Skip to content
2000
image of Nano Drug Delivery Carriers (Nanocarriers): A Promising Targeted Strategy in Tuberculosis and Pain Treatment

Abstract

Tuberculosis (TB) and chronic pain are global health concerns that affect millions of people, often requiring long-term, effective treatment strategies. The conventional therapies used to manage these conditions come with significant limitations. In TB, long treatment durations, poor compliance, drug resistance, and toxicity of first-line drugs are key challenges. Similarly, pain management faces issues, such as inadequate targeting, systemic side effects, and tolerance to analgesics, limiting traditional therapy efficacy.

The objective of this review is to explore the potential of nanocarriers as a targeted drug delivery strategy for improving treatment outcomes in TB and pain management. It aims to explore how these advanced systems improve drug bioavailability (BA), control release, reduce side effects, and enhance therapeutic outcomes.

This systematic review used databases like PubMed, Elsevier, Scopus, Google Scholar, Google Patents, and ResearchGate, ., to collect original review articles from the past 15 years (September 1, 2007 to September 1, 2024).

The review also revealed that these advanced systems offer promising solutions for overcoming 
the limitations of conventional therapies, such as poor patient compliance and drug toxicity. Nanocarriers represent a transformative approach in both TB and pain management, with the potential to revolutionize treatment paradigms and improve patient outcomes. In conclusion, nanocarriers represent a highly promising approach for advancing treatment strategies in both TB and pain management. The review underscores that nanocarrier systems, such as nanoemulsion, nanosuspension, nanocrystal, liposomes, niosomes, dendrimer, and polymeric nanoparticles, offer substantial improvements in drug delivery by enhancing BA, ensuring targeted release, and reducing systemic side effects.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385367493250224103839
2025-03-07
2025-10-24
Loading full text...

Full text loading...

References

  1. Sharma PK Dorlikar S Rawat P Malik V Vats N Sharma M Rhyee JS Kaushik AK Nanotechnology and its application: A review. 2021 1 33 10.1016/B978‑0‑12‑818154‑6.00010‑X
    [Google Scholar]
  2. Rastogi V. Yadav P. Porwal M. Sur S. Verma A. Dendrimer as nanocarrier for drug delivery and drug targeting therapeutics: A fundamental to advanced systematic review. Int. J. Polym. Mater. 2024 73 4 310 332 10.1080/00914037.2022.2158334
    [Google Scholar]
  3. Wang N. Cheng X. Li N. Wang H. Chen H. Nanocarriers and their loading strategies. Adv. Healthc. Mater. 2019 8 6 1801002 10.1002/adhm.201801002 30450761
    [Google Scholar]
  4. Stoicea N. Fiorda-Diaz J. Joseph N. Shabsigh M. Arias-Morales C. Gonzalez-Zacarias A.A. Mavarez-Martinez A. Marjoribanks S. Bergese S.D. Advanced analgesic drug delivery and nanobiotechnology. Drugs 2017 77 10 1069 1076 10.1007/s40265‑017‑0744‑y 28470586
    [Google Scholar]
  5. Prabahar K. Alanazi Z. Qushawy M. Targeted drug delivery system: Advantages, carriers and strategies. Indian J. Pharm. Educ. Res. 2021 55 2 346 353 10.5530/ijper.55.2.72
    [Google Scholar]
  6. Khan I. Khan M. Umar M.N. Oh D.H. Nanobiotechnology and its applications in drug delivery system: A review. IET Nanobiotechnol. 2015 9 6 396 400 10.1049/iet‑nbt.2014.0062 26647817
    [Google Scholar]
  7. Sulis G. Roggi A. Matteelli A. Raviglione M.C. Tuberculosis: Epidemiology and control. Mediterr. J. Hematol. Infect. Dis. 2014 6 1 e2014070 10.4084/mjhid.2014.070 25408856
    [Google Scholar]
  8. Motta I. Boeree M. Chesov D. Dheda K. Günther G. Horsburgh C.R. Jr Kherabi Y. Lange C. Lienhardt C. McIlleron H.M. Paton N.I. Stagg H.R. Thwaites G. Udwadia Z. Van Crevel R. Velásquez G.E. Wilkinson R.J. Guglielmetti L. Motta I. Kherabi Y. Van Crevel R. Guglielmetti L. Recent advances in the treatment of tuberculosis. Clin. Microbiol. Infect. 2024 30 9 1107 1114 10.1016/j.cmi.2023.07.013 37482332
    [Google Scholar]
  9. Obeagu E.I. Onuoha E.C. Tuberculosis among HIV patients: A review of prevalence and associated factors. Int. J. Adv. Res. Biol. Sci. 2023 10 9 128 134
    [Google Scholar]
  10. Natarajan A. Beena P.M. Devnikar A.V. Mali S. A systemic review on tuberculosis. Indian J. Tuberc. 2020 67 3 295 311 10.1016/j.ijtb.2020.02.005 32825856
    [Google Scholar]
  11. Xiong X.S. Zhang X.D. Yan J.W. Huang T.T. Liu Z.Z. Li Z.K. Wang L. Li F. Identification of Mycobacterium tuberculosis resistance to common antibiotics: An overview of current methods and techniques. Infect. Drug Resist. 2024 17 1491 1506 10.2147/IDR.S457308 38628245
    [Google Scholar]
  12. Kumar V. Neradi D. Sherry B. Gaurav A. Dhatt S.S. Tuberculosis of the spine and drug resistance: A review article. Neurosurg. Rev. 2022 45 1 217 229 10.1007/s10143‑021‑01595‑1 34176000
    [Google Scholar]
  13. Salim S. Prevalence, types and treatment of tuberculosis: A review. Scientific Inquiry and Review 2020 4 4 41 48 10.32350/sir/2020/44/999
    [Google Scholar]
  14. Alene K.A. Wangdi K. Colquhoun S. Chani K. Islam T. Rahevar K. Morishita F. Byrne A. Clark J. Viney K. Tuberculosis related disability: A systematic review and meta-analysis. BMC Med. 2021 19 1 203 10.1186/s12916‑021‑02063‑9 34496845
    [Google Scholar]
  15. El-Tallawy S.N. Perglozzi J.V. Ahmed R.S. Kaki A.M. Nagiub M.S. LeQuang J.K. Hadarah M.M. Pain management in the post-COVID era—an update: A narrative review. Pain Ther. 2023 12 2 423 448 10.1007/s40122‑023‑00486‑1 36853484
    [Google Scholar]
  16. Pandey P. Pal R. Khadam V.K.R. Chawra H.S. Singh R.P. Advancement and characteristics of non-ionic surfactant vesicles (Niosome) and their application for analgesics. Int. J. Pharm. Investig. 2024 14 3 616 632 10.5530/ijpi.14.3.74
    [Google Scholar]
  17. Alorfi N.M. Pharmacological methods of pain management: Narrative review of medication used. Int. J. Gen. Med. 2023 16 3247 3256 10.2147/IJGM.S419239 37546242
    [Google Scholar]
  18. Kaye A.D. Armstead-Williams C. Hyatali F. Cox K.S. Kaye R.J. Eng L.K. Farooq Anwar M.A. Patel P.V. Patil S. Cornett E.M. Exparel for postoperative pain management: A comprehensive review. Curr. Pain Headache Rep. 2020 24 11 73 10.1007/s11916‑020‑00905‑4 33098008
    [Google Scholar]
  19. Ahmed S. Nandi S. Saxena A.K. An updated patent review on drugs for the treatment of tuberculosis (2018-present). Expert Opin. Ther. Pat. 2022 32 3 243 260 10.1080/13543776.2022.2012151 34846976
    [Google Scholar]
  20. Sangkum L. Thamjamrassri T. Arnuntasupakul V. Chalacheewa T. The current consideration, approach, and management in postcesarean delivery pain control: A narrative review. Anesthesiol. Res. Pract. 2021 2021 1 1 20 10.1155/2021/2156918 34589125
    [Google Scholar]
  21. Becker C. Dressman J.B. Amidon G.L. Junginger H.E. Kopp S. Midha K.K. Shah V.P. Stavchansky S. Barends D.M. Biowaiver monographs for immediate release solid oral dosage forms: Isoniazid. J. Pharm. Sci. 2007 96 3 522 531 10.1002/jps.20765 17117431
    [Google Scholar]
  22. Antonio M. Raffaghelli M. Maggio R.M. Assessing polymorphic purity of rifampicin in double and triple-drug fixed-dose combination products. J. Pharm. Sci. 2024 113 4 930 936 10.1016/j.xphs.2023.09.023 37783271
    [Google Scholar]
  23. Adeleke O.A. Monama N.O. Tsai P.C. Sithole H.M. Michniak-Kohn B.B. Combined atomistic molecular calculations and experimental investigations for the architecture, screening, optimization, and characterization of pyrazinamide containing oral film formulations for tuberculosis management. Mol. Pharm. 2016 13 2 456 471 10.1021/acs.molpharmaceut.5b00698 26650101
    [Google Scholar]
  24. Becker C. Dressman J.B. Amidon G.L. Junginger H.E. Kopp S. Midha K.K. Shah V.P. Stavchansky S. Barends D.M. Biowaiver monographs for immediate release solid oral dosage forms: Ethambutol dihydrochloride. J. Pharm. Sci. 2008 97 4 1350 1360 10.1002/jps.21061 17879380
    [Google Scholar]
  25. Zaki N.M. Artursson P. Bergström C.A.S. A modified physiological BCS for prediction of intestinal absorption in drug discovery. Mol. Pharm. 2010 7 5 1478 1487 10.1021/mp100124f 20734997
    [Google Scholar]
  26. Nwakile Dozie C Dozie-Nwakile OC Okoye EI Umeyor CE Uronnachi EC Uchendu IK Attama AA Okore VC Non-absorbable oral gentamicin sulphate: Biopharmaceutical and dosage form evaluation. Eur. Geriatr. Med. 2021 68 2
    [Google Scholar]
  27. Dizdarević A. Marić M. Shahzadi I. Ari Efiana N. Matuszczak B. Bernkop-Schnürch A. Imine bond formation as a tool for incorporation of amikacin in self-emulsifying drug delivery systems (SEDDS). Eur. J. Pharm. Biopharm. 2021 162 82 91 10.1016/j.ejpb.2021.03.001 33737147
    [Google Scholar]
  28. Pawar A. Chainpure M. Dhapte-Pawar V. Paralleling the quality and economy of levofloxacin hemihydrate and cefuroxime axetil tablets. Indian J. Pharm. Educ. Res. 2021 55 1 136 145 10.5530/ijper.55.1.16
    [Google Scholar]
  29. Charoo N.A. Abdallah D.B. Parveen T. Abrahamsson B. Cristofoletti R. Groot D.W. Langguth P. Parr A. Polli J.E. Mehta M. Shah V.P. Tajiri T. Dressman J. Biowaiver monograph for immediate-release solid oral dosage forms: Moxifloxacin hydrochloride. J. Pharm. Sci. 2020 109 9 2654 2675 10.1016/j.xphs.2020.06.007 32534881
    [Google Scholar]
  30. Joshi P.H. Youssef A.A.A. Ghonge M. Varner C. Tripathi S. Dudhipala N. Majumdar S. Gatifloxacin loaded nano lipid carriers for the management of bacterial conjunctivitis. Antibiotics 2023 12 8 1318 10.3390/antibiotics12081318 37627738
    [Google Scholar]
  31. Amrutha S. Giri L. SeethaLekshmi S. Varughese S. Enhanced aqueous solubility of the solid forms of a BCS class-II anti-tuberculosis drug, prothionamide. Cryst. Growth Des. 2020 20 8 5086 5096 10.1021/acs.cgd.0c00266
    [Google Scholar]
  32. Ji W.J. Jiang J.Y. Hong M. Zhu B. Ren G.B. Qi M.H. Colorful prothionamide salt forms with enhancement in water solubility and dissolution behavior. Cryst. Growth Des. 2023 23 8 5770 5784 10.1021/acs.cgd.3c00389
    [Google Scholar]
  33. Bhonsle A. Improved solubility and dissolution of BCS class II drug spironolactone by formulating in ternary solid dispersion with carrier beta-cyclodextrin and adjuvant water soluble vitamin [Pyridoxine HCl (Vit B6)]. 2014
    [Google Scholar]
  34. van Staden D. Haynes R.K. Viljoen J.M. Adapting clofazimine for treatment of cutaneous tuberculosis by using self-double-emulsifying drug delivery systems. Antibiotics 2022 11 6 806 10.3390/antibiotics11060806 35740212
    [Google Scholar]
  35. Pardhi V.P. Patel M. Jain K. Formulation development, characterization, and evaluation of bedaquiline fumarate – Soluplus ® – solid dispersion. Pharm. Dev. Technol. 2024 29 5 492 503 10.1080/10837450.2024.2348585 38682603
    [Google Scholar]
  36. Patil S.M. Barji D.S. Chavan T. Patel K. Collazo A.J. Prithipaul V. Muth A. Kunda N.K. Solubility enhancement and inhalation delivery of cyclodextrin-based inclusion complex of delamanid for pulmonary tuberculosis treatment. AAPS PharmSciTech 2023 24 1 49 10.1208/s12249‑023‑02510‑1 36702977
    [Google Scholar]
  37. Bodart L. Derlet A. Buol X. Leyssens T. Tumanov N. Wouters J. Combining two antitubercular drugs, clofazimine and 4-aminosalicylic acid, in order to improve clofazimine aqueous solubility and 4-aminosalicylic acid thermal stability. J. Pharm. Sci. 2020 109 12 3645 3652 10.1016/j.xphs.2020.09.024 32976899
    [Google Scholar]
  38. Dressman J.B. Nair A. Abrahamsson B. Barends D.M. Groot D.W. Kopp S. Langguth P. Polli J.E. Shah V.P. Zimmer M. Biowaiver monograph for immediate-release solid oral dosage forms: acetylsalicylic acid. J. Pharm. Sci. 2012 101 8 2653 2667 10.1002/jps.23212 22674043
    [Google Scholar]
  39. Tsume Y. Langguth P. Garcia-Arieta A. Amidon G.L. In silico prediction of drug dissolution and absorption with variation in intestinal pH for BCS class II weak acid drugs: ibuprofen and ketoprofen. Biopharm. Drug Dispos. 2012 33 7 366 377 10.1002/bdd.1800 22815122
    [Google Scholar]
  40. Song J.S. Sohn Y.T. Crystal forms of naproxen. Arch. Pharm. Res. 2011 34 1 87 90 10.1007/s12272‑011‑0110‑7 21468919
    [Google Scholar]
  41. Shohin I.E. Kulinich J.I. Ramenskaya G.V. Vasilenko G.F. Evaluation of in vitro equivalence for drugs containing BCS class II compound ketoprofen. Dissolut. Technol. 2011 18 1 26 29 10.14227/DT180111P26
    [Google Scholar]
  42. Usta D.Y. Demirtaş Ö. Ökçelik C. Uslu A. Teksin Z.Ş. Evaluation of in vitro dissolution characteristics of flurbiprofen, a BCS class IIa drug. FABAD J. Pharm. Sci.. 2018 43 2 27 34
    [Google Scholar]
  43. Chavero E Kurowska A Lewis SA Development of Mefenamic Acid-Soluplus ® amorphous dispersions via hot melt extrusion and in silico prediction of oral absorption. Acta Pharm. Sci. 2023 6 1
    [Google Scholar]
  44. Shohin I.E. Kulinich J.I. Ramenskaya G.V. Abrahamsson B. Kopp S. Langguth P. Polli J.E. Shah V.P. Groot D.W. Barends D.M. Dressman J.B. Biowaiver monographs for immediate release solid oral dosage forms: piroxicam. J. Pharm. Sci. 2014 103 2 367 377 10.1002/jps.23799 24301077
    [Google Scholar]
  45. Bolla G. Sanphui P. Nangia A. Solubility advantage of tenoxicam phenolic cocrystals compared to salts. Cryst. Growth Des. 2013 13 5 1988 2003 10.1021/cg4000457
    [Google Scholar]
  46. Jadhav P.A. Yadav A.V. Design, development and characterization of ketorolac tromethamine nanosuspension loaded in situ mucoadhesive ocular gel. J. Drug Deliv. Ther. 2019 9 4-s 203 209
    [Google Scholar]
  47. ElShaer A. Khan S. Perumal D. Hanson P. Mohammed A.R. Use of amino acids as counterions improves the solubility of the BCS II model drug, indomethacin. Curr. Drug Deliv. 2011 8 4 363 372 10.2174/156720111795767924 21453261
    [Google Scholar]
  48. Chaudhary S. Aqil M. Sultana Y. Kalam M.A. Self-nanoemulsifying drug delivery system of nabumetone improved its oral bioavailability and anti-inflammatory effects in rat model. J. Drug Deliv. Sci. Technol. 2019 51 736 745 10.1016/j.jddst.2018.04.009
    [Google Scholar]
  49. Bhakay A. Davé R. Bilgili E. Recovery of BCS Class II drugs during aqueous redispersion of core–shell type nanocomposite particles produced via fluidized bed coating. Powder Technol. 2013 236 221 234 10.1016/j.powtec.2011.12.066
    [Google Scholar]
  50. Dahmash E.Z. Mohammed A.R. Functionalised particles using dry powder coating in pharmaceutical drug delivery: Promises and challenges. Expert Opin. Drug Deliv. 2015 12 12 1867 1879 10.1517/17425247.2015.1071351 26289674
    [Google Scholar]
  51. Purcaru S.O. Ionescu M. Raneti C. Anuta V. Mircioiu I. Belu I. Study of nimesulide release from solid pharmaceutical formulations in tween 80 solutions. Curr. Health Sci. J. 2010 36 1 42 49 24778826
    [Google Scholar]
  52. Van Den Abeele J. Brouwers J. Mattheus R. Tack J. Augustijns P. Gastrointestinal behavior of weakly acidic BCS class II drugs in man—case study of diclofenac potassium. J. Pharm. Sci. 2016 105 2 687 696 10.1002/jps.24647 26375734
    [Google Scholar]
  53. Soni T. Nagda C. Gandhi T. Chotai N.P. Development of discriminating method for dissolution of aceclofenac marketed formulations. Dissolut. Technol. 2008 15 2 31 35 10.14227/DT150208P31
    [Google Scholar]
  54. Sirisolla J. Solubility enhancement of meloxicam by liquisolid technique and its characterization. Int. J. Pharm. Sci. Res. 2015 6 2 835
    [Google Scholar]
  55. Demir H. Arica-Yegin B. Oner L. Application of an artificial neural network to predict dissolution data and determine the combined effect of pH and surfactant addition on the solubility and dissolution of the weak acid drug etodolac. J. Drug Deliv. Sci. Technol. 2018 47 215 222 10.1016/j.jddst.2018.07.022
    [Google Scholar]
  56. Shawahna R. Zyoud A. Haj-Yahia A. Taya R. Evaluating Solubility of celecoxib in age-appropriate fasted-and fed-state gastric and intestinal biorelevant media representative of adult and pediatric patients: Implications on future pediatric biopharmaceutical classification system. AAPS PharmSciTech 2021 22 3 84 10.1208/s12249‑021‑01958‑3 33649887
    [Google Scholar]
  57. Gonzalez-Alvarez I. Bermejo M. Tsume Y. Ruiz-Picazo A. Gonzalez-Alvarez M. Hens B. Garcia-Arieta A. Amidon G.E. Amidon G.L. An in vivo predictive dissolution methodology (iPD Methodology) with a BCS class IIb drug can predict the in vivo bioequivalence results: Etoricoxib products. Pharmaceutics 2021 13 4 507 10.3390/pharmaceutics13040507 33917118
    [Google Scholar]
  58. Srinivasan S. Elhassan G.O. Janakiraman A.K. Kayarohanam S. Dey T. Nachiya R.J. Nath U. Mohamed J.M. Preparation and characterization of etoricoxib ternary complex for the enhancement of solubility. J. Pharm. Negat. Results 2023 1703 1712
    [Google Scholar]
  59. Somani A.A. Thelen K. Zheng S. Trame M.N. Coboeken K. Meyer M. Schnizler K. Ince I. Willmann S. Schmidt S. Evaluation of changes in oral drug absorption in preterm and term neonates for Biopharmaceutics Classification System (BCS) class I and II compounds. Br. J. Clin. Pharmacol. 2016 81 1 137 147 10.1111/bcp.12752 26302359
    [Google Scholar]
  60. Izhar M.P. Hafeez A. Kushwaha P. Simrah Simrah. Drug delivery through niosomes: A comprehensive review with therapeutic applications. J. Cluster Sci. 2023 34 5 2257 2273 10.1007/s10876‑023‑02423‑w
    [Google Scholar]
  61. Silva F. Costa G. Veiga F. Cardoso C. Paiva-Santos A.C. Parenteral ready-to-use fixed-dose combinations including NSAIDs with paracetamol or metamizole for multimodal analgesia—approved products and challenges. Pharmaceuticals 2023 16 8 1084 10.3390/ph16081084 37630999
    [Google Scholar]
  62. Surov A.O. Drozd K.V. Ramazanova A.G. Churakov A.V. Vologzhanina A.V. Kulikova E.S. Perlovich G.L. Polymorphism of carbamazepine pharmaceutical cocrystal: Structural analysis and solubility performance. Pharmaceutics 2023 15 6 1747 10.3390/pharmaceutics15061747 37376195
    [Google Scholar]
  63. Silva R.T.C. Bruschi M.L. Mini-tablets as technological strategy for modified release of morphine sulfate. Pharm. Dev. Technol. 2022 27 7 766 772 10.1080/10837450.2022.2118769 36017971
    [Google Scholar]
  64. Bajpai Y.K. Singh S. Bisht V. Butola K. Awasthi A. Kumar S. BCS class II drug & its solubility enhancement: A review. J. Res. Appl. Sci. Biotechnol. 2022 1 5 48 58 10.55544/jrasb.1.5.5
    [Google Scholar]
  65. Mukhopadhyay S. Nano drugs: A critical review of their patents and market. 2019
    [Google Scholar]
  66. Chamundeeswari M. Jeslin J. Verma M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019 17 2 849 865 10.1007/s10311‑018‑00841‑1
    [Google Scholar]
  67. Wilczewska A.Z. Niemirowicz K. Markiewicz K.H. Car H. Nanoparticles as drug delivery systems. Pharmacol. Rep. 2012 64 5 1020 1037 10.1016/S1734‑1140(12)70901‑5 23238461
    [Google Scholar]
  68. Sarkar K. Kumar M. Jha A. Bharti K. Das M. Mishra B. Nanocarriers for tuberculosis therapy: Design of safe and effective drug delivery strategies to overcome the therapeutic challenges. J. Drug Deliv. Sci. Technol. 2022 67 102850 10.1016/j.jddst.2021.102850
    [Google Scholar]
  69. Arti S Bharti M Kumar V Rehani V Dhiman J Drug nanocrystals as nanocarrier-based drug delivery systems. 2022 10.1016/B978‑0‑12‑824024‑3.00018‑X
    [Google Scholar]
  70. Girdhar V Patil S Banerjee S Singhvi G Nanocarriers for drug delivery: Mini review. 2018 2018 8 2 88 99 10.2174/2468187308666180501092519
    [Google Scholar]
  71. Jacob S. Nair A.B. Shah J. Emerging role of nanosuspensions in drug delivery systems. Biomater. Res. 2020 24 1 3 10.1186/s40824‑020‑0184‑8 31969986
    [Google Scholar]
  72. Phatak A. Jorwekar P. Chaudhari P.D. Nanosuspensions: A promising nanocarrier drug delivery system. Res. J. Pharm. Dos. Forms Technol. 2011 3 5 176 182
    [Google Scholar]
  73. Elzayat A. Adam-Cervera I. Álvarez-Bermúdez O. Muñoz-Espí R. Nanoemulsions for synthesis of biomedical nanocarriers. Colloids Surf. B Biointerfaces 2021 203 111764 10.1016/j.colsurfb.2021.111764 33892282
    [Google Scholar]
  74. Xing H. Hwang K. Lu Y. Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 2016 6 9 1336 1352 10.7150/thno.15464 27375783
    [Google Scholar]
  75. AbouSamra M.M. Liposomal nano-carriers mediated targeting of liver disorders: Mechanisms and applications. J. Liposome Res. 2024 34 4 728 743 10.1080/08982104.2024.2377085 38988127
    [Google Scholar]
  76. Sahin NO Niosomes as nanocarrier systems. 2007 67 81 10.1007/978‑1‑4020‑6289‑6_4
    [Google Scholar]
  77. Moghassemi S. Hadjizadeh A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014 185 22 36 10.1016/j.jconrel.2014.04.015 24747765
    [Google Scholar]
  78. Ag Seleci D. Seleci M. Walter J.G. Stahl F. Scheper T. Niosomes as nanoparticular drug carriers: Fundamentals and recent applications. J. Nanomater. 2016 2016 1 1 13 10.1155/2016/7372306
    [Google Scholar]
  79. Mittal P. Saharan A. Verma R. Altalbawy F.M.A. Alfaidi M.A. Batiha G.E.S. Akter W. Gautam R.K. Uddin M.S. Rahman M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int. 2021 2021 1 1 11 10.1155/2021/8844030 33644232
    [Google Scholar]
  80. Bai S Thomas C Rawat A Ahsan F Recent progress in dendrimer-based nanocarriers. Crit. Rev. Ther. Drug Carrier Syst. 2006 23 6 437 495 10.1615/CritRevTherDrugCarrierSyst.v23.i6.10
    [Google Scholar]
  81. Sherje A.P. Jadhav M. Dravyakar B.R. Kadam D. Dendrimers: A versatile nanocarrier for drug delivery and targeting. Int. J. Pharm. 2018 548 1 707 720 10.1016/j.ijpharm.2018.07.030 30012508
    [Google Scholar]
  82. Abasian P. Ghanavati S. Rahebi S. Nouri Khorasani S. Khalili S. Polymeric nanocarriers in targeted drug delivery systems: A review. Polym. Adv. Technol. 2020 31 12 2939 2954 10.1002/pat.5031
    [Google Scholar]
  83. Niculescu A.G. Grumezescu A.M. Polymer-based nanosystems-A versatile delivery approach. Materials 2021 14 22 6812 10.3390/ma14226812 34832213
    [Google Scholar]
  84. Melo K.J.C. Henostroza M.A.B. Löbenberg R. Bou-Chacra N.A. Rifampicin nanocrystals: Towards an innovative approach to treat tuberculosis. Mater. Sci. Eng. C 2020 112 110895 10.1016/j.msec.2020.110895 32409052
    [Google Scholar]
  85. Tsai H.A. Shih T.M. Tsai T. Hu J.W. Lai Y.A. Hsiao J.F. Tsai G.E. Fabrication of nanocrystal forms of ᴅ-cycloserine and their application for transdermal and enteric drug delivery systems. Beilstein J. Nanotechnol. 2024 15 1 465 474 10.3762/bjnano.15.42 38711579
    [Google Scholar]
  86. Rai P.Y. Sansare V.A. Warrier D.U. Shinde U.A. Formulation, characterization and evaluation of inhalable effervescent dry powder of Rifampicin nanoparticles. Indian J. Tuberc. 2023 70 1 49 58 10.1016/j.ijtb.2022.03.007 36740318
    [Google Scholar]
  87. Nkanga C.I. Krause R.W. Noundou X.S. Walker R.B. Preparation and characterization of isoniazid-loaded crude soybean lecithin liposomes. Int. J. Pharm. 2017 526 1-2 466 473 10.1016/j.ijpharm.2017.04.074 28461265
    [Google Scholar]
  88. Patil J. Devi V.K. Devi K. Sarasija S. A novel approach for lung delivery of rifampicin-loaded liposomes in dry powder form for the treatment of tuberculosis. Lung India 2015 32 4 331 338 10.4103/0970‑2113.159559 26180381
    [Google Scholar]
  89. Viswanathan V. Pharande R. Bannalikar A. Gupta P. Gupta U. Mukne A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: Formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev. Ind. Pharm. 2019 45 1 11 20 10.1080/03639045.2018.1513025 30122088
    [Google Scholar]
  90. Roy A.S. Das S. Samanta A. Design, formulation and evaluation of liposome containing isoniazid. Int. J. Appl. Pharm. 2018 10 2 52 56 10.22159/ijap.2018v10i2.24174
    [Google Scholar]
  91. Ahmed R. Aucamp M. Ebrahim N. Samsodien H. Supramolecular assembly of rifampicin and PEGylated PAMAM dendrimer as a novel conjugate for tuberculosis. J. Drug Deliv. Sci. Technol. 2021 66 102773 10.1016/j.jddst.2021.102773
    [Google Scholar]
  92. Balasubramanian A Balasubramanian VM Ramalingam K Formulation and characterization of Pyrazinamide loaded pegylated polypropylene imine dendrimer and its alteration in the pharmacokinetics. J. Phys.: Conf. Ser 2024 2801 1 012015 10.1088/1742‑6596/2801/1/012015
    [Google Scholar]
  93. Ravi Varma J.N. Kumar T.S. Prasanthi B. Ratna J.V. Formulation and characterization of pyrazinamide polymeric nanoparticles for pulmonary tuberculosis: Efficiency for alveolar macrophage targeting. Indian J. Pharm. Sci. 2015 77 3 258 266 10.4103/0250‑474X.159602 26180270
    [Google Scholar]
  94. de Castro R.R. do Carmo F.A. Martins C. Simon A. de Sousa V.P. Rodrigues C.R. Cabral L.M. Sarmento B. Clofazimine functionalized polymeric nanoparticles for brain delivery in the tuberculosis treatment. Int. J. Pharm. 2021 602 120655 10.1016/j.ijpharm.2021.120655 33915184
    [Google Scholar]
  95. Chawla R. Jaiswal S. Mishra B. Development and optimization of polymeric nanoparticles of antitubercular drugs using central composite factorial design. Expert Opin. Drug Deliv. 2014 11 1 31 43 10.1517/17425247.2013.807794 23802585
    [Google Scholar]
  96. Hakkimane S. Shenoy V.P. Gaonkar S. Bairy I. Guru B.R. Antimycobacterial susceptibility evaluation of rifampicin and isoniazid benz-hydrazone in biodegradable polymeric nanoparticles against Mycobacterium tuberculosis H37Rv strain. Int. J. Nanomedicine 2018 13 4303 4318 10.2147/IJN.S163925 30087562
    [Google Scholar]
  97. Choudhary A. Jain P. Mohapatra S. Mustafa G. Ansari M.J. Aldawsari M.F. Alalaiwe A.S. Mirza M.A. Iqbal Z. A novel approach of targeting linezolid nanoemulsion for the management of lymph node tuberculosis. ACS Omega 2022 7 18 15688 15694 10.1021/acsomega.2c00592 35571844
    [Google Scholar]
  98. M K. Mohan Menon P. C G.P.D. Natarajan C. Interaction of eugenol-based anti-tuberculosis nanoemulsion with bovine serum albumin: A spectroscopic study including Rifampicin, Isoniazid, Pyrazinamide, and Ethambutol. Heliyon 2024 10 7 e28306 10.1016/j.heliyon.2024.e28306 38571616
    [Google Scholar]
  99. Bazán Henostroza M.A. Curo Melo K.J. Nishitani Yukuyama M. Löbenberg R. Araci Bou-Chacra N. Cationic rifampicin nanoemulsion for the treatment of ocular tuberculosis. Colloids Surf. A Physicochem. Eng. Asp. 2020 597 124755 10.1016/j.colsurfa.2020.124755
    [Google Scholar]
  100. Shah K. Chan L.W. Wong T.W. Critical physicochemical and biological attributes of nanoemulsions for pulmonary delivery of rifampicin by nebulization technique in tuberculosis treatment. Drug Deliv. 2017 24 1 1631 1647 10.1080/10717544.2017.1384298 29063794
    [Google Scholar]
  101. V M Reddy. Nanoemulsion formulation enhances intracellular activity of capuramycin analogues against Mycobacterium tuberculosis. Drug Deliv. Lett. 2011 1 2 150 158 10.2174/2210303111101020150
    [Google Scholar]
  102. Rani N.P. Suriyaprakash T.N. Senthamarai R. Formulation and evaluation of rifampicin and gatifloxacin niosomes on logarithmic-phase cultures of Mycobacterium tuberculosis. Int. J. Pharma Bio Sci. 2010 1 4 379 387
    [Google Scholar]
  103. Kulkarni P. Rawtani D. Barot T. Formulation and optimization of long acting dual niosomes using Box-Behnken experimental design method for combinative delivery of Ethionamide and D-cycloserine in Tuberculosis treatment. Colloids Surf. A Physicochem. Eng. Asp. 2019 565 131 142 10.1016/j.colsurfa.2019.01.004
    [Google Scholar]
  104. El-Ridy M.S. Yehia S.A. Kassem M.A.E.M. Mostafa D.M. Nasr E.A. Asfour M.H. Niosomal encapsulation of ethambutol hydrochloride for increasing its efficacy and safety. Drug Deliv. 2015 22 1 21 36 10.3109/10717544.2013.868556 24359403
    [Google Scholar]
  105. Sadhu PK Saisivam S Debnath SK Design and characterization of niosomes of ethionamide for multi drug resistance tuberculosis. World J. Pharm. Res. 2019 8 6 921 933
    [Google Scholar]
  106. Rahim H. Sadiq A. Khan S. Khan M.A. Shah S.M.H. Hussain Z. Ullah R. Shahat A. Ibrahim K. Aceclofenac nanocrystals with enhanced in vitro, in vivo performance: Formulation optimization, characterization, analgesic and acute toxicity studies. Drug Des. Devel. Ther. 2017 11 2443 2452 10.2147/DDDT.S140626 28860715
    [Google Scholar]
  107. Ma L. He Y. Bai L. Li M. Sui X. Liu B. Tian B. Liu Y. Fu Q. Preclinical studies of a high drug-loaded meloxicam nanocrystals injection for analgesia. Colloids Surf. B Biointerfaces 2022 218 112777 10.1016/j.colsurfb.2022.112777 36007315
    [Google Scholar]
  108. Palani K. Christoper P.G. Kesavan S.K. Enhancement of rosuvastatin calcium bioavailability applying nanocrystal technology and in-vitro, in-vivo evaluations. Asian J. Pharm. Clin. Res. 2015 8 2 88 92
    [Google Scholar]
  109. Khan B.A. Rashid F. Khan M.K. Alqahtani S.S. Sultan M.H. Almoshari Y. Fabrication of capsaicin loaded nanocrystals: Physical characterizations and in vivo evaluation. Pharmaceutics 2021 13 6 841 10.3390/pharmaceutics13060841 34200268
    [Google Scholar]
  110. Gülsün T. Budak Ç. Vural İ. Sahin S. Öner L. Preparation and characterization of nimesulide containing nanocrystal formulations. Pharm. Dev. Technol. 2013 18 3 653 659 10.3109/10837450.2012.663390 22375930
    [Google Scholar]
  111. Ullah N. Khan S. Ahmed S. Govender T. Faidah H.S. Matas M. Shahid M. Usman Minhas M. Sohail M. Khurram M. Dexibuprofen nanocrystals with improved therapeutic performance: Fabrication, characterization, in silico modeling, and in vivo evaluation. Int. J. Nanomedicine 2018 13 1677 1692 10.2147/IJN.S151597 29599613
    [Google Scholar]
  112. Phaechamud T. Tuntarawongsa S. Transformation of eutectic emulsion to nanosuspension fabricating with solvent evaporation and ultrasonication technique. Int. J. Nanomedicine 2016 11 2855 2865 10.2147/IJN.S108355 27366064
    [Google Scholar]
  113. Kakkar V. Nagpal S. Kumari P. Saini K. Pain management with topical aceclofenac nanosuspension in-vitro/in- vivo and proof of concept studies. Curr. Drug Ther. 2022 17 4 289 304 10.2174/1574885517666220518094723
    [Google Scholar]
  114. Bartos C. Ambrus R. Katona G. Sovány T. Gáspár R. Márki Á. Ducza E. Ivanov A. Tömösi F. Janáky T. Szabó-Révész P. Transformation of meloxicam containing nanosuspension into surfactant-free solid compositions to increase the product stability and drug bioavailability for rapid analgesia. Drug Des. Devel. Ther. 2019 13 4007 4020 10.2147/DDDT.S220876 31819372
    [Google Scholar]
  115. Karakucuk A. Tort S. Han S. Oktay A.N. Celebi N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencapsul. 2021 38 4 218 232 10.1080/02652048.2021.1895344 33752553
    [Google Scholar]
  116. Oktay A.N. Ilbasmis-Tamer S. Han S. Uludag O. Celebi N. Preparation and in vitro / in vivo evaluation of flurbiprofen nanosuspension-based gel for dermal application. Eur. J. Pharm. Sci. 2020 155 105548 10.1016/j.ejps.2020.105548 32937211
    [Google Scholar]
  117. Rushmi Z.T. Akter N. Mow R.J. Afroz M. Kazi M. de Matas M. Rahman M. Shariare M.H. The impact of formulation attributes and process parameters on black seed oil loaded liposomes and their performance in animal models of analgesia. Saudi Pharm. J. 2017 25 3 404 412 10.1016/j.jsps.2016.09.011 28344496
    [Google Scholar]
  118. Goudarzi R. Amini S. Dehpour A.R. Partoazar A. Estimation of anti-inflammatory and analgesic effects of topical NANOCEN (nanoliposomal arthrocen) on mice. AAPS PharmSciTech 2019 20 6 233 10.1208/s12249‑019‑1445‑5 31236745
    [Google Scholar]
  119. Cereda C.M.S. Guilherme V.A. Alkschbirs M.I. de Brito Junior R.B. Tofoli G.R. Franz-Montan M. de Araujo D.R. de Paula E. Liposomal butamben gel formulations: Toxicity assays and topical anesthesia in an animal model. J. Liposome Res. 2017 27 1 74 82 10.3109/08982104.2016.1160924 27126194
    [Google Scholar]
  120. Prajapati R.N. Polyamidoamine dendrimer-mediated formulation development and in vitro-in vivo evaluation of ketorolac. Asian J. Pharm. 2018 12 02 [AJP].
    [Google Scholar]
  121. Abd-El-Aziz A.S. Benaaisha M.R. Abdelghani A.A. Bissessur R. Abdel-Rahman L.H. Fayez A.M. El-ezz D.A. Aspirin-based organoiron dendrimers as promising anti-inflammatory, anticancer, and antimicrobial drugs. Biomolecules 2021 11 11 1568 10.3390/biom11111568 34827566
    [Google Scholar]
  122. Pontes-Quero G.M. Benito-Garzón L. Pérez Cano J. Aguilar M.R. Vázquez-Lasa B. Modulation of inflammatory mediators by polymeric nanoparticles loaded with anti-inflammatory drugs. Pharmaceutics 2021 13 2 290 10.3390/pharmaceutics13020290 33672354
    [Google Scholar]
  123. Küçüktürkmen B Öz UC Bozkir A In situ hydrogel formulation for intra-articular application of diclofenac sodium-loaded polymeric nanoparticles. Turk. J. Pharm. Sci. 2017 14 1 56 64
    [Google Scholar]
  124. El Moussaoui S. Abo-Horan I. Halbaut L. Alonso C. Coderch L. Garduño-Ramírez M.L. Clares B. Soriano J.L. Calpena A.C. Fernández-Campos F. Mallandrich M. Polymeric nanoparticles and chitosan gel loading ketorolac tromethamine to alleviate pain associated with condyloma acuminata during the pre-and post-ablation. Pharmaceutics 2021 13 11 1784 10.3390/pharmaceutics13111784 34834198
    [Google Scholar]
  125. Wang Y. Qin M. Hou J. Chen Y. In vitro and in vivo evaluation of a lidocaine loaded polymer nanoparticle formulation co-loaded with lidocaine for local anesthetics effect. Process Biochem. 2021 102 333 340 10.1016/j.procbio.2021.01.010
    [Google Scholar]
  126. Akel H. Ismail R. Katona G. Sabir F. Ambrus R. Csóka I. A comparison study of lipid and polymeric nanoparticles in the nasal delivery of meloxicam: Formulation, characterization, and in vitro evaluation. Int. J. Pharm. 2021 604 120724 10.1016/j.ijpharm.2021.120724 34023443
    [Google Scholar]
  127. Sreelola V.U. Sailaja A.K. Pharmacy M. Preparation and characterisation of ibuprofen loaded polymeric nanoparticles by solvent evaporation technique. Int. J. Pharm. Pharm. Sci. 2014 6 8 416 421
    [Google Scholar]
  128. Swathi P. Sailaja A.K. Formulation of ibuprofen loaded ethyl cellulose nanoparticles by nanoprecipitation technique. Asian J. Pharm. Clin. Res. 2014 7 3 44 48
    [Google Scholar]
  129. Bhagat B.V. Rachh P.R. Pawar A.R. Evaluation of anti-inflammatory and analgesic activity of optimized lipid based non-aqueous nanoemulsion of naproxen in experimental animals. Int. J. Health Sci. 2022 I 5963 5972 10.53730/ijhs.v6nS1.6217
    [Google Scholar]
  130. Ghiasi Z. Esmaeli F. Aghajani M. Ghazi-Khansari M. Faramarzi M.A. Amani A. Enhancing analgesic and anti-inflammatory effects of capsaicin when loaded into olive oil nanoemulsion: An in vivo study. Int. J. Pharm. 2019 559 341 347 10.1016/j.ijpharm.2019.01.043 30710660
    [Google Scholar]
  131. Shah J. Nair A.B. Shah H. Jacob S. Shehata T.M. Morsy M.A. Enhancement in antinociceptive and anti-inflammatory effects of tramadol by transdermal proniosome gel. Asian J. Pharm. Sci. 2020 15 6 786 796 10.1016/j.ajps.2019.05.001 33363633
    [Google Scholar]
  132. Sailaja A.K. Shreya M. Preparation and characterization of naproxen loaded niosomes by ether injection method. Nano Biomed. Eng. 2018 10 2 174 180 10.5101/nbe.v10i2.p174‑180
    [Google Scholar]
  133. Okafo S.E. Ordu J.I. Ofagbor G. Agbamu E. Evaluation of physicochemical, in vivo analgesic and antiinflammatory activities of Brachystegia eurycoma gum-based naproxen loaded niosomal gels. German J. Pharm. Biomater. 2023 2 1 26 37 10.5530/gjpb.2023.1.3
    [Google Scholar]
  134. Mohanty D. Rani M.J. Haque M.A. Bakshi V. Jahangir M.A. Imam S.S. Gilani S.J. Preparation and evaluation of transdermal naproxen niosomes: Formulation optimization to preclinical anti-inflammatory assessment on murine model. J. Liposome Res. 2020 30 4 377 387 10.1080/08982104.2019.1652646 31412744
    [Google Scholar]
  135. Hashemi S.M.H. Enayatifard R. Akbari J. Saeedi M. Seyedabadi M. Morteza-Semnani K. Babaei A. Asare-Addo K. Nokhodchi A. Venlafaxine HCl encapsulated in niosome: Green and eco-friendly formulation for the management of pain. AAPS PharmSciTech 2022 23 5 149 10.1208/s12249‑022‑02299‑5 35595933
    [Google Scholar]
  136. Akbari J. Saeedi M. Morteza-Semnani K. Hashemi S.M.H. Babaei A. Eghbali M. Mohammadi M. Rostamkalaei S.S. Asare-Addo K. Nokhodchi A. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J. Drug Target. 2022 30 1 108 117 10.1080/1061186X.2021.1941060 34116599
    [Google Scholar]
  137. El-Ridy M.S. Yehia S.A. Mohsen A.M. El-Awdan S.A. Darwish A.B. Formulation of niosomal gel for enhanced transdermal lornoxicam delivery: In-vitro and in-vivo evaluation. Curr. Drug Deliv. 2018 15 1 122 133 28240177
    [Google Scholar]
  138. Negi P. Aggarwal M. Sharma G. Rathore C. Sharma G. Singh B. Katare O.P. Niosome-based hydrogel of resveratrol for topical applications: An effective therapy for pain related disorder(s). Biomed. Pharmacother. 2017 88 480 487 10.1016/j.biopha.2017.01.083 28126673
    [Google Scholar]
  139. Akbari J. Saeedi M. Enayatifard R. Morteza-Semnani K. Hassan Hashemi S.M. Babaei A. Rahimnia S.M. Rostamkalaei S.S. Nokhodchi A. Curcumin Niosomes (curcusomes) as an alternative to conventional vehicles: A potential for efficient dermal delivery. J. Drug Deliv. Sci. Technol. 2020 60 102035 10.1016/j.jddst.2020.102035
    [Google Scholar]
  140. Auda S.H. Fathalla D. Fetih G. El-Badry M. Shakeel F. Niosomes as transdermal drug delivery system for celecoxib: In vitro and in vivo studies. Polym. Bull. 2016 73 5 1229 1245 10.1007/s00289‑015‑1544‑8
    [Google Scholar]
  141. Usama A. Fetih G. El-Faham T. Performance of meloxicam niosomal gel formulations for transdermal drug delivery. Br. J. Pharm. Res. 2016 12 2 1 14 10.9734/BJPR/2016/26985
    [Google Scholar]
  142. Ibrahim M.M. Shehata T.M. Tramadol HCl encapsulated niosomes for extended analgesic effect following oral administration. J. Drug Deliv. Sci. Technol. 2018 46 14 18 10.1016/j.jddst.2018.04.011
    [Google Scholar]
  143. Soliman M.S. Abd-Allah F.I. Hussain T. Saeed N.M. El-Sawy H.S. Date seed oil loaded niosomes: Development, optimization and anti-inflammatory effect evaluation on rats. Drug Dev. Ind. Pharm. 2018 44 7 1185 1197 10.1080/03639045.2018.1438465 29415582
    [Google Scholar]
  144. Pal Rahul Pandey Prachi Chawra Himmat Singh Singh Ravindra Pal Niosomal as potential vesicular drug nano-carriers for the treatment of tuberculosis (TB). Nanosc. Nanotechnol.-Asia 2024 15 1 10.2174/0122106812323829240919050438
    [Google Scholar]
  145. Kaur I.P. Singh H. Nanostructured drug delivery for better management of tuberculosis. J. Control. Release 2014 184 36 50 10.1016/j.jconrel.2014.04.009 24732260
    [Google Scholar]
  146. Du Toit LC Pillay V Danckwerts MP Tuberculosis chemotherapy: Current drug delivery approaches. Respir Res. 2006 7 1 118 10.1186/1465‑9921‑7‑118
    [Google Scholar]
  147. Verma N. Arora V. Awasthi R. Chan Y. Jha N.K. Thapa K. Jawaid T. Kamal M. Gupta G. Liu G. Paudel K.R. Hansbro P.M. George Oliver B.G. Singh S.K. Chellappan D.K. Dureja H. Dua K. Recent developments, challenges and future prospects in advanced drug delivery systems in the management of tuberculosis. J. Drug Deliv. Sci. Technol. 2022 75 103690 10.1016/j.jddst.2022.103690
    [Google Scholar]
  148. Abd-Elsayed A. Karri J. Michael A. Bryce D. Sun J. Lee M. Orhurhu V. Deer T. Intrathecal drug delivery for chronic pain syndromes: A review of considerations in practice management. Pain Physician 2020 23 6 E591 E617 33185379
    [Google Scholar]
  149. Sankhe K. Khan T. Bhavsar C. Momin M. Omri A. Selective drug deposition in lungs through pulmonary drug delivery system for effective management of drug-resistant TB. Expert Opin. Drug Deliv. 2019 16 5 525 538 10.1080/17425247.2019.1609937 31007100
    [Google Scholar]
  150. da Silva Leite J.M. Patriota Y.B.G. de La Roca M.F. Soares-Sobrinho J.L. New perspectives in drug delivery systems for the treatment of tuberculosis. Curr. Med. Chem. 2022 29 11 1936 1958 10.2174/0929867328666210629154908 34212827
    [Google Scholar]
  151. Jain A.K. Thareja S. In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif. Cells Nanomed. Biotechnol. 2019 47 1 524 539 10.1080/21691401.2018.1561457 30784319
    [Google Scholar]
  152. Bhattacharyya S. Rana D. Bhattacharyya S.N. Determination of heat of formation of associated systems by calorimetry. J. Indian Chem. Soc. 1997 74 2 103 107
    [Google Scholar]
  153. Bhattacharyya S. Rana D. Bhattacharyya S.N. A thermodynamic study of molecular association by gas-liquid chromatography: Trilaurylaminealcohol systems. J. Indian Chem. Soc. 1997 74 7 548 551
    [Google Scholar]
  154. Kašpar M. Česla P. Characterization of balsamic vinegars using high-performance liquid chromatography and gas chromatography. Appl. Sci. 2022 12 18 8946 10.3390/app12188946
    [Google Scholar]
  155. Wani S.U. Ali M. Masoodi M.H. Khan N.A. Zargar M.I. Hassan R. Mir S.A. Gautam S.P. Gangadharappa H.V. Osmani R.A. A review on nanoparticles categorization, characterization and applications in drug delivery systems. Vib. Spectrosc. 2022 121 103407 10.1016/j.vibspec.2022.103407
    [Google Scholar]
  156. Nemmar A. Holme J.A. Rosas I. Schwarze P.E. Alfaro-Moreno E. Recent advances in particulate matter and nanoparticle toxicology: A review of the in vivo and in vitro studies. BioMed Res. Int. 2013 2013 1 279371 23865044
    [Google Scholar]
  157. Alam M.N. Bristi N.J. Rafiquzzaman M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 2013 21 2 143 152 10.1016/j.jsps.2012.05.002 24936134
    [Google Scholar]
  158. Goldberg M. In vitro and in vivo studies on the toxicity of dental resin components: A review. Clin. Oral Investig. 2008 12 1 1 8 10.1007/s00784‑007‑0162‑8 18040729
    [Google Scholar]
  159. Sałat K. Librowski T. Nawiesniak B. Gluch-Lutwin M. Evaluation of analgesic, antioxidant, cytotoxic and metabolic effects of pregabalin for the use in neuropathic pain. Neurol. Res. 2013 35 9 948 958 10.1179/1743132813Y.0000000236 23816319
    [Google Scholar]
  160. Ertürk Ö. Değirmenci A. Yurdakul Ertürk E. Atlı Şekeroğlu Z. Çol Ayvaz M. Kontaş Yedier S. Antimicrobial, antioxidant and cytotoxic activities of some analgesic or anti‐inflammatory drugs. Biologia 2021 76 8 2365 2379 10.1007/s11756‑021‑00755‑4
    [Google Scholar]
  161. Venditti I. Morphologies and functionalities of polymeric nanocarriers as chemical tools for drug delivery: A review. J. King Saud Univ. Sci. 2019 31 3 398 411 10.1016/j.jksus.2017.10.004
    [Google Scholar]
  162. Berbel Manaia E. Paiva Abuçafy M. Chiari-Andréo B.G. Lallo Silva B. Oshiro-Júnior J.A. Chiavacci L. Physicochemical characterization of drug nanocarriers. Int. J. Nanomedicine 2017 12 4991 5011 10.2147/IJN.S133832 28761340
    [Google Scholar]
  163. Patil TS Deshpande A Shende PK Deshpande S Gaud R Evaluation of nanocarrier-based dry powder formulations for inhalation with special reference to anti-tuberculosis drugs. Crit. Rev. Ther. Drug Carrier Syst. 2019 36 3 239 276 10.1615/CritRevTherDrugCarrierSyst.2018024397
    [Google Scholar]
  164. Patil R Pawar S Pingale P Nanocarrier-based methods for effective antitubercular drug delivery. 2024 161 184 10.1515/9783111320847‑006
    [Google Scholar]
  165. Magalhães J Vieira AC Pinto S Pinheiro S Granja A Santos S Pinheiro M Reis S New approaches from nanomedicine and pulmonary drug delivery for the treatment of tuberculosis. 2018 197 234 10.1201/9781351207355‑8
    [Google Scholar]
  166. Alshawwa S.Z. Kassem A.A. Farid R.M. Mostafa S.K. Labib G.S. Nanocarrier drug delivery systems: Characterization, limitations, future perspectives and implementation of artificial intelligence. Pharmaceutics 2022 14 4 883 10.3390/pharmaceutics14040883 35456717
    [Google Scholar]
  167. Vikal A. Maurya R. Bhowmik S. Patel P. Gupta G.D. Kurmi B.D. From conventional to cutting-edge: A comprehensive review on drug delivery systems. Drug Deliv. Lett. 2024 14 3 226 243 10.2174/0122103031304556240430161553
    [Google Scholar]
  168. Patel MP Patel JK Patent Survey on Recent Technology for Nanoparticles. 2021 541 557 10.1007/978‑3‑030‑50703‑9_25
    [Google Scholar]
  169. Bonora G. Drioli S. Recent advances on patents in poly(ethylene glycol)-based drug delivery. Recent Pat. Drug Deliv. Formul. 2008 2 2 189 195 10.2174/187221108784534063 19075907
    [Google Scholar]
  170. Tagami T. Ozeki T. Recent trends in clinical trials related to carrier-based drugs. J. Pharm. Sci. 2017 106 9 2219 2226 10.1016/j.xphs.2017.02.026 28259767
    [Google Scholar]
  171. Khan FA Nanocarriers-based products in the market, FDA approval, commercialization of nanocarriers, and global market. 2024 137 148
    [Google Scholar]
  172. Farjadian F. Ghasemi A. Gohari O. Roointan A. Karimi M. Hamblin M.R. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 2019 14 1 93 126 10.2217/nnm‑2018‑0120 30451076
    [Google Scholar]
  173. Khan O. Chaudary N. The use of amikacin liposome inhalation suspension (Arikayce) in the treatment of refractory nontuberculous mycobacterial lung disease in adults. Drug Des. Devel. Ther. 2020 14 2287 2294 10.2147/DDDT.S146111 32606598
    [Google Scholar]
  174. Ostrovskii K.P. Osipova N.S. Vanchugova L.V. Shipulo E.V. Potapov V.D. Pereverzeva É.R. Treshchalin I.D. Maksimenko O.O. Gel’perina S.É. Efficacy of an intravenous form of rifapentine in a model of experimental tuberculosis in mice. Pharm. Chem. J. 2017 51 7 616 621 10.1007/s11094‑017‑1663‑7
    [Google Scholar]
  175. Hartrick C.T. Martin G. Kantor G. Koncelik J. Manvelian G. Evaluation of a single-dose, extended-release epidural morphine formulation for pain after knee arthroplasty. J. Bone Joint Surg. Am. 2006 88 2 273 281 10.2106/JBJS.D.02738 16452737
    [Google Scholar]
  176. Vyas K.S. Rajendran S. Morrison S.D. Shakir A. Mardini S. Lemaine V. Nahabedian M.Y. Baker S.B. Rinker B.D. Vasconez H.C. Systematic review of liposomal bupivacaine (Exparel) for postoperative analgesia. Plast. Reconstr. Surg. 2016 138 4 748e 756e 10.1097/PRS.0000000000002547 27673545
    [Google Scholar]
  177. Daglar B. Ozgur E. Corman M.E. Uzun L. Demirel G.B. Polymeric nanocarriers for expected nanomedicine: Current challenges and future prospects. RSC Advances 2014 4 89 48639 48659 10.1039/C4RA06406B
    [Google Scholar]
  178. Nishiyama N. Kataoka K. Current state, achievements, and future prospects of polymeric micelles as nanocarriers for drug and gene delivery. Pharmacol. Ther. 2006 112 3 630 648 10.1016/j.pharmthera.2006.05.006 16815554
    [Google Scholar]
  179. Biswas B. Misra T.K. Ray D. Majumder T. Bandyopadhyay T.K. Bhowmick T.K. Current therapeutic delivery approaches using nanocarriers for the treatment of tuberculosis disease. Int. J. Pharm. 2023 640 123018 10.1016/j.ijpharm.2023.123018 37149113
    [Google Scholar]
  180. Bhansali D. Teng S.L. Lee C.S. Schmidt B.L. Bunnett N.W. Leong K.W. Nanotechnology for pain management: Current and future therapeutic interventions. Nano Today 2021 39 101223 10.1016/j.nantod.2021.101223 34899962
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385367493250224103839
Loading
/content/journals/pnt/10.2174/0122117385367493250224103839
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: targeted ; Nanocarriers ; nano-delivery ; tuberculosis ; pain
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test