanoparticulate systems like polymeric micelles and dendrimers, and solid polymeric nanoparticles were some of the effective methods that have earlier shown potential for enhancing the delivery of herbal drugs to the brain. Long-term repeated injection of drugs loaded on nanomaterials can lead to the accumulation of nanomaterials in the body without timely and effective degradation which can cause serious issues to the brain. Hence, nanotechnology-based strategies should involve the formulation of non-toxic nanoparticles in such a way that they can significantly transport the drugs across the BBB followed by effective degradation of nanoparticles.
-
-
-
Formulation, Development, and Optimization of Fast Dissolving Tablets Containing Tapentadol Hydrochloride
Available online: 23 December 2024More LessBackgroundTapentadol hydrochloride is a potent analgesic commonly used to manage moderate to severe pain. Rapidly dissolving tablets of Tapentadol offer a significant advantage in enhancing patient compliance by providing quick pain relief. The development of fast-dissolving tablets (FDTs) requires careful consideration of formulation parameters to achieve optimal disintegration and dissolution profiles. In this study, the aim was to fabricate Tapentadol FDTs by selecting suitable super disintegrating agents such as croscarmellose sodium and crospovidone, which serve as two independent variables. The direct compression method was employed to formulate nine different Tapentadol hydrochloride formulations (TH1 to TH9).
Materials and MethodsThe study utilized Design-Expert® software version 13.0 and the Response Surface Methodology (RSM) for the optimization of Tapentadol FDTs. The formulations were prepared using the direct compression method with varying concentrations of the super disintegrants, croscarmellose sodium, and crospovidone. The primary response variables considered in this optimization study included disintegration time (Y1), percentage drug release at 15 minutes (Q15, Y2), and percentage drug release at 30 minutes (Q30, Y3). All pre-compressional and post-compressional parameters were evaluated for each formulation, along with in vitro dissolution studies. Furthermore, DD Solver, a statistical tool, was employed to determine the kinetics of drug release and the release order mechanism based on regression coefficient value (r2), Akaike Information Criterion (AIC), and Model Selection Criteria (MSC).
ResultsThe evaluation studies indicated that the TH5 formulation exhibited the most rapid disintegration time and the highest drug release percentage within the specified time frame. The super disintegrants used demonstrated a significant impact on the response variables, notably enhancing the solubility and dissolution rate of Tapentadol hydrochloride. Based on the exponent release (n) value, the study concluded that the TH5 formulation followed a first-order release kinetics and Fickian diffusion mechanism for drug release. Stability studies were performed following the International Council for Harmonization (ICH) guidelines to assess the shelf-life of the optimized formulation. The ANOVA data revealed that the p-value was greater than 0.05, indicating no significant differences during the storage period. Additionally, a similarity factor (f2) analysis was conducted to compare the optimized formulation with the marketed formulation (Tydol 100 mg).
DiscussionThe findings highlight the crucial role of super disintegrants in fast-dissolving tablet formulation, significantly impacting disintegration time and dissolution profile. The TH5 formulation excelled in rapid disintegration and drug release, optimized using RSM and Design-Expert software, with statistical analysis confirming the Fickian diffusion mechanism for drug release.
ConclusionThe study successfully developed and optimized Tapentadol fast-dissolving tablets using direct compression and response surface methodology. The TH5 formulation showed rapid disintegration and optimal drug release, with stability confirmed under ICH conditions. This highlights the importance of super disintegrants in FDT formulation for rapid action and patient compliance.
-
-
-
A Critical Review on Lipid Nanoparticle-based siRNA Formulations for Breast Cancer Management
Authors: Phool Chandra, Vaibhav Rastogi, Mayur Porwal, Himanshu Sharma, Anurag Verma and Neetu SachanAvailable online: 12 December 2024More LessBreast cancer poses a formidable challenge due to its inherent difficulty in treatment. Recognizing the imperative need for new therapeutic approaches, this study focuses on a groundbreaking technique that has the potential to reshape breast cancer treatment: siRNA formulations based on lipid nanoparticles (LNPs). This novel method holds promise for transforming the landscape of breast cancer therapy. The primary objective of this research is to conduct a comprehensive assessment of the current state of the art in the field, specifically exploring the potential applications of siRNA treatments encapsulated in LNPs for breast cancer. The research methodology involves a detailed literature review covering breast cancer, siRNA therapy, and lipid nanoparticles. The study investigates the fundamental principles of siRNA therapy, highlighting its capacity to selectively silence genes critical to breast cancer development. Additionally, the application of LNPs in delivering therapeutic siRNA payloads is explored, with an emphasis on the benefits of LNPs, including their biocompatibility and effective siRNA incorporation. Safety and effectiveness characteristics of LNP-based siRNA formulations are also assessed to pave the way for potential therapeutic applications. Findings from the study illuminate the promising characteristics of LNP-siRNA formulations in the treatment of breast cancer. The investigation provides insights into targeting strategies, such as the enhanced permeability and retention (EPR) effect and the utilization of ligand-conjugated nanoparticles. The study outlines potential avenues for therapeutic use, drawing attention to the safety and effectiveness of LNP-based siRNA formulations. In summary, this study aims to reveal intricate interactions between lipid nanoparticle-based siRNA formulations and breast cancer treatment, fostering a transformation in the field by highlighting current developments, future trends, and innovative strategies for next-gen LNP-based siRNA formulations.
-
-
-
Biological Synthesis of Metallic Nanoparticles: Latest Insights and Applications
Authors: Khadija El Ouardy, Hassan Ahmoum and Youssef MirAvailable online: 12 December 2024More LessNanotechnology is rapidly transforming various fields, including medicine, environmental conservation, agriculture, and pharmaceuticals. The production of metallic nanoparticles is a key area within this field, known for its innovative applications. However, traditional chemical and physical methods used for nanoparticle synthesis often involve toxic chemicals and are expensive, making them unsuitable for large-scale production. To address these issues, there has been a growing focus on developing sustainable, cost-effective, and eco-friendly methods. One promising approach is the biological synthesis of metallic nanoparticles. This technique combines principles from biology and nanotechnology, using natural sources such as plant extracts, bacteria, fungi, yeast, and algae to produce nanoparticles in an environmentally friendly way. This review examines the biological synthesis of various metal nanoparticles, including platinum, palladium, gold, and silver. It explores different green methods used for their production and discusses the mechanisms that enable these biological processes. Additionally, the review highlights the diverse applications of these nanoparticles, from environmental cleanup and heavy metal removal to cancer treatment and drug delivery. By focusing on green synthesis methods, this approach not only reduces environmental impact but also offers a scalable, sustainable alternative to traditional nanoparticle production techniques. As research in this area advances, these eco-friendly methods are expected to play a crucial role in the future of nanotechnology.
-
-
-
Solid Lipid Nanoparticles and Nanostructured Lipid Particles: A Comparative Review on Lipid-Based Nanocarriers
Authors: Anjali Sharma, Devkant Sharma, Pritish Kumar Panda and Niladry GhoshAvailable online: 10 December 2024More LessLipid-based nanocarriers have emerged as promising vehicles for the delivery of various therapeutic agents, owing to their biocompatibility, stability, and ability to encapsulate both hydrophilic and hydrophobic drugs. Among these lipid-based nanocarriers, Solid Lipid Nanoparticles (SLNs) and Nanostructured Lipid Carriers (NLCs) have gained significant attention in the field of drug delivery. This comparative review aims to provide a comprehensive analysis of SLNs and NLCs, focusing on their formulation, physicochemical properties, drug-loading capacity, stability, and drug release profiles. The review highlights the differences in preparation techniques, particle size, zeta potential, drug encapsulation efficiency, stability, drug delivery, cosmetic and personal care, and food industry applications between SLN and NLC. Furthermore, the review discusses the toxicity and safety profiles of these nanoparticles, including cytotoxicity, genotoxicity, acute toxicity, and long-term toxicity. Finally, the review identifies the potential applications, limitations, and future research directions of SLN and NLC.In summary, this comparative review provides valuable insights into the formulation, physicochemical properties, drug-loading capacity, stability, and drug release profiles of SLNs and NLCs. By understanding the similarities and differences between these lipid-based nanocarriers, researchers and pharmaceutical scientists can make informed decisions regarding the selection of the most suitable nanocarrier for specific therapeutic applications.
-
-
-
Network Pharmacology and Optimization of β-Sitosterol-Loaded Solid Lipid Nanoparticles Using Box-Behnken Design for Enhanced Solubility and Sustained Drug Release in Diabetes
Authors: Ramsha Aslam, Varsha Tiwari, Prashant Upadhyay and Abhishek TiwariAvailable online: 10 December 2024More LessIntroductionThe pharmaceutical industry has paid a lot of attention to solid lipid nanoparticles (SLN) because they show promising drug delivery vehicles.
MethodThis work aimed to design and optimize the SLN of β-sitosterol, a hydrophobic drug, to improve solubility and sustained action. An ultrasonication technique after melting was used to design SLN using a randomized response surface Box-Behnken design (BBD). Network pharmacology analysis was performed to explore the interactions between genes. According to the findings, Compritol ATO 888 was the most soluble at a drug: lipid ratio of 1:3. Particle size, PDI, zeta, and entrapment efficiency (EE) were observed as 168.83nm, 0.231 -28.9 Mv, and 68.29%, respectively. The optimized formulation did not undergo any chemical changes, as depicted through DSC. The in vitro drug release investigation showed that the SLN released the drug continuously for 28 hours. Scanning Electron Microscopy (SEM) revealed homogenous, spherical particles.
ResultThe antidiabetic potential of the formulation was assessed through the potential of glucose uptake by yeast, and the α-amylase inhibitory assay revealed its significant antidiabetic potential when compared with that of the standard drug metformin. The network pharmacology of β-sitosterol demonstrated gene interaction with hexokinase, phosphoglucomutases, glucose-6-phosphate dehydrogenase, hexose-6-phosphate dehydrogenase, and glutathione disulfide reductase.
ConclusionThe β-sitosterol-loaded SLN generated by BBD was found to be a potential method for improving drug solubility with sustained drug release and was found to be long-term storage stable.
-
-
-
Green Synthesis of Curcumin-Loaded Bacterial Nanocellulose for Topical Application: Preparation and In vivo Study
Authors: Juniar Kalpika Resmi, Safira Prisya Dewi and Heni RachmawatiAvailable online: 10 December 2024More LessBackgroundBacterial nanocellulose (BNC) is typically produced through fermentation using Hestrin Schramm (HS) médium. However, its high cost limits its use in industry. Moreover, curcumin, as a model substance, is a potential bioactive compound but has low bioavailability. This also limits its use for clinical application. Thus, a delivery system using more affordable production of BNC was develop to improve the lack property of curcumin, focusing on topical route.
ObjectiveThis study aims to determine the best substrate component according to yield value and evaluate the physical properties as well as the permeation capability of BNC as a delivery matrix system for curcumin.
MethodsThe optimization of Gluconacetobacter xylinus culture media to produce BNC was conducted using 6 variation substrates consisting of Palmyra sap (PS) and tofu pulp with certain concentrations. Following a nine-day period, the yield of BNC was calculated. The selected BNCs were then impregnated with curcumin-DMSO and curcumin in the form of nanoemulsion (curcumin- NE). Subsequently, the BNCs containing these curcumin forms were characterized. In vitro testing of curcumin reléased from BNC was conducted using Franz difusión cells. In addition, the penetration ability of curcumin across the mice skin was observed using confocal microscopy. In vivo testing was also conducted to ascertain the safety of BNC-loaded curcumin on mice skin.
ResultsPS-TP substrate (100:0, S-6) was the most appropriate substrate for BNC production, yielding 118.5±0.09 g/L. CR-DMSO and CR-NE were successfully impregnated into BNC. Confocal data showed that both formulations were able to penétrate the dermis layer. There was no significant difference was observed between the administration of BNC/CR-DMSO and BNC/CR-NE against the control.
ConclusionBNC successfully produced using palmyra sap shows promising biomembrane for topical delivery of curcumin. No evidence inflammation or neovascularization in BNC/CR-DMSO- and BNC/CR-NE-treated mice confirms the safety use of this biomembrane.
-
-
-
Emerging Trends in Transdermal Drug Delivery: Nanoparticle Formulations and Technologies for Enhanced Skin Penetration and Drug Efficiency
By Kiran DudhatAvailable online: 10 December 2024More LessTransdermal drug delivery systems (TDDS) have emerged as a popular non-invasive approach for treating skin-related disorders, offering quick and reliable drug delivery into the skin, thereby accelerating therapeutic efficacy. In India, there is a growing interest in TDDS due to its perceived safety and effectiveness. Researchers are actively developing new formulations and technologies to enhance drug delivery efficiency and reduce side effects. Recent trends indicate a focus on overcoming challenges such as low permeability and stability issues through innovative nanoparticle-based delivery systems. Nanotechnology has revolutionized transdermal drug delivery by offering precise control over nanoparticle properties, enabling enhanced skin permeation and targeted delivery. Various nanoparticle formulations, including polymeric nanoparticles, liposomes, nanotubes, solid lipid nanoparticles, and nanoemulsions, have shown promise in improving drug solubility, bioavailability, and sustained release. Additionally, microneedles have emerged as a successful transdermal delivery method, offering advantages over traditional creams and patches. Metallic nanocarriers and nanoemulsions are also being explored for their potential in targeted drug delivery and enhanced skin penetration. Despite these advancements, challenges such as toxicity and biocompatibility need to be addressed for widespread clinical translation. Overall, the growing interest in transdermal drug delivery systems in India reflects the potential for improved therapeutic outcomes and patient convenience through innovative nanoparticle-based formulations and technologies.
-
-
-
Empowering Arthritis Patients: Optimized Drug Delivery through Piroxicam Microcapsule-Embedded Scaffold Implants via Box-Behnken Experimental Design
Authors: Sampath Kumar and Mothilal MohanAvailable online: 10 December 2024More LessBackgroundThe necessity for extended drug discharge to alleviate pain without adverse effects underscores the importance of innovative drug delivery systems. Achieving sustained pain relief without compromising patient safety is a critical objective in healthcare. By extending the duration of drug action while suppressing side effects, such systems offer enhanced therapeutic outcomes and improved patient quality of life.
ObjectiveThis study endeavors to develop and appraise an innovative implantable drug delivery system by integrating NSAID-loaded gelatin microcapsules into a gelatin scaffold designed to augment drug delivery efficiency and sustain drug release.
MethodPiroxicam-loaded microcapsules with a 1:1 ratio of poly lactic acid and poly lacto glycolic acid showed smaller particle size, good yield, entrapment efficiency, and discharge. They were selected to make gelatin scaffolds with Box Behnken Design using Design Expert software for optimization. The better scaffolds were made in the form of rod-shaped sub-dermal implants. The primary focus of the investigation was the evaluation of critical parameters, specifically entrapment efficiency and drug discharge properties as dependent variables.
ResultsMicrocapsules with a 1:1 ratio of PLA and PLGA showed smaller particle sizes, good yield, entrapment efficiency, and discharge. Notably, the Design Expert-driven optimization yields highly favorable results. Furthermore, the scaffolds loaded with microcapsules exhibited favorable physicochemical assets, including drug discharge, for an extended period, underscoring their versatility for drug delivery.
ConclusionBy employing Design Expert software for optimization, the study demonstrates promising results, particularly in sustained pain management for arthritis, potentially improving therapeutic outcomes and patient quality of life. The study concludes that the prepared implants (holding scaffolds impregnated with piroxicam-loaded microcapsules) can be promising for relieving arthritis all day.
-
-
-
A Biodegradable and Biocompatible Dental Hemostatic Gelatin Sponge Containing Aloe Vera Nanoparticles; Investigation in Rat Animal Model
Available online: 10 December 2024More LessIntroductionA variety of hemostatic materials have been provided to accelerate the blood clotting process in dentistry. The purpose of this study was to investigate the biocompatibility and biodegradability of a hemostatic dental sponge containing aloe vera nanoparticles in rat animal models.
Methods and MaterialsTwelve adult Wistar rats in the weight range of 200 ± 30 grams and the same age range were randomly divided into two groups of test and control, and each group was divided into three subgroups of 3 days, 7 days, and 14 days. For implantation of the sponge, the animals were anesthetized with xylazine and ketamine, and a piece of the sponge was implanted under the skin at the cut site. In the control group of rats, only the skin was cut and sutured. After the specified number of days, the rats were anesthetized, and in addition to blood sampling, a tissue sample was taken from the animal's surgical site and fixed in 10% formalin. Then the samples were examined in macroscopic and microscopic conditions and finally, the obtained data were statistically analyzed.
ResultsThe results obtained in the present study indicated that the hemostat sponge had no side effects (biocompatible). In addition, it was completely absorbed during the 14 days of the study (biodegradable).
ConclusionAccording to the characteristics of biocompatibility and biodegradability, the studied sponge can be used to control bleeding during dental surgeries or tooth extraction.
-
-
-
Silk Fibroin Hydrogels: Cutting-Edge Developments and Future Directions
Available online: 10 December 2024More LessThe exploration of hydrogel materials has gained significant attention due to the ongoing period of collaborative interdisciplinary advancements. Silk fibroin (SF) possesses remarkable attributes, such as less immunogenicity, sterilization efficacy, processability without chemical crosslinkers, excellent biocompatibility, low immunogenicity, non-toxicity, mechanical strength, thermal stability, non-carcinogenicity, and adjustable biodegradability make it a highly valuable biomaterial. Silk fibroin hydrogel (SFH), a versatile biomaterial, has garnered significant attention due to its unique properties. Its biocompatibility, tunable mechanical properties, water retention capacity, and bioactive nature offer a unique combination of features that can effectively promote tissue regeneration and enhance wound healing. The utilization of SF for hydrogel production presents a valuable opportunity to leverage natural resources and promote eco-friendly production practices. With their exceptional properties and versatile applications in biomedicine, silk protein-based hydrogels hold promise for various research fields. This review aims to discuss the potential properties and recent advancements in the application of SF-based hydrogels for preclinical skin wound healing.
-
-
-
Formulation and Assessment of an Optimized Glimepiride Transdermal Therapeutic System Using 32 Full Factorial Design Approach
Authors: Audumbar Mali and Sunayana MaliAvailable online: 10 December 2024More LessBackgroundCurrently, a large number of populations are suffering from diabetes mellitus, which significantly increases the burden on public health. Glimepiride is an antidiabetic drug with a shorter half-life (approximately 5 hours), low bioavailability, and first-pass metabolism. Due to these limitations, it is required to maintain a uniform therapeutic level, and it has been chosen as a transdermal drug delivery approach.
ObjectivesThe main objective of this investigation was to evaluate glimepiride-loaded transdermal patches on the skin to treat diabetes mellitus. To overcome the issue of oral glimepiride and provide a localized effect, a transdermal drug delivery approach was developed.
MethodsThe glimepiride transdermal drug delivery approach was developed by using the solvent evaporation method. To examine the impact of altering amounts of polyvinyl alcohol (X1) and polyvinyl pyrrolidone (X2) on tensile strength, % of glimepiride released in 12 hours (Q12), and % of glimepiride released in 24 hours (Q24), as reliant on variables, a 32 complete factorial design was employed. For dependent variables, regression estimation and estimation of variance were employed. In-vitro release statistics were fixed to different models for various glimepiride release kinetics. In-vitro glimepiride release was tested using the best formulation.
ResultsThe formulation F4 with 1300.00 milligrams of polyvinyl alcohol and 600.00 milligrams of polyvinyl pyrrolidone demonstrated a release of 96.17% for up to 24 hours and zero order release kinetics consisting of r2=0.987, which was the best batch. The optimized formulation F4 showed a controlled release of glimepiride and better permeation and deposition properties.
ConclusionThe findings of this research work demonstrated the potential of the 32 full factorial mathematical models created to anticipate formulations with additional desirable release and permeability qualities for the treatment of diabetes mellitus.
-
-
-
A Review on Silver Nanoparticles: Synthesis Approaches, Properties, Characterization and Applications
Authors: CK Vishveshwaraiah, GB Kirankumar, M Harshitha and BK MadhuAvailable online: 01 November 2024More LessNanoparticles are a significant topic due to their applications in various fields, including biology, optics, catalysis, pharmaceutics, health, agriculture, and industry, with biosynthesis processes being quick, easy, and environmentally friendly. Due to their applications across multiple industries, silver nanoparticles, or AgNPs, have become the most desired nanoparticles with the recent development of nanotechnology. The physical, chemical, and biological characteristics of AgNPs are being studied. These characteristics are crucial for limiting the hazards associated with silver nanoparticles while optimizing their potential applications in many fields. A higher degree of toxicity in both the environment and living things could arise from the increasing use of silver nanoparticles in the product. Silver nanoparticles find application in wound care, anti-infective therapy, food, pharmaceutical, and cosmetic industries. As antioxidant, antiviral, anticancer, antifungal, anti-inflammatory, and microbiological agents, silver nanoparticles are widely used. Not only must the particles be nanoscale in order for silver nanoparticles to be present, but their production must also be simple and inexpensive to achieve. This paper aims to review the different methods of synthesis of silver nanoparticles, properties, characterization, and their applications. In specific, several chemical and green synthesis approaches for synthesising silver nanoparticles have been discussed. The morphology, size, thermal properties, toxicity properties, electrical properties, catalytic properties, and applications of silver nanoparticles are focused. The main focus is on the effective and efficient synthesis of pure silver nanoparticles and their potential applications.
-
-
-
A Comprehensive Review on Oleic Acid Vesicles: A Novel Approach to Drug Delivery
Authors: S Sandhya, Jayatheertha S Lokapur and Prakash S GoudanavarAvailable online: 24 October 2024More LessThe implementation of several innovative drug delivery technologies has made medication distribution more focused and managed in recent years. These days, a vesicular drug delivery system defines the rate of distribution and the site of action in order to improve the action and increase patient compliance; there are various kinds of newly developed vesicular drug delivery systems, including transferosomes, niosomes, aquasomes, ufasomes, pharmacosomes, and phytosomes. Ufasomes are unsaturated fatty acid vesicles with a limited pH range of 7 to 9. They are a suspension of closed lipid bilayers made of fatty acids and their ionized species. The hydrocarbon tails of fatty acid molecules are oriented toward the membrane's inner core, and their carboxyl groups are in contact with water. The two fatty acids that are most frequently employed in the ufasomes’ manufacturing process are oleic and linoleic acids. It is a common practice to produce fatty acid vesicles via the thin film hydration process. The manufacture of stable ufasomes is mostly dependent on the choice of fatty acids, amount of cholesterol, pH range, buffer, etc. This article goes into additional detail regarding unsaturated fatty acids’ characteristics, benefits, and drawbacks.
-
-
-
Chromatography and Spectroscopic Technique-Based Rapid Characterization of Nano-Carrier Pharmaceuticals
Authors: Shamim1* and Tarmeen AliAvailable online: 21 October 2024More LessA nanocarrier is a novel colloidal system whose particle size ranges between 1-100 nm. It is extensively utilized in drug delivery and various other sectors, such as the pharmaceutical, food, and dairy industries. The nanocarrier systems, including solid lipid nanoparticles, micelles, liposomes, and other encapsulated compounds, have improved stability, solubility, bioavailability, and quality. Nanocarriers offer therapeutic effectiveness with low toxicity because of their biocompatibility and ability to cross body barriers. Various analytical techniques, such as chromatography and spectroscopy, are crucial in qualitative and quantitative analysis of nanocarrier-based formulations. Molecular identification and drug content determination require chromatographic techniques, particularly HPLC. Spectroscopic techniques such as LC-MS, NMR, GC-MS, CE-MS, Raman, and IR are used to analyze the interaction and molecular structure of the sample. Nanocarriers have several benefits but face various challenges like stability, drug loading, regulatory standards, and biocompatibility. Future surface engineering and nanocarrier design advancements could improve targeted drug delivery and sustained diagnostic applications, significantly impacting healthcare.
-
-
-
A Comprehensive Review on the Self-Nanoemulsifying System for the Delivery of Herbal Drugs
Authors: Manoj Harde and Rashmi MallyaAvailable online: 11 October 2024More LessSelf-Nanoemulsifying Drug Delivery Systems (SNEDDSs) are an isotropic mixture of oils, co-surfactants, and surfactants and can form fine O/W nanoemulsions in aqueous media. These components are advantageous in terms of improved solubility and bioavailability, as limited permeability, solubility, and bioavailability remain a significant challenge in the development of herbal drugs. This review explores the potential of self-nanoemulsifying drug delivery systems (SNEDDSs) as a promising strategy to overcome this problem. The SNEDDSs are considered to be a novel technique for the delivery of low water-soluble drugs. They can bypass the first-pass metabolism, which ultimately results in steady and sustained drug levels in the systemic circulation. The present article provides a comprehensive overview of the SNEDDSs formulation of herbal drugs. It includes their composition, characterization, in vitro and in vivo studies conducted on various disease conditions, and their pharmacokinetic studies.
-
-
-
Lipid-Based Nanoparticles as Drug Delivery System for Modern Therapeutics
Authors: Shivani Gandhi and Divyesh Harshadkumar ShastriAvailable online: 11 October 2024More LessThe emergence of lipid-based nanoparticulate systems has significantly reshaped the landscape of drug delivery. This review aims to encapsulate the advancements, challenges, and potential of lipid-based nanoparticulate drug delivery in modern therapeutics. Lipid-based nanoparticles, including liposomes, lipid nanoparticles, and solid lipid nanoparticles, harness the biocompatibility and biodegradability of lipids to encapsulate and deliver a diverse range of therapeutic agents. This platform offers solutions to various drug delivery challenges, such as enhancing drug solubility and bio- availability, achieving controlled and sustained release, targeted delivery, and co-delivery of multi-agents. These nanoparticles have demonstrated potential in overcoming biological barriers, including the blood-brain barrier, mucosal barriers, and cellular barriers, enabling the delivery of drugs to previously inaccessible sites. Biocompatibility and reduced toxicity are intrinsic attributes of lipid-based nanoparticles, minimizing immune responses and systemic toxicity while promoting personalized medicine possibilities. However, challenges in formulation, stability, and regulatory approval underscore the need for ongoing research and innovation in this field.
-
-
-
Copper Nanoparticles: Characterization, Synthesis, and Biological Activity – A Review
Available online: 09 October 2024More LessCopper and copper-based nanoparticles, derived from the abundant and cost-effective copper metal, have garnered significant attention due to their unique properties and potential for various applications. Copper is a biogenic metal that is found in all kingdoms of life and has a variety of essential biological activities. Among the earliest metals that humanity has harvested and exploited, copper has played a crucial role in maintaining and advancing civilization since the beginning of time. The article provided sources that shed light on the synthesis, characteristics, and applications of copper and copper nanoparticles, highlighting their historical significance and diverse range of uses.
-
-
-
The Beauty Revolution of Nanotechnology: Unveiling the Impact of Cosmetic Nano Wonders
Authors: Parul Gupta, Anjali Sharma and Vishnu MittalAvailable online: 08 October 2024More LessThe infusion of nanotechnology into cosmetic formulations marks a transformative shift in beauty science. Although Raymond Reed originally used the word “cosmeceutical,” Dr. Albert Kligman popularised the idea in the late 1970s. Cosmetic Nano Wonders are redefining skincare by leveraging nanomaterials to enhance the stability, delivery, and efficacy of active ingredients. The paradigm shift holds promise for overcoming longstanding challenges in traditional cosmetic formulations. This article aims to explore and showcase the revolutionary impact of nanotechnology on the cosmetic industry. Focusing on key nanocarriers, such as liposomes and nanoparticles, our objective is to illuminate how nanotechnology elevates the performance of beauty products, providing advanced solutions for skincare concerns. This revolution promotes sustainability through green synthesis techniques and enables more accurate and effective therapies for a variety of skin issues, including acne and ageing that raises the bar for safety and innovation in the cosmetics business by enhancing product performance and environmental impact. Conducting a thorough literature review, we analyze recent scientific studies and industry reports to unveil the mechanisms and applications of nanotechnology in cosmetics. Special attention is given to the role of nanocarriers in stability enhancement, targeted delivery, and controlled release, unraveling the methods that drive the transformative potential of Cosmetic Nano Wonders. The database sources are Scopus, PubMed, Google Scholar, and Google Patents. The examination of recent research underscores the tangible benefits of nanotechnology in cosmetics. Cosmetic Nano Wonders demonstrate superior stability, enhanced penetration into skin layers, and controlled release mechanisms, showcasing their potential to revolutionize beauty science and address longstanding challenges in skincare. Cosmetic Nano Wonders represent a groundbreaking shift in beauty science, offering unprecedented possibilities for formulators and consumers. As nanotechnology continues to reshape cosmetic formulations, the future holds the promise of safer, more effective, and personalized skincare solutions, ushering in a new era in beauty science.
-
-
-
Nanocurcumin-containing Spongy Membrane for Improving the Quality of Hard and Soft Tissues in the Extracted Tooth Area: A Double-Blind Split-Mouth Clinical Trial Study
Available online: 30 August 2024More LessBackgroundThe assessment of the hard and soft tissue conditions is part of the overall dental treatments.
AimIn this study, we investigated nano curcumin-containing membranes to improve the quality of the hard and soft tissues in the extracted tooth area as a clinical trial study.
MethodsAfter the patient was selected following the inclusion and exclusion criteria, the patients who had teeth extracted from both sides of the mouth (split mouth) on the side of the intervention received a membrane containing nanocurcumin, and on the control side, no material was placed in the socket. For data analysis, SPSS software version 24 was used. A significance threshold was deemed to be less than 0.05 in terms of probability.
ResultsTwo months after tooth extraction, during implant placement, the average gingival thickness on the “intervention side,” was 3.1±0.34 mm, while the average gingival thickness on the “control side” was 2.6±0.42 mm. Then, the membrane could improve the quality of soft tissue (P< 0.0001). As another outcome, the application of this membrane did not significantly affect bone repair in these patients compared to the control group (P = 0.72). However, the histology data revealed that the newly generated bone of the intervention group was seen close to the membrane, demonstrating the osteoconductive ability of the membrane.
ConclusionBased on the obtained results, the newly developed membrane can be used to improve the quality of hard and soft tissues in the extracted tooth area. Nonetheless, more efforts in nanocurcumin dosage adjustment are needed for hard tissue regeneration in future studies.
-
-
-
Liquid Crystalline Lipid Nanoparticles: Emerging Trends and Applications in Skin Cancer
Authors: Kamya Varshney, Rupa Mazumder, Anjna Rani, Pratibha Pandey and Malakpogu Ravindra BabuAvailable online: 30 August 2024More LessLiquid crystalline lipid nanoparticles (LCNPs) represent a type of membrane-based nano-carriers formed through the self-assembly of lyotropic lipids. These lipids, such as unsaturated monoglycerides, phospholipids, and co-lipids, create liquid crystals or vesicles with an aqueous core enclosed by a natural or synthetic phospholipid bilayer upon exposure to an aqueous medium. Liquid crystalline lipid nanoparticles (LCNPs), akin to liposomes, have garnered significant attention as nanocarriers suitable for a diverse range of hydrophobic and hydrophilic molecules. Their notable structural advantage lies in a mono-channel network organization and the presence of multiple compartments, resulting in heightened encapsulation efficiency for various substances. Cubosomes, spongosomes, hexosomes, and multicompartment nanoparticles are examples of lipid nanocarriers with interior liquid crystalline structures that have recently gained a lot of interest as effective drug delivery systems. Additionally, LCNPs facilitate the sustained release of encapsulated compounds, including therapeutic macromolecules. This review delves into the structure of liquid crystalline lipid nanoparticles, explores preparation techniques, and outlines their applications in the context of skin cancer.
-