Skip to content
2000
image of Revolutionizing Drug Delivery: A Design Professional's Approach to Drug-loaded Transferosomal Vesicles for Transdermal Use

Abstract

Aim

This study aimed to develop and evaluate lornoxicam (LXM) and thiocolchicoside (TCS) transferosomal transdermal patches.

Background

Oral administration of LXM and TCS can lead to gastric irritation, necessitating alternative delivery methods for pain and inflammation relief. Incorporating LXM & TCS into transferosomes within a transdermal patch offers a potential solution.

Objective

The objective of this study is to develop and evaluate transferosomal transdermal patches containing LXM and TCS, incorporating leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers. The aim is to enhance the skin permeation of these drugs while mitigating gastric irritation associated with their oral administration.

Method

Transferosomes were made by the thin film hydration tactic, with nine formulations based on three independent variables: phosphatidylcholine, span 80, and sonication time. Entrapment efficiency and drug release at 6th h were assessed as dependent variables. The optimized combination was then formulated into transdermal patches central composite design, evaluating the impact of AVLM and LO on lornoxicam discharge and other physicochemical properties.

Results

The average weight and thickness of the patches ranged from 7.52±0.75 to 8.07±0.11g and from 1.69±0.01 to 1.82±0.02mm, respectively, representing minimal variance. The LXM/TCS content homogeneity ranged from 92.84±3.55 to 94.07±4.61% for LXM and from 90.17±1.98 to 93.18±2.98% for TCS, demonstrating robust uniformity. Higher proportions of phosphatidylcholine and span 80, along with lesser sonication time, led to improved entrapment of lornoxicam. discharge studies demonstrated optimal discharge with a higher proportion of phosphatidylcholine, a medium proportion of span 80, and a longer sonication time. The transferosomal patches exhibited zero-order discharge kinetics, with LXM & TCS discharge % at 24, 48, and 72 h.

Conclusion

The study concludes that formulation TDP-8, which incorporates 3g of leaf mucilage (AVLM) and lime oil (LO) as permeability enhancers, demonstrated favorable discharge characteristics. This indicates its potential as an effective transdermal delivery system for LXM and TCS, offering a promising substitute for pain and inflammation relief while minimizing gastric irritation. The study succeeded in developing and evaluating transferosomal transdermal patches for LXM and TCS, providing an alternative delivery method that minimizes gastric irritation.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385346215250109142123
2025-01-27
2025-11-05
Loading full text...

Full text loading...

References

  1. McCarberg B.H. NSAIDs in the older patient: balancing benefits and harms. Pain Med. 2013 14 Suppl. 1 S43 S44 10.1111/pme.12253 24373111
    [Google Scholar]
  2. Mittal R. Sharma S. Mittal A. Mittal A. Recent progress in selective COX-2 inhibitor formulations and therapeutic applications-A patent review (2012-2022). Mini Rev. Med. Chem. 2023 23 22 2130 2141 10.2174/1389557523666230417102123 37070437
    [Google Scholar]
  3. Cahill E.P. Adding a COX-2 inhibitor improves efficacy of emergency contraception. Lancet 2023 402 10405 826 827 10.1016/S0140‑6736(23)01612‑4 37597526
    [Google Scholar]
  4. Lin J. Zhang Y. Bian Y. Zhang Y. Du R. Li M. Tan Y. Feng X. Non-steroidal anti-inflammatory drugs (NSAIDs) in the environment: Recent updates on the occurrence, fate, hazards and removal technologies. Sci. Total Environ. 2023 904 166897 10.1016/j.scitotenv.2023.166897 37683862
    [Google Scholar]
  5. Fan X. Wang S. Pan K. Wang D. Wang R. Treatment, Selective COX-2 inhibitor is beneficial in suppressing chronic postsurgical pain in esophageal cancer patients and may prolong patient survival. Oncol. Res. Treat. 2023 46 12 503 510 10.1159/000535183 37963439
    [Google Scholar]
  6. Balavigneswaran C.K. Jaiswal V. Venkatesan R. Karuppiah P.S. Sundaram M.K. Vasudha T.K. Aadinath W. Ravikumar A. Saravanan H.V. Muthuvijayan V. Mussel-inspired adhesive hydrogels based on Laponite-confined dopamine polymerization as a transdermal patch. Biomacromolecules 2023 24 2 724 738 10.1021/acs.biomac.2c01168 36599131
    [Google Scholar]
  7. Ashfaq A. Riaz T. Waqar M.A. Zaman M. Majeed I.J.P-P.T. Materials, A comprehensive review on transdermal patches as an efficient approach for the delivery of drug. 2024 63 8 1045 1069
    [Google Scholar]
  8. Patel G. Narkhede K. Prajapati A. Narkhede S.J.I.J.P.S. Medicine, A comprehensive review article on transdermal patch. 2023 8 3 77 81
    [Google Scholar]
  9. da Silva Barbirato D. de Melo Vasconcelos A.F. Dantas de Moraes S.L. Pellizzer E.P. do Egito Vasconcelos B.C. Analgesic potential of transdermal nicotine patch in surgery: A systematic review and meta-analysis of randomised placebo-controlled trials. Eur. J. Clin. Pharmacol. 2023 79 5 589 607 10.1007/s00228‑023‑03475‑7 36947193
    [Google Scholar]
  10. Ossowicz-Rupniewska P. Bednarczyk P. Nowak M. Nowak A. Duchnik W. Kucharski Ł. Klebeko J. Świątek E. Bilska K. Rokicka J. Janus E. Klimowicz A. Czech Z. Evaluation of the structural modification of ibuprofen on the penetration release of ibuprofen from a drug-in-adhesive matrix type transdermal patch. Int. J. Mol. Sci. 2022 23 14 7752 10.3390/ijms23147752 35887099
    [Google Scholar]
  11. Valeveti S.K. Pashikanti S.J.I.J.A.P. Design, development, and evaluation of transdermal patches containing memantine hydrochloride. 2023 15 5 181 197
    [Google Scholar]
  12. Marinov L. Georgieva A. Toshkova R. Kostadinova I. Mangarov I. Toshkova-Yotova T. Nikolova I.J.P. The effects of meloxicam, lornoxicam, ketoprofen, and dexketoprofen on human cervical, colorectal, and mammary carcinoma cell lines. 2024 71 1 12
    [Google Scholar]
  13. Prajapati P. Pulusu V.S. Shah S. Principles of white analytical chemistry and design of experiments to development of stability-indicating chromatographic method for the simultaneous estimation of thiocolchicoside and lornoxicam. J. AOAC Int. 2023 106 6 1654 1665 10.1093/jaoacint/qsad082 37462527
    [Google Scholar]
  14. Zhao L. Vora L.K. Kelly S.A. Li L. Larrañeta E. McCarthy H.O. Donnelly R.F. Hydrogel-forming microarray patch mediated transdermal delivery of tetracycline hydrochloride. J. Control. Release 2023 356 196 204 10.1016/j.jconrel.2023.02.031 36868520
    [Google Scholar]
  15. Hashmat D. Shoaib M.H. Ali F.R. Siddiqui F. Lornoxicam controlled release transdermal gel patch: Design, characterization and optimization using co-solvents as penetration enhancers. PLoS One 2020 15 2 e0228908 10.1371/journal.pone.0228908 32107483
    [Google Scholar]
  16. Druet-Cabanac A. Sophie J.L. Afshari R. Sahnoun R. Kouao-Kanga G. Toussi M. Granados D. Safety D. A drug utilization study of thiocolchicoside‐containing medicinal products for systemic use in France and Italy: A cross‐sectional electronic medical records database study. Pharmacoepidemiol. Drug Saf. 2023 32 10 1093 1102 10.1002/pds.5611 36919414
    [Google Scholar]
  17. Veiga D.A.S.d. Leite E.F. Mascarenha K.G. Rocha L.M.C. França S.L.S. Ferreira S.B.J.C.J.A.S. Technology, pharmacological repositioning of thiocolchicoside: Antibacterial evaluation. In Vitro 2023 42 11 33 38
    [Google Scholar]
  18. Rathore V.P.S. Tikariya K. Mukherjee J. Formulation and evaluation of transdermal patch of thiochochicoside. Int J Pharm Sci Med. 2021 6 12 18 28 10.47760/ijpsm.2021.v06i12.002
    [Google Scholar]
  19. Togiti R.K. Kiran D. Ramakrishna K. Sayana S.B.J.A.J.M.S. A comparative study of the efficacy and safety of thiocolchicoside and chlorzoxazone in patients with acute musculoskeletal pain. 2023 14 8 203 206
    [Google Scholar]
  20. Simrah A. Hafeez A. Usmani S.A. Izhar M.P. Transfersome, an ultra-deformable lipid-based drug nanocarrier: An updated review with therapeutic applications. Naunyn Schmiedebergs Arch. Pharmacol. 2024 397 2 639 673 10.1007/s00210‑023‑02670‑8 37597094
    [Google Scholar]
  21. Firdos L. Haranath C. Yasaswini S. Sai R.N. Satish T.J.J.Y.P. exploring transferosomes: A comprehensive review of novel strategies and applications in drug delivery. 2024 16 3 410 415
    [Google Scholar]
  22. Kanshide A. Peram M.R. Chandrasekhar N. Jamadar A. Kumbar V. Kugaji M.J.J.P.I. Formulation, optimization, and antioxidant evaluation of tetrahydrocurcumin-loaded ultradeformable nanovesicular cream 2023 18 3 980 998
    [Google Scholar]
  23. Singh K. Singh S. Attri M. Yadav P.J.J.S.F.S. Transferosome: A vesicular transdermal delivery system for enhanced drug permeation of antihypertensive drug bisoprolol fumarate. 2023 3893 3903
    [Google Scholar]
  24. Fernández-García R. Lalatsa A. Statts L. Bolás-Fernández F. Ballesteros M.P. Serrano D.R. Transferosomes as nanocarriers for drugs across the skin: Quality by design from lab to industrial scale. Int. J. Pharm. 2020 573 118817 10.1016/j.ijpharm.2019.118817 31678520
    [Google Scholar]
  25. Wani S.N. Singh S. Sharma N. Zahoor I. Grewal S. Gupta S.J.B. Transferosome-based intranasal drug delivery systems for the management of schizophrenia: A futuristic approach. 2023 ••• 1 19
    [Google Scholar]
  26. Baishya R. Hati Boruah J.L. Bordoloi M.J. Kumar D. Kalita P. Novel drug delivery system in phytochemicals: Modern era of ancient science, herbal medicine in India: Indigenous knowledge, practice, innovation and its value. 2020 ••• 175 189
    [Google Scholar]
  27. Zhang Y. Gao Z. Chao S. Lu W. Zhang P. Transdermal delivery of inflammatory factors regulated drugs for rheumatoid arthritis. Drug Deliv. 2022 29 1 1934 1950 10.1080/10717544.2022.2089295 35757855
    [Google Scholar]
  28. Jahan S. Ali A. Sultana N. Qizilbash F.F. Ali H. Aqil M. Mujeeb M. Ali A. An overview of phospholipid enriched-edge activator-based vesicle nanocarriers: New paradigms to treat skin cancer. J. Drug Target. 2024 ••• 1 25 10.1080/1061186X.2024.2402750 39246202
    [Google Scholar]
  29. Veer P.J. Mastiholimath V.S.J.J.P.I. Formulation, characterization, and optimization of transethosomes for enhanced transdermal delivery of methotrexate 2023 18 4 2385 2401
    [Google Scholar]
  30. Patil P. Rahangdale M. Sawant K. Atorvastatin loaded glycerosomal patch as an effective transdermal drug delivery: Optimization and evaluation. Ther. Deliv. 2024 15 12 957 976 10.1080/20415990.2024.2408218 39431521
    [Google Scholar]
  31. Munir M. Zaman M. Waqar M.A. Hameed H. Riaz T. A comprehensive review on transethosomes as a novel vesicular approach for drug delivery through transdermal route. J. Liposome Res. 2024 34 1 203 218 10.1080/08982104.2023.2221354 37338000
    [Google Scholar]
  32. Sahu A.N. Mohapatra D.J.N. Nanovesicular transferosomes for the topical delivery of plant bioactives. Taylor & Francis 2021 2491 2495
    [Google Scholar]
  33. Maji R. Omolo C.A. Jaglal Y. Singh S. Devnarain N. Mocktar C. Govender T. A transferosome-loaded bigel for enhanced transdermal delivery and antibacterial activity of vancomycin hydrochloride. Int. J. Pharm. 2021 607 120990 10.1016/j.ijpharm.2021.120990 34389419
    [Google Scholar]
  34. Pahwa R. Pal S. Saroha K. Waliyan P. Kumar M.J.J.o.A.P.S. Transferosomes: Unique vesicular carriers for effective transdermal delivery. J Appl Pharm Sci 2021 11 5 110501
    [Google Scholar]
  35. Hady M.A. Darwish A.B. Abdel-Aziz M.S. Sayed O.M. Biointerfaces S.B. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf. B Biointerfaces 2022 211 112304 10.1016/j.colsurfb.2021.112304 34959094
    [Google Scholar]
  36. Matharoo N. Mohd H. Michniak-Kohn B. Transferosomes as a transdermal drug delivery system: Dermal kinetics and recent developments. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2024 16 1 e1918 10.1002/wnan.1918 37527953
    [Google Scholar]
  37. Ontong J.C. Singh S. Siriyong T. Voravuthikunchai S.P. Transferosomes stabilized hydrogel incorporated rhodomyrtone-rich extract from Rhodomyrtus tomentosa leaf fortified with phosphatidylcholine for the management of skin and soft-tissue infections. Biotechnol. Lett. 2024 46 1 127 142 10.1007/s10529‑023‑03452‑1 38150096
    [Google Scholar]
  38. Sapkota R. Dash A.K. Liposomes and transferosomes: a breakthrough in topical and transdermal delivery. Ther. Deliv. 2021 12 2 145 158 10.4155/tde‑2020‑0122 33583219
    [Google Scholar]
  39. Bahuguna R. Awasthi R.J.J.D.D.S. Technology, Unlocking new dimensions in rheumatoid arthritis therapy: Harnessing the power of lipid based vesicles beyond traditional therapies. 2023 105106
    [Google Scholar]
  40. Correia A.C. Moreira J.N. Sousa Lobo J.M. Silva A.C. Design of experiment (DoE) as a quality by design (QbD) tool to optimise formulations of lipid nanoparticles for nose-to-brain drug delivery. Expert Opin. Drug Deliv. 2023 20 12 1731 1748 10.1080/17425247.2023.2274902 37905547
    [Google Scholar]
  41. Sousa A. Serra J. Estevens C. Costa R. Ribeiro A.J.J.P.I. A quality by design approach in oral extended release drug delivery systems: Where we are and where we are going? 2023 53 2 269 306
    [Google Scholar]
  42. Chiarentin L. Gonçalves C. Augusto C. Miranda M. Cardoso C. Vitorino C.J.C.R.A.C. Drilling into “Quality by Design” approach for analytical methods. 2023 ••• 1 42 37665603
    [Google Scholar]
  43. Mishra V. Thakur S. Patil A. Shukla A. Quality by design (QbD) approaches in current pharmaceutical set-up. Expert Opin. Drug Deliv. 2018 15 8 737 758 10.1080/17425247.2018.1504768 30044646
    [Google Scholar]
  44. Chinthaginjala H. Ahad H.A. Kethandapatti Srinivasa S. Yaparla S.R. Buddadasari S. Hassan J.A. Pullaganti S.S. Central composite design assisted formulation development and optimization of gastroretentive floating tablets of dextromethorphan hydrobromide. Indian J Pharm Educ Res. 2023 57 4 983 992 10.5530/ijper.57.4.120
    [Google Scholar]
  45. Nathi R. Kowtharapu L.P. Muchakayala S.K. Konduru N. QbD‐based stability‐indicating liquid chromatography (RP‐HPLC) method for the determination of flurbiprofen in cataplasm. Biomed. Chromatogr. 2023 37 4 e5580 10.1002/bmc.5580 36609857
    [Google Scholar]
  46. Kumar L.S. Ahad H.A. Quality by design based quercetin hydrate nanoemulsions for enhanced solubility by reducing particle size. Indian Journal of Pharmaceutical Education and Research 2023 57 4 965 970 10.5530/ijper.57.4.118
    [Google Scholar]
  47. Özcan Bülbül E. Husseın H.A. Yeğen G. Okur M.E. Üstündağ Okur N. Aksu N.B. Preparation and in vitro–in vivo evaluation of QbD based acemetacin loaded transdermal patch formulations for rheumatic diseases. Pharm. Dev. Technol. 2022 27 10 1016 1026 10.1080/10837450.2022.2145308 36583670
    [Google Scholar]
  48. Akhlaq M. Arshad M.S. Mudassir A.M. Hussain A. Kucuk I. Haj-Ahmad R. Rasekh M. Ahmad Z. Formulation and evaluation of anti-rheumatic dexibuprofen transdermal patches: A quality-by-design approach. J. Drug Target. 2016 24 7 603 612 10.3109/1061186X.2015.1116538 26586147
    [Google Scholar]
  49. Luiz M.T. Viegas J.S.R. Abriata J.P. Tofani L.B. Vaidergorn M.M. Emery F.S. Chorilli M. Marchetti J.M. Docetaxel-loaded folate-modified TPGS-transfersomes for glioblastoma multiforme treatment. Mater. Sci. Eng. C 2021 124 112033 10.1016/j.msec.2021.112033 33947535
    [Google Scholar]
  50. Rampado R. Peer D. Design of experiments in the optimization of nanoparticle-based drug delivery systems. J. Control. Release 2023 358 398 419 10.1016/j.jconrel.2023.05.001 37164240
    [Google Scholar]
  51. Nguyen H.X. Le N.Y. Nguyen C.N. Research T. Quality by design optimization of formulation variables and process parameters for enhanced transdermal delivery of nanosuspension. Drug Deliv. Transl. Res. 2024 ••• 1 32 10.1007/s13346‑024‑01733‑4 39496992
    [Google Scholar]
  52. Ahad H.A. Chinthaginjala H. Priyanka M.S. Raghav D.R. Gowthami M. Jyothi V.N. Datura stramonium leaves mucilage aided buccoadhesive films of aceclofenac using 32 factorial design with design-expert software. Indian J Pharm Educ Res. 2021 55 2s s396 s404
    [Google Scholar]
  53. Waghule T. Patil S. Rapalli V.K. Girdhar V. Gorantla S. Kumar Dubey S. Saha R.N. Singhvi G.J.L.c. Improved skin-permeated diclofenac-loaded lyotropic liquid crystal nanoparticles: QbD-driven industrial feasible process and assessment of skin deposition. 2021 48 7 991 1009
    [Google Scholar]
  54. Patel V. Mehta T. Shah J. Soni K. Research T. Quality by design driven development of lipid nanoparticles for cutaneous targeting: A preliminary approach. Drug Deliv. Transl. Res. 2024 1 18 10.1007/s13346‑024‑01685‑9 39145818
    [Google Scholar]
  55. Politis S.N. Colombo P. Colombo G. Rekkas D.J.D.M. Design of experiments (DoE) in pharmaceutical development. Drug Dev Ind Pharm 2017 43 6 889 901
    [Google Scholar]
  56. Babu G.N. Menaka M. Ahad H.A. Neem fruit mucilage-aided mucoadhesive microspheres of acyclovir using 32 factorial design with design-expert software. Appl Biol Res. 2022 24 1 17 27
    [Google Scholar]
  57. Adel S. Fahmy R.H. Elsayed I. Mohamed M.I. Ibrahim R.R. Research T. Fabrication and optimization of itraconazole-loaded zein-based nanoparticles in coated capsules as a promising colon-targeting approach pursuing opportunistic fungal infections. Drug Deliv. Transl. Res. 2023 13 12 2982 3002 10.1007/s13346‑023‑01365‑0 37270444
    [Google Scholar]
  58. Bisen A.C. Dubey A. Agrawal S. Biswas A. Rawat K.S. Srivastava S. Bhatta R.S. Recent updates on ocular disease management with ophthalmic ointments. Ther. Deliv. 2024 15 6 463 480 10.1080/20415990.2024.2346047 38888757
    [Google Scholar]
  59. Shravani Y. Ahad H.A. Haranath C. Int. J. Life Sci. Pharma Res. 2021 11 1 124 135
    [Google Scholar]
  60. Ali H.S. Namazi N. Elbadawy H.M. El-Sayed A.A. Ahmed S.A. Bafail R. Almikhlafi M.A. Alahmadi Y.M.J.I.J.N. Repaglinide–solid lipid nanoparticles in chitosan patches for transdermal application: Box–behnken design. Characterization, and In Vivo Evaluation 2024 209 230
    [Google Scholar]
  61. Sahoo L. Jena G.K. Patro C.S. Patro C.N. Satapathy S.J.J.P.I. Box behnken design-enabled development of nanostructured lipid carrier transdermal patch for enhancement of bioavailability of olmesartan medoxomil 2022 17 4 1405 1419
    [Google Scholar]
  62. Chaturvedi S. Garg A.J.J.D.D.S. Technology, Development and optimization of nanoemulsion containing exemestane using box-behnken design. 2023 80 104151
    [Google Scholar]
  63. Jamadar A.T. Peram M.R. Chandrasekhar N. Kanshide A. Kumbar V.M. Diwan P.V.J.J.P.I. Formulation, optimization, and evaluation of ultradeformable nanovesicles for effective topical delivery of hydroquinone. 2023 18 2 506 524
    [Google Scholar]
  64. Mishra G. Awasthi R. Singh A.K. Singh S. Mishra S.K. Singh S.K. Nandi M.K. Intranasally co-administered berberine and curcumin loaded in transfersomal vesicles improved inhibition of amyloid formation and BACE-1. ACS Omega 2022 7 47 43290 43305 10.1021/acsomega.2c06215 36467923
    [Google Scholar]
  65. AL Shuwaili A.H. Rasool B.K.A. Abdulrasool A.A. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur. J. Pharm. Biopharm. 2016 102 101 114 10.1016/j.ejpb.2016.02.013 26925505
    [Google Scholar]
  66. Gadag S. Narayan R. Sabhahit J.N. Hari G. Nayak Y. Pai K.S.R. Garg S. Nayak U.Y. Transpapillary iontophoretic delivery of resveratrol loaded transfersomes for localized delivery to breast cancer. Biomaterials Advances 2022 140 213085 10.1016/j.bioadv.2022.213085 36037762
    [Google Scholar]
  67. Pavani K. Babu M.K. Formulation and evaluation of Lornoxicam transferosomes as carriers for effective transdermal drug delivery. Indian J Res Pharm Biotechnol. 2015 3 6 416
    [Google Scholar]
  68. Uner B. Baranauskaite Ortasoz J. Tas C. Development of thermosensitive liposome-containing in-situ gel systems for intranasal administration of thiocolchicoside and in vivo evaluation in a rabbit model. Pharm. Dev. Technol. 2024 29 6 582 595 10.1080/10837450.2024.2364707 38841795
    [Google Scholar]
  69. Majukar S. Dandagi P. Kurangi B. Design and characterization of transfersomal patch of aceclofenac as a carrier for transdermal delivery. IOSR J. Pharm. Biol. Sci. 2019 9 1 1138 1147
    [Google Scholar]
  70. Abd El-Alim S.H. Kassem A.A. Basha M. Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation. Int. J. Pharm. 2019 563 293 303 10.1016/j.ijpharm.2019.04.001 30951860
    [Google Scholar]
  71. Joshi A. Kaur J. Kulkarni R. Chaudhari R. In-vitro and Ex-vivo evaluation of Raloxifene hydrochloride delivery using nano-transfersome based formulations. J. Drug Deliv. Sci. Technol. 2018 45 151 158 10.1016/j.jddst.2018.02.006
    [Google Scholar]
  72. Balata G.F. Faisal M.M. Elghamry H.A. Sabry S.A. Preparation and characterization of ivabradine HCl transfersomes for enhanced transdermal delivery. J. Drug Deliv. Sci. Technol. 2020 60 101921 10.1016/j.jddst.2020.101921
    [Google Scholar]
  73. Iyer A. Jyothi V.G.S.S. Agrawal A. Khatri D.K. Srivastava S. Singh S.B. Madan J. Does skin permeation kinetics influence efficacy of topical dermal drug delivery system? J. Adv. Pharm. Technol. Res. 2021 12 4 345 355 10.4103/japtr.japtr_82_21 34820308
    [Google Scholar]
  74. Rarokar N.R. Saoji S.D. Deole N.V. Gaikwad M. Pandey A. Kamaraj C. Chinni S.V. Subramaniyan V. Ramachawolran G. Dharashivkar S. Preparation and formula optimization of cephalexin loaded transferosomal gel by QbD to enhance the transdermal delivery: In vitro, ex vivo and in vivo study. J. Drug Deliv. Sci. Technol. 2023 89 104968 10.1016/j.jddst.2023.104968
    [Google Scholar]
  75. Pitta S.K. Dudhipala N. Narala A. Veerabrahma K. Development of zolmitriptan transfersomes by box–behnken design for nasal delivery: In vitro and in vivo evaluation. Drug Dev. Ind. Pharm. 2018 44 3 484 492 10.1080/03639045.2017.1402918 29124986
    [Google Scholar]
  76. Eid H.M. Elkomy M.H. El Menshawe S.F. Salem H.F. Transfersomal nanovesicles for nose-to-brain delivery of ofloxacin for better management of bacterial meningitis: Formulation, optimization by Box-Behnken design, characterization and in vivo pharmacokinetic study. J. Drug Deliv. Sci. Technol. 2019 54 101304 10.1016/j.jddst.2019.101304
    [Google Scholar]
  77. Mallya R. Patil K. Recent developments in formulation design of a multifunctional phytochemical quercetin: A review. Pharmacogn. Rev. 2021 15 29 32 46 10.5530/phrev.2021.15.4
    [Google Scholar]
  78. Tamilarasan N. Yasmin B.M. Anitha P. Umme H. Cheng W.H. Mohan S. Ramkanth S. Janakiraman A.K. Box–Behnken design: optimization of Proanthocyanidin-loaded Transferosomes as an effective therapeutic approach for osteoarthritis. Nanomaterials 2022 12 17 2954 10.3390/nano12172954 36079990
    [Google Scholar]
  79. Deka T. Das M.K. Das S. Das P. Singha L.R. Box-Behnken design approach to develop nano-vesicular herbal gel for the management of skin cancer in experimental animal model. Int J Appl Pharm. 2022 14 148 166 10.22159/ijap.2022v14i6.45867
    [Google Scholar]
  80. Gayathri H. Sangeetha S. Design and development of tofacitinib citrate loaded transferosomal gel for skin cancer by box-Behnken design- doe approach. Int. J. Health Sci. 2022 6 3119 3140 10.53730/ijhs.v6nS6.10118
    [Google Scholar]
  81. Abdallah M.H. Abu Lila A.S. Shawky S.M. Almansour K. Alshammari F. Khafagy E.S. Makram T.S. Experimental design and optimization of nano-transfersomal gel to enhance the hypoglycemic activity of silymarin. Polymers 2022 14 3 508 10.3390/polym14030508 35160498
    [Google Scholar]
  82. Sultana N. Ali A. Waheed A. Jabi B. Yaqub khan M. Mujeeb M. Sultana Y. Aqil M. Dissolving microneedle transdermal patch loaded with Risedronate sodium and Ursolic acid bipartite nanotransfersomes to combat osteoporosis: Optimization, characterization, in vitro and ex vivo assessment. Int. J. Pharm. 2023 644 123335 10.1016/j.ijpharm.2023.123335 37597597
    [Google Scholar]
  83. Sharma A. Singh A.P. Harikumar S.L. Development and optimization of nanoemulsion based gel for enhanced transdermal delivery of nitrendipine using box-behnken statistical design. Drug Dev. Ind. Pharm. 2020 46 2 329 342 10.1080/03639045.2020.1721527 31976777
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385346215250109142123
Loading
/content/journals/pnt/10.2174/0122117385346215250109142123
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Transdermal ; Permeation ; Thiocolchicoside ; Patch ; Lornoxicam ; Transferosomes
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test