Skip to content
2000
image of 
Cancer Therapy with Polymeric Nanocarriers and the Transition to 
Targeted Cancer Therapy: Advances and Future Directions

Abstract

The development of targeted cancer therapies has become crucial in addressing the limitations of conventional chemotherapy, particularly its lack of specificity and severe side effects. Polymeric nanocarriers have emerged as a transformative solution, providing enhanced drug solubility, selective targeting, and controlled release of therapeutics. This review discusses recent advances in polymeric nanocarriers, emphasizing their capacity to incorporate multiple drugs and optimize delivery through both active and passive targeting strategies, and especially the transition to targeted cancer therapy through the various applied methods in the field. Mechanisms such as the enhanced permeability and retention (EPR) effect for passive targeting, and the use of ligands, peptides, and proteins for active targeting, are explored in depth. Furthermore, the potential of these nanocarriers to improve therapeutic outcomes through targeting specific cellular and subcellular sites, including the nucleus, mitochondria, and endoplasmic reticulum, is examined. These innovations pave the way for the development of safer and more effective cancer treatments with the potential to enhance clinical outcomes.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385350610250112112855
2025-02-04
2025-09-26
Loading full text...

Full text loading...

References

  1. Duncan R. The dawning era of polymer therapeutics. Nat. Rev. Drug Discov. 2003 2 5 347 360 10.1038/nrd1088 12750738
    [Google Scholar]
  2. Bhattacharya S. Prajapati B.G. Singh S. A critical review on the dissemination of PH and stimuli-responsive polymeric nanoparticular systems to improve drug delivery in cancer therapy. Crit. Rev. Oncol. Hematol. 2023 185 103961 10.1016/j.critrevonc.2023.103961 36921781
    [Google Scholar]
  3. Kumari P. Ghosh B. Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016 24 3 179 191 10.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  4. Sun Q. Zhou Z. Qiu N. Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. Adv. Mater. 2017 29 14 1606628 10.1002/adma.201606628 28234430
    [Google Scholar]
  5. Theodosis-Nobelos P. Charalambous D. Triantis C. Rikkou-Kalourkoti M. Drug Conjugates Using Different Dynamic Covalent Bonds and their Application in Cancer Therapy. Curr. Drug Deliv. 2020 17 7 542 557 10.2174/1567201817999200508092141 32384029
    [Google Scholar]
  6. Zhang Y. He P. Zhang P. Yi X. Xiao C. Chen X. Polypeptides–Drug Conjugates for Anticancer Therapy. Adv. Healthc. Mater. 2021 10 11 2001974 10.1002/adhm.202001974 33929786
    [Google Scholar]
  7. Parashar A.K. Saraogi G.K. Jain P.K. Kurmi B. Shrivastava V. Arora V. Polymer-drug conjugates: revolutionizing nanotheranostic agents for diagnosis and therapy. Discov. Oncol. 2024 15 1 641 10.1007/s12672‑024‑01509‑9 39527173
    [Google Scholar]
  8. Caracciolo G. Farokhzad O.C. Mahmoudi M. Biological identity of nanoparticles in vivo: clinical implications of the protein corona. Trends Biotechnol. 2017 35 3 257 264 10.1016/j.tibtech.2016.08.011 27663778
    [Google Scholar]
  9. Caracciolo G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale 2018 10 9 4167 4172 10.1039/C7NR07450F 29450412
    [Google Scholar]
  10. Rosenblum D. Joshi N. Tao W. Karp J.M. Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018 9 1 1410 10.1038/s41467‑018‑03705‑y 29650952
    [Google Scholar]
  11. Mitchell M.J. Billingsley M.M. Haley R.M. Wechsler M.E. Peppas N.A. Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021 20 2 101 124 10.1038/s41573‑020‑0090‑8 33277608
    [Google Scholar]
  12. Ding L. Agrawal P. Singh S.K. Chhonker Y.S. Sun J. Murry D.J. Polymer-Based Drug Delivery Systems for Cancer Therapeutics. Polymers (Basel) 2024 16 6 843 10.3390/polym16060843 38543448
    [Google Scholar]
  13. Minko T. Dharap S. Pakunlu R. Wang Y. Molecular targeting of drug delivery systems to cancer. Curr. Drug Targets 2004 5 4 389 406 10.2174/1389450043345443 15134222
    [Google Scholar]
  14. Maeda H. Polymer therapeutics and the EPR effect. J. Drug Target. 2017 25 9-10 781 785 10.1080/1061186X.2017.1365878 28988499
    [Google Scholar]
  15. Fercher C. Keshvari S. McGuckin M.A. Barnard R.T. Evolution of the magic bullet: Single chain antibody fragments for the targeted delivery of immunomodulatory proteins. Exp. Biol. Med. (Maywood) 2018 243 2 166 183 10.1177/1535370217748575 29256259
    [Google Scholar]
  16. Majumder J. Taratula O. Minko T. Nanocarrier-based systems for targeted and site specific therapeutic delivery. Adv. Drug Deliv. Rev. 2019 144 57 77 10.1016/j.addr.2019.07.010 31400350
    [Google Scholar]
  17. Tiwari S. Tirosh B. Rubinstein A. Increasing the affinity of cationized polyacrylamide-paclitaxel nanoparticles towards colon cancer cells by a surface recognition peptide. Int. J. Pharm. 2017 531 1 281 291 10.1016/j.ijpharm.2017.08.092 28844903
    [Google Scholar]
  18. Nosrati H. Abbasi R. Charmi J. Rakhshbahar A. Aliakbarzadeh F. Danafar H. Davaran S. Folic acid conjugated bovine serum albumin: An efficient smart and tumor targeted biomacromolecule for inhibition folate receptor positive cancer cells. Int. J. Biol. Macromol. 2018 117 1125 1132 10.1016/j.ijbiomac.2018.06.026 29885392
    [Google Scholar]
  19. Prabhu R.H. Patravale V.B. Joshi M.D. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int. J. Nanomedicine 2015 10 1001 1018 25678788
    [Google Scholar]
  20. Cao J. Huang D. Peppas N.A. Advanced engineered nanoparticulate platforms to address key biological barriers for delivering chemotherapeutic agents to target sites. Adv. Drug Deliv. Rev. 2020 167 170 188 10.1016/j.addr.2020.06.030 32622022
    [Google Scholar]
  21. Yin H. Shi X. Wang H. Jin W. Li Y. Fu Y. Photodynamic therapy targeting VCAM-1-expressing human umbilical vein endothelial cells using a PpIX–VCAM-1 binding peptide–quantum dot conjugate. RSC Advances 2017 7 80 50562 50570 10.1039/C7RA10648C
    [Google Scholar]
  22. Yao Q. Choi J.H. Dai Z. Wang J. Kim D. Tang X. Zhu L. Improving tumor specificity and anticancer activity of dasatinib by dual-targeted polymeric micelles. ACS Appl. Mater. Interfaces 2017 9 42 36642 36654 10.1021/acsami.7b12233 28960955
    [Google Scholar]
  23. Liu J. Wei T. Zhao J. Huang Y. Deng H. Kumar A. Wang C. Liang Z. Ma X. Liang X.J. Multifunctional aptamer-based nanoparticles for targeted drug delivery to circumvent cancer resistance. Biomaterials 2016 91 44 56 10.1016/j.biomaterials.2016.03.013 26994877
    [Google Scholar]
  24. Yue P. He L. Qiu S. Li Y. Liao Y. Li X. Xie D. Peng Y. OX26/CTX-conjugated PEGylated liposome as a dual-targeting gene delivery system for brain glioma. Mol. Cancer 2014 13 1 191 10.1186/1476‑4598‑13‑191 25128329
    [Google Scholar]
  25. Vigor K.L. Kyrtatos P.G. Minogue S. Al-Jamal K.T. Kogelberg H. Tolner B. Kostarelos K. Begent R.H. Pankhurst Q.A. Lythgoe M.F. Chester K.A. Nanoparticles functionalised with recombinant single chain Fv antibody fragments (scFv) for the magnetic resonance imaging of cancer cells. Biomaterials 2010 31 6 1307 1315 10.1016/j.biomaterials.2009.10.036 19889453
    [Google Scholar]
  26. Stefanick J.F. Ashley J.D. Bilgicer B. Enhanced cellular uptake of peptide-targeted nanoparticles through increased peptide hydrophilicity and optimized ethylene glycol peptide-linker length. ACS Nano 2013 7 9 8115 8127 10.1021/nn4033954 24003770
    [Google Scholar]
  27. Hinde E. Thammasiraphop K. Duong H.T.T. Yeow J. Karagoz B. Boyer C. Gooding J.J. Gaus K. Pair correlation microscopy reveals the role of nanoparticle shape in intracellular transport and site of drug release. Nat. Nanotechnol. 2017 12 1 81 89 10.1038/nnano.2016.160 27618255
    [Google Scholar]
  28. Huo S. Jin S. Ma X. Xue X. Yang K. Kumar A. Wang P.C. Zhang J. Hu Z. Liang X.J. Ultrasmall gold nanoparticles as carriers for nucleus-based gene therapy due to size-dependent nuclear entry. ACS Nano 2014 8 6 5852 5862 10.1021/nn5008572 24824865
    [Google Scholar]
  29. Dalal C. Jana N.R. Multivalency R. Multivalency Effect of TAT-Peptide-Functionalized Nanoparticle in Cellular Endocytosis and Subcellular Trafficking. J. Phys. Chem. B 2017 121 14 2942 2951 10.1021/acs.jpcb.6b12182 28334537
    [Google Scholar]
  30. Tang R. Wang M. Ray M. Jiang Y. Jiang Z. Xu Q. Rotello V.M. Active Targeting of the Nucleus Using Nonpeptidic Boronate Tags. J. Am. Chem. Soc. 2017 139 25 8547 8551 10.1021/jacs.7b02801 28598151
    [Google Scholar]
  31. Zhu Y.X. Jia H.R. Pan G.Y. Ulrich N.W. Chen Z. Wu F.G. Development of a Light-Controlled Nanoplatform for Direct Nuclear Delivery of Molecular and Nanoscale Materials. J. Am. Chem. Soc. 2018 140 11 4062 4070 10.1021/jacs.7b13672 29406728
    [Google Scholar]
  32. Purushothaman B. Choi J. Park S. Lee J. Samson A.A.S. Hong S. Song J.M. Biotin-conjugated PEGylated porphyrin self-assembled nanoparticles co-targeting mitochondria and lysosomes for advanced chemo-photodynamic combination therapy. J. Mater. Chem. B Mater. Biol. Med. 2019 7 1 65 79 10.1039/C8TB01923A 32254951
    [Google Scholar]
  33. Zielonka J. Joseph J. Sikora A. Hardy M. Ouari O. Vasquez-Vivar J. Cheng G. Lopez M. Kalyanaraman B. Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem. Rev. 2017 117 15 10043 10120 10.1021/acs.chemrev.7b00042 28654243
    [Google Scholar]
  34. López V. Villegas M.R. Rodríguez V. Villaverde G. Lozano D. Baeza A. Vallet-Regí M. Janus mesoporous silica nanoparticles for dual targeting of tumor cells and mitochondria. ACS Appl. Mater. Interfaces 2017 9 32 26697 26706 10.1021/acsami.7b06906 28759196
    [Google Scholar]
  35. Klimpel A. Neundorf I. Bifunctional peptide hybrids targeting the matrix of mitochondria. J. Control. Release 2018 291 147 156 10.1016/j.jconrel.2018.10.029 30367921
    [Google Scholar]
  36. Sun Y. Yang Q. Xia X. Li X. Ruan W. Zheng M. Zou Y. Shi B. Polymeric nanoparticles for mitochondria targeting mediated robust cancer therapy. Front. Bioeng. Biotechnol. 2021 9 755727 10.3389/fbioe.2021.755727 34692665
    [Google Scholar]
  37. Wang J. Fang X. Liang W. Pegylated phospholipid micelles induce endoplasmic reticulum-dependent apoptosis of cancer cells but not normal cells. ACS Nano 2012 6 6 5018 5030 10.1021/nn300571c 22578158
    [Google Scholar]
  38. Tirla A. Rivera-Fuentes P. Peptide targeting of an intracellular receptor of the secretory pathway. Biochemistry 2019 58 9 1184 1187 10.1021/acs.biochem.9b00029 30785735
    [Google Scholar]
  39. Sneh-Edri H. Likhtenshtein D. Stepensky D. Intracellular targeting of PLGA nanoparticles encapsulating antigenic peptide to the endoplasmic reticulum of dendritic cells and its effect on antigen cross-presentation in vitro. Mol. Pharm. 2011 8 4 1266 1275 10.1021/mp200198c 21661745
    [Google Scholar]
  40. Fan D. Cao Y. Cao M. Wang Y. Cao Y. Gong T. Nanomedicine in cancer therapy. Signal Transduct. Target. Ther. 2023 8 1 293 10.1038/s41392‑023‑01536‑y 37544972
    [Google Scholar]
  41. Tang Z.H. Chen X.S. Tumor-targeting drug delivery systems based on poly (L-glutamic acid)-g-poly (ethylene glycol). Acta Polym. Sin. 2019 50 543 552
    [Google Scholar]
  42. Lu H. Wang J. Song Z. Yin L. Zhang Y. Tang H. Tu C. Lin Y. Cheng J. Recent advances in amino acid N-carboxyanhydrides and synthetic polypeptides: chemistry, self-assembly and biological applications. Chem. Commun. (Camb.) 2014 50 2 139 155 10.1039/C3CC46317F 24217557
    [Google Scholar]
  43. Melnyk T. Đorđević S. Conejos-Sánchez I. Vicent M.J. Therapeutic potential of polypeptide-based conjugates: Rational design and analytical tools that can boost clinical translation. Adv. Drug Deliv. Rev. 2020 160 136 169 10.1016/j.addr.2020.10.007 33091502
    [Google Scholar]
  44. Chou P.L. Huang Y.P. Cheng M.H. Rau K.M. Fang Y.P. Improvement of paclitaxel-associated adverse reactions (ADRs) via the use of nano-based drug delivery systems: a systematic review and network meta-analysis. Int. J. Nanomedicine 2020 15 1731 1743 10.2147/IJN.S231407 32210563
    [Google Scholar]
  45. Eldar-Boock A. Miller K. Sanchis J. Lupu R. Vicent M.J. Satchi-Fainaro R. Integrin-assisted drug delivery of nano-scaled polymer therapeutics bearing paclitaxel. Biomaterials 2011 32 15 3862 3874 10.1016/j.biomaterials.2011.01.073 21376390
    [Google Scholar]
  46. Casali B.C. Gozzer L.T. Baptista M.P. Altei W.F. Selistre-de-Araújo H.S. The effects of αvβ3 integrin blockage in breast tumor and endothelial cells under hypoxia in vitro. Int. J. Mol. Sci. 2022 23 3 1745 10.3390/ijms23031745 35163668
    [Google Scholar]
  47. Song W. Li M. Tang Z. Li Q. Yang Y. Liu H. Duan T. Hong H. Chen X. Methoxypoly(ethylene glycol)-block-poly(L-glutamic acid)-loaded cisplatin and a combination with iRGD for the treatment of non-small-cell lung cancers. Macromol. Biosci. 2012 12 11 1514 1523 10.1002/mabi.201200145 23070837
    [Google Scholar]
  48. Zuo H. iRGD: A promising peptide for cancer imaging and a potential therapeutic agent for various cancers. J. Oncol. 2019 2019 1 15 10.1155/2019/9367845 31346334
    [Google Scholar]
  49. Shi C. Yu H. Sun D. Ma L. Tang Z. Xiao Q. Chen X. Cisplatin-loaded polymeric nanoparticles: Characterization and potential exploitation for the treatment of non-small cell lung carcinoma. Acta Biomater. 2015 18 68 76 10.1016/j.actbio.2015.02.009 25707922
    [Google Scholar]
  50. Duan X. He C. Kron S.J. Lin W. Nanoparticle formulations of cisplatin for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016 8 5 776 791 10.1002/wnan.1390 26848041
    [Google Scholar]
  51. Conticello C. Martinetti D. Adamo L. Buccheri S. Giuffrida R. Parrinello N. Lombardo L. Anastasi G. Amato G. Cavalli M. Chiarenza A. De Maria R. Giustolisi R. Gulisano M. Di Raimondo F. Disulfiram, an old drug with new potential therapeutic uses for human hematological malignancies. Int. J. Cancer 2012 131 9 2197 2203 10.1002/ijc.27482 22322883
    [Google Scholar]
  52. Song W. Tang Z. Shen N. Yu H. Jia Y. Zhang D. Jiang J. He C. Tian H. Chen X. Combining disulfiram and poly(l-glutamic acid)-cisplatin conjugates for combating cisplatin resistance. J. Control. Release 2016 231 94 102 10.1016/j.jconrel.2016.02.039 26928530
    [Google Scholar]
  53. Song W. Tang Z. Zhang D. Li M. Gu J. Chen X. A cooperative polymeric platform for tumor-targeted drug delivery. Chem. Sci. (Camb.) 2016 7 1 728 736 10.1039/C5SC01698C 28791115
    [Google Scholar]
  54. Gill J.H. Rockley K.L. De Santis C. Mohamed A.K. Vascular Disrupting Agents in cancer treatment: Cardiovascular toxicity and implications for co-administration with other cancer chemotherapeutics. Pharmacol. Ther. 2019 202 18 31 10.1016/j.pharmthera.2019.06.001 31173840
    [Google Scholar]
  55. Ma S. Song W. Xu Y. Si X. Lv S. Zhang Y. Tang Z. Chen X. Rationally designed polymer conjugate for tumor-specific amplification of oxidative stress and boosting antitumor immunity. Nano Lett. 2020 20 4 2514 2521 10.1021/acs.nanolett.9b05265 32109068
    [Google Scholar]
  56. Feng B. Zhou F. Hou B. Wang D. Wang T. Fu Y. Ma Y. Yu H. Li Y. Binary cooperative prodrug nanoparticles improve immunotherapy by synergistically modulating immune tumor microenvironment. Adv. Mater. 2018 30 38 1803001 10.1002/adma.201803001 30063262
    [Google Scholar]
  57. Li Q. Lv S. Tang Z. Liu M. Zhang D. Yang Y. Chen X. A co-delivery system based on paclitaxel grafted mPEG-b-PLG loaded with doxorubicin: Preparation, in vitro and in vivo evaluation. Int. J. Pharm. 2014 471 1-2 412 420 10.1016/j.ijpharm.2014.05.065 24905776
    [Google Scholar]
  58. Song W. Tang Z. Li M. Lv S. Sun H. Deng M. Liu H. Chen X. Polypeptide-based combination of paclitaxel and cisplatin for enhanced chemotherapy efficacy and reduced side-effects. Acta Biomater. 2014 10 3 1392 1402 10.1016/j.actbio.2013.11.026 24316362
    [Google Scholar]
  59. Song W. Tang Z. Zhang D. Zhang Y. Yu H. Li M. Lv S. Sun H. Deng M. Chen X. Anti-tumor efficacy of c(RGDfK)-decorated polypeptide-based micelles co-loaded with docetaxel and cisplatin. Biomaterials 2014 35 9 3005 3014 10.1016/j.biomaterials.2013.12.018 24388813
    [Google Scholar]
  60. Gao W. Liu W. Christensen T. Zalutsky M.R. Chilkoti A. In situ growth of a PEG-like polymer from the C terminus of an intein fusion protein improves pharmacokinetics and tumor accumulation. Proc. Natl. Acad. Sci. USA 2010 107 38 16432 16437 10.1073/pnas.1006044107 20810920
    [Google Scholar]
  61. Turecek P.L. Bossard M.J. Schoetens F. Ivens I.A. PEGylation of biopharmaceuticals: A review of chemistry and nonclinical safety information of approved drugs. J. Pharm. Sci. 2016 105 2 460 475 10.1016/j.xphs.2015.11.015 26869412
    [Google Scholar]
  62. Guo J. Sun J. Liu X. Wang Z. Gao W. Head-to-tail macrocyclization of albumin-binding domain fused interferon alpha improves the stability, activity, tumor penetration, and pharmacology. Biomaterials 2020 250 120073 10.1016/j.biomaterials.2020.120073 32353628
    [Google Scholar]
  63. Hou Y. Zhou Y. Wang H. Wang R. Yuan J. Hu Y. Sheng K. Feng J. Yang S. Lu H. Macrocyclization of interferon–poly(α-amino acid) conjugates significantly improves the tumor retention, penetration, and antitumor efficacy. J. Am. Chem. Soc. 2018 140 3 1170 1178 10.1021/jacs.7b13017 29262256
    [Google Scholar]
  64. Zha R.H. Sur S. Boekhoven J. Shi H.Y. Zhang M. Stupp S.I. Supramolecular assembly of multifunctional maspin-mimetic nanostructures as a potent peptide-based angiogenesis inhibitor. Acta Biomater. 2015 12 1 10 10.1016/j.actbio.2014.11.001 25462852
    [Google Scholar]
  65. Zhang J. Li J. Shi Z. Yang Y. Xie X. Lee S.M. Wang Y. Leong K.W. Chen M. pH-sensitive polymeric nanoparticles for co-delivery of doxorubicin and curcumin to treat cancer via enhanced pro-apoptotic and anti-angiogenic activities. Acta Biomater. 2017 58 349 364 10.1016/j.actbio.2017.04.029 28455219
    [Google Scholar]
  66. Wang H. Wu J. Xie K. Fang T. Chen C. Xie H. Zhou L. Zheng S. Precise engineering of prodrug cocktails into single polymeric nanoparticles for combination cancer therapy: Extended and sequentially. controllable drug release. ACS Appl. Mater. Interfaces 2017 9 12 10567 10576 10.1021/acsami.7b01938 28271714
    [Google Scholar]
  67. Yang W.J. Zhou P. Liang L. Cao Y. Qiao J. Li X. Teng Z. Wang L. Nanogel-incorporated injectable hydrogel for synergistic therapy based on sequential local delivery of combretastatin-a4 phosphate (CA4P) and doxorubicin (DOX). ACS Appl. Mater. Interfaces 2018 10 22 18560 18573 10.1021/acsami.8b04394 29767951
    [Google Scholar]
  68. Dahmani F.Z. Xiao Y. Zhang J. Yu Y. Zhou J. Yao J. Retraction: Multifunctional polymeric nanosystems for dual‐targeted combinatorial chemo/antiangiogenesis therapy of tumors. Adv. Healthc. Mater. 2022 11 8 2200329 10.1002/adhm.202200329 35332681
    [Google Scholar]
  69. Lu N. Hui H. Yang H. Zhao K. Chen Y. You Q.D. Guo Q.L. Gambogic acid inhibits angiogenesis through inhibiting PHD2–VHL–HIF-1α pathway. Eur. J. Pharm. Sci. 2013 49 2 220 226 10.1016/j.ejps.2013.02.018 23501055
    [Google Scholar]
  70. Mousa S.A. Comparative pharmacodynamic assessment of the antiangiogenesis activity of heparin and low-molecular-weight heparin fractions: structure-function relationship. Clin. Appl. Thromb. Hemost. 2013 19 1 48 54 10.1177/1076029611436194 22327829
    [Google Scholar]
  71. Mukherjee P. Bhattacharya R. Wang P. Wang L. Basu S. Nagy J.A. Atala A. Mukhopadhyay D. Soker S. Antiangiogenic properties of gold nanoparticles. Clin. Cancer Res. 2005 11 9 3530 3534 10.1158/1078‑0432.CCR‑04‑2482 15867256
    [Google Scholar]
  72. You Y.H. Lin Y.F. Nirosha B. Chang H.T. Huang Y.F. Polydopamine-coated gold nanostar for combined antitumor and antiangiogenic therapy in multidrug-resistant breast cancer. Nanotheranostics 2019 3 3 266 283 10.7150/ntno.36842 31263658
    [Google Scholar]
  73. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 2012 12 4 252 264 10.1038/nrc3239 22437870
    [Google Scholar]
  74. Raghani N.R. Chorawala M.R. Mahadik M. Patel R.B. Prajapati B.G. Parekh P.S. Revolutionizing cancer treatment: comprehensive insights into immunotherapeutic strategies. Med. Oncol. 2024 41 2 51 10.1007/s12032‑023‑02280‑7 38195781
    [Google Scholar]
  75. Bidram M. Zhao Y. Shebardina N.G. Baldin A.V. Bazhin A.V. Ganjalikhany M.R. Zamyatnin A.A. Jr Ganjalikhani-hakemi M. mRNA-based cancer vaccines: A therapeutic strategy for the treatment of melanoma patients. Vaccines 2021 9 10 1060 10.3390/vaccines9101060 34696168
    [Google Scholar]
  76. Vaddepally R.K. Kharel P. Pandey R. Garje R. Chandra A.B. Review of indications of fda-approved immune checkpoint inhibitors per nccn guidelines with the level of evidence. Cancers 2020 12 3 738 10.3390/cancers12030738 32245016
    [Google Scholar]
  77. De Keersmaecker B. Claerhout S. Carrasco J. Bar I. Corthals J. Wilgenhof S. Neyns B. Thielemans K. TriMix and tumor antigen mRNA electroporated dendritic cell vaccination plus ipilimumab: link between T-cell activation and clinical responses in advanced melanoma. J. Immunother. Cancer 2020 8 1 e000329 10.1136/jitc‑2019‑000329 32114500
    [Google Scholar]
  78. Hou X. Zaks T. Langer R. Dong Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 2021 6 12 1078 1094 10.1038/s41578‑021‑00358‑0 34394960
    [Google Scholar]
  79. Burris H.A. Patel M.R. Cho D.C. Clarke J.M. Gutierrez M. Zaks T.Z. Frederick J. Hopson K. Mody K. Binanti-Berube A. Robert-Tissot C. Goldstein B. Breton B. Sun J. Zhong S. Pruitt S.K. Keating K. Meehan R.S. Gainor J.F. A phase I multicenter study to assess the safety, tolerability, and immunogenicity of mRNA-4157 alone in patients with resected solid tumors and in combination with pembrolizumab in patients with unresectable solid tumors. J. Clin. Oncol. 2019 37 15_suppl 2523 10.1200/JCO.2019.37.15_suppl.2523
    [Google Scholar]
  80. Garbuzenko O.B. Saad M. Pozharov V.P. Reuhl K.R. Mainelis G. Minko T. Inhibition of lung tumor growth by complex pulmonary delivery of drugs with oligonucleotides as suppressors of cellular resistance. Proc. Natl. Acad. Sci. USA 2010 107 23 10737 10742 10.1073/pnas.1004604107 20498076
    [Google Scholar]
  81. Taratula O. Kuzmov A. Shah M. Garbuzenko O.B. Minko T. Nanostructured lipid carriers as multifunctional nanomedicine platform for pulmonary co-delivery of anticancer drugs and siRNA. J. Control. Release 2013 171 3 349 357 10.1016/j.jconrel.2013.04.018 23648833
    [Google Scholar]
  82. Meng C. Chen Z. Li G. Welte T. Shen H. Nanoplatforms for mRNA therapeutics. Adv. Ther. 2021 4 1 2000099 10.1002/adtp.202000099
    [Google Scholar]
  83. Kübler H. Scheel B. Gnad-Vogt U. Miller K. Schultze-Seemann W. vom Dorp F. Parmiani G. Hampel C. Wedel S. Trojan L. Jocham D. Maurer T. Rippin G. Fotin-Mleczek M. von der Mülbe F. Probst J. Hoerr I. Kallen K.J. Lander T. Stenzl A. Self-adjuvanted mRNA vaccination in advanced prostate cancer patients: a first-in-man phase I/IIa study. J. Immunother. Cancer 2015 3 1 26 10.1186/s40425‑015‑0068‑y 26082837
    [Google Scholar]
  84. Ferraro B. Cisper N.J. Talbott K.T. Philipson-Weiner L. Lucke C.E. Khan A.S. Sardesai N.Y. Weiner D.B. Co-delivery of PSA and PSMA DNA vaccines with electroporation induces potent immune responses. Hum. Vaccin. 2011 7 sup1 Suppl. 120 127 10.4161/hv.7.0.14574 21266849
    [Google Scholar]
  85. Zhang F. Parayath N.N. Ene C.I. Stephan S.B. Koehne A.L. Coon M.E. Holland E.C. Stephan M.T. Genetic programming of macrophages to perform anti-tumor functions using targeted mRNA nanocarriers. Nat. Commun. 2019 10 1 3974 10.1038/s41467‑019‑11911‑5 31481662
    [Google Scholar]
  86. Smith T.T. Stephan S.B. Moffett H.F. McKnight L.E. Ji W. Reiman D. Bonagofski E. Wohlfahrt M.E. Pillai S.P.S. Stephan M.T. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 2017 12 8 813 820 10.1038/nnano.2017.57 28416815
    [Google Scholar]
  87. Quabius E.S. Krupp G. Synthetic mRNAs for manipulating cellular phenotypes: an overview. N. Biotechnol. 2015 32 1 229 235 10.1016/j.nbt.2014.04.008 24816460
    [Google Scholar]
  88. Mahoney K.M. Freeman G.J. McDermott D.F. The next immune-checkpoint inhibitors: PD-1/PD-L1 blockade in melanoma. Clin. Ther. 2015 37 4 764 782 10.1016/j.clinthera.2015.02.018 25823918
    [Google Scholar]
  89. Luo L. Yang J. Zhu C. Jiang M. Guo X. Li W. Yin X. Yin H. Qin B. Yuan X. Li Q. Du Y. You J. Sustained release of anti-PD-1 peptide for perdurable immunotherapy together with photothermal ablation against primary and distant tumors. J. Control. Release 2018 278 87 99 10.1016/j.jconrel.2018.04.002 29626502
    [Google Scholar]
  90. Wang C. Sun W. Wright G. Wang A.Z. Gu Z. Inflammation‐triggered cancer immunotherapy by programmed delivery of CpG and Anti‐PD1 antibody. Adv. Mater. 2016 28 40 8912 8920 10.1002/adma.201506312 27558441
    [Google Scholar]
  91. Yuan H. Jiang W. von Roemeling C.A. Qie Y. Liu X. Chen Y. Wang Y. Wharen R.E. Yun K. Bu G. Knutson K.L. Kim B.Y.S. Multivalent bi-specific nanobioconjugate engager for targeted cancer immunotherapy. Nat. Nanotechnol. 2017 12 8 763 769 10.1038/nnano.2017.69 28459470
    [Google Scholar]
  92. Li A.W. Sobral M.C. Badrinath S. Choi Y. Graveline A. Stafford A.G. Weaver J.C. Dellacherie M.O. Shih T.Y. Ali O.A. Kim J. Wucherpfennig K.W. Mooney D.J. A facile approach to enhance antigen response for personalized cancer vaccination. Nat. Mater. 2018 17 6 528 534 10.1038/s41563‑018‑0028‑2 29507416
    [Google Scholar]
  93. Guo J. Huang L. Membrane-core nanoparticles for cancer nanomedicine. Adv. Drug Deliv. Rev. 2020 156 23 39 10.1016/j.addr.2020.05.005 32450105
    [Google Scholar]
  94. Zhu G. Lynn G.M. Jacobson O. Chen K. Liu Y. Zhang H. Ma Y. Zhang F. Tian R. Ni Q. Cheng S. Wang Z. Lu N. Yung B.C. Wang Z. Lang L. Fu X. Jin A. Weiss I.D. Vishwasrao H. Niu G. Shroff H. Klinman D.M. Seder R.A. Chen X. Albumin/vaccine nanocomplexes that assemble in vivo for combination cancer immunotherapy. Nat. Commun. 2017 8 1 1954 10.1038/s41467‑017‑02191‑y 29203865
    [Google Scholar]
  95. Yadav M. Jhunjhunwala S. Phung Q.T. Lupardus P. Tanguay J. Bumbaca S. Franci C. Cheung T.K. Fritsche J. Weinschenk T. Modrusan Z. Mellman I. Lill J.R. Delamarre L. Predicting immunogenic tumour mutations by combining mass spectrometry and exome sequencing. Nature 2014 515 7528 572 576 10.1038/nature14001 25428506
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385350610250112112855
Loading
/content/journals/pnt/10.2174/0122117385350610250112112855
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test