Skip to content
2000
image of Nanocarriers in Atopic Dermatitis Therapy: A Comprehensive Exploration

Abstract

In this comprehensive exploration of advanced nanocarriers for atopic dermatitis (AD) therapy, we explored a spectrum of innovative delivery systems, each with unique attributes poised to revolutionize topical drug administration. Lipid nanoparticles, including solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC), have emerged as stalwarts offering controlled drug release and enhanced skin penetration. Vesicular systems such as liposomes, ethosomes, transfersomes, and niosomes are versatile in their ability to encapsulate hydrophilic and lipophilic agents and overcome barriers to drug permeation. Microemulsions and nanoemulsions exhibit good stability and effective drug permeation, whereas the addition of polymeric nanoparticles allows for efficient targeting with less toxicity. AuNPs and AgNPs allow for targeted delivery and immune modulation, whereas skin lipids restore this barrier. siRNA-silenced genes are involved in inflammation, whereas immunobiologics reset immune responses. These nanocarriers offer tremendous opportunities for the personalized treatment of AD, reduction in systemic exposure, and enhancement of therapeutic efficacy. Overcoming formulation hurdles and instability concerns, in addition to an in-depth understanding of the possibility of achieving game-changing improvements in the management of AD, has placed nanocarriers at the forefront of new and personalized therapeutic approaches that would redefine the care of patients affected by this devastating disease.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385373434250705125526
2025-07-09
2025-09-25
Loading full text...

Full text loading...

References

  1. Atopic dermatitis: An expanding therapeutic pipeline for a complex disease. Nat. Rev. Drug Discov. 2022 21 1 21 40 10.1038/s41573‑021‑00266‑6 34417579
    [Google Scholar]
  2. Atopic dermatitis in the pediatric population. Ann. Allergy Asthma Immunol. 2021 126 4 417 428.e2 10.1016/j.anai.2020.12.020 33421555
    [Google Scholar]
  3. Atopic dermatitis: A global health perspective. J. Eur. Acad. Dermatol. Venereol. 2023 10.1111/jdv.19723 38151270
    [Google Scholar]
  4. The epidemiology and global burden of atopic dermatitis: A narrative review. Life 2021 11 9 936 10.3390/life11090936 34575085
    [Google Scholar]
  5. Atopic dermatitis in America study: A cross-sectional study examining the prevalence and disease burden of atopic dermatitis in the US adult population. J. Invest. Dermatol. 2019 139 3 583 590 10.1016/j.jid.2018.08.028 30389491
    [Google Scholar]
  6. Pathophysiology of atopic dermatitis: Clinical implications. Allergy Asthma Proc. 2019 40 2 84 92 10.2500/aap.2019.40.4202 30819278
    [Google Scholar]
  7. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. J. Dermatol. Sci. 2021 102 3 142 157 10.1016/j.jdermsci.2021.04.007 34116898
    [Google Scholar]
  8. Emerging nanomedicines for the treatment of atopic dermatitis. AAPS PharmSciTech 2021 22 2 55 10.1208/s12249‑021‑01920‑3 33486609
    [Google Scholar]
  9. Significance of skin barrier dysfunction in atopic dermatitis. Allergy Asthma Immunol. Res. 2018 10 3 207 215 10.4168/aair.2018.10.3.207 29676067
    [Google Scholar]
  10. Atopic dermatitis. Allergy Asthma Clin Immunol 2018 14 (S2) 52.(Suppl. 2) 10.1186/s13223‑018‑0281‑6 30275844
    [Google Scholar]
  11. Dermatitis Atopic Pathophysiology. Adv. Exp. Med. Biol. 2017 1027 21 37 10.1007/978‑3‑319‑64804‑0_3 29063428
    [Google Scholar]
  12. From skin barrier dysfunction to systemic impact of atopic dermatitis: Implications for a precision approach in dermocosmetics and medicine. J. Pers. Med. 2022 12 6 893 10.3390/jpm12060893 35743678
    [Google Scholar]
  13. Cost of atopic dermatitis and eczema in the United States. J. Am. Acad. Dermatol. 2002 46 3 361 370 10.1067/mjd.2002.120528 11862170
    [Google Scholar]
  14. Incidence of hand eczema-A population-based retrospective study. J. Invest. Dermatol. 2004 122 4 873 877 10.1111/j.0022‑202X.2004.22406.x 15102075
    [Google Scholar]
  15. Validation of the diagnostic criteria for atopic dermatitis. Arch. Dermatol. 1999 135 5 514 516 10.1001/archderm.135.5.514 10328189
    [Google Scholar]
  16. Common loss-of-function variants of the epidermal barrier protein filaggrin are a major predisposing factor for atopic dermatitis. Nat. Genet. 2006 38 4 441 446 10.1038/ng1767 16550169
    [Google Scholar]
  17. Recent updates in curcumin delivery. J. Liposome Res. 2023 33 1 53 64 10.1080/08982104.2022.2086567 35699160
    [Google Scholar]
  18. Nanoparticles Solid Lipid (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm. 2014 86 1 7 22 10.1016/j.ejpb.2013.08.013 24007657
    [Google Scholar]
  19. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002 54 S131 55 10.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  20. Solid lipid nanoparticles (SLNs) and nanostructured lipid carriers (NLCs) as food-grade nanovehicles for hydrophobic nutraceuticals or bioactives. Appl. Sci. 2023 13 3 1726 10.3390/app13031726
    [Google Scholar]
  21. Lipid-based nanoparticles for drug/gene delivery: An overview of the production techniques and difficulties encountered in their industrial development. ACS Mater Au 2023 3 6 600 619 10.1021/acsmaterialsau.3c00032 38089666
    [Google Scholar]
  22. Recent advances in encapsulation of curcumin in nanoemulsions: A review of encapsulation technologies, bioaccessibility and applications. Food Res. Int. 2020 132 109035 10.1016/j.foodres.2020.109035 32331634
    [Google Scholar]
  23. Nano encapsulated curcumin: And its potential for biomedical applications. Int. J. Nanomedicine 2020 15 3099 3120 10.2147/IJN.S210320 32431504
    [Google Scholar]
  24. Skin targeting of curcumin solid lipid nanoparticles-engrossed topical gel for the treatment of pigmentation and irritant contact dermatitis. Artif. Cells Nanomed. Biotechnol. 2018 46 7 1471 1482 10.1080/21691401.2017.1373659 28884598
    [Google Scholar]
  25. Topical administration of cyclosporin A in a solid lipid nanoparticle formulation. Pharmazie 2009 64 8 510 514 [PMID: 19746839
    [Google Scholar]
  26. Nanostructured lipid carriers as potential drug delivery systems for skin disorders. Curr. Pharm. Des. 2020 26 36 4569 4579 10.2174/1381612826666200614175236 32534562
    [Google Scholar]
  27. Design and pharmacodynamic evaluation of DPK-060 loaded Nanostructured lipid carrier embedded gel for dermal delivery: A novel approach in the treatment of atopic dermatitis. Colloids Surf. B Biointerfaces 2022 217 112658 10.1016/j.colsurfb.2022.112658 35810608
    [Google Scholar]
  28. Development of Halobetasol-loaded nanostructured lipid carrier for dermal administration: Optimization, physicochemical and biopharmaceutical behavior, and therapeutic efficacy. Nanomedicine (Lond.) 2019 20 102026 10.1016/j.nano.2019.102026 31170512
    [Google Scholar]
  29. Development and evaluation of tacrolimus loaded nano-transferosomes for skin targeting and dermatitis treatment. J. Pharm. Sci. 2024 113 2 471 485 10.1016/j.xphs.2023.10.033 37898166
    [Google Scholar]
  30. Tacrolimus-Loaded solid lipid nanoparticle gel: Formulation development and in vitro assessment for topical applications. Gels 2022 8 2 129 10.3390/gels8020129 35200510
    [Google Scholar]
  31. Dermal and transdermal drug delivery through vesicles and particles: Preparation and applications. Adv. Pharm. Bull. 2022 12 1 45 57 [PMID: 35517881
    [Google Scholar]
  32. Characterisation of niosome nanoparticles prepared by microfluidic mixing for drug delivery. Int. J. Pharm. X 2022 4 100137 10.1016/j.ijpx.2022.100137 36386005
    [Google Scholar]
  33. Development, characterization and use of liposomes as amphipathic transporters of bioactive compounds for melanoma treatment and reduction of skin inflammation: A review. Int. J. Nanomedicine 2020 15 7627 7650 10.2147/IJN.S263516 33116492
    [Google Scholar]
  34. Efficacy and tolerability of liposomal polyvinylpyrrolidone-iodine hydrogel for the localized treatment of chronic infective, inflammatory, dermatoses: An uncontrolled pilot study. Clin. Cosmet. Investig. Dermatol. 2017 10 373 384 10.2147/CCID.S141887 28989281
    [Google Scholar]
  35. Therapeutic alleviation and mechanism of glabridin liposome on histamine-induced atopic dermatitis. Pharmacogn. Mag. 2024 20 3 853 862 10.1177/09731296231225512
    [Google Scholar]
  36. Development of liposomes-in-hydrogel formulations containing betametha-sone for topical therapy. J Pharm Drug Deliv Saf 2017 1 3
    [Google Scholar]
  37. Nanotechnology meets atopic dermatitis: Current solutions, challenges and future prospects. Insights and implications from a systematic review of the literature. Bioact. Mater. 2019 4 380 386 10.1016/j.bioactmat.2019.11.003 31872162
    [Google Scholar]
  38. Potential of ethosomes for enhanced transdermal drug delivery in skin diseases. Nanomed. J. 2022 9 273 280
    [Google Scholar]
  39. Preparation and evaluation of transdermal permeation of Huperzine A ethosomes gel in vitro. BMC Pharmacol. Toxicol. 2024 25 1 21 10.1186/s40360‑024‑00742‑w 38409046
    [Google Scholar]
  40. Ethosomes for skin delivery of ammonium glycyrrhizinate: In vitro percutaneous permeation through human skin and in vivo anti-inflammatory activity on human volunteers. J. Control. Release 2005 106 1-2 99 110 10.1016/j.jconrel.2005.04.007 15935505
    [Google Scholar]
  41. Development of phospholipids vesicular nanocarrier for topical delivery of tea tree oil in management of atopic dermatitis using BALB/c mice model. Eur. J. Lipid Sci. Technol. 2021 123 10 2100002 10.1002/ejlt.202100002
    [Google Scholar]
  42. Molecular mechanisms of atopic dermatitis pathogenesis. Int. J. Mol. Sci. 2021 22 8 4130 10.3390/ijms22084130 33923629
    [Google Scholar]
  43. Effects of masks containing 0.5% tranexamic acid‐loaded ethosomes on melasma in the Asian skin: A randomized controlled clinical trial. Dermatol. Ther. 2023 2023 1 1917453 10.1155/2023/1917453
    [Google Scholar]
  44. Transfersomes: A promising nanoencapsulation technique for transdermal drug delivery. Pharmaceutics 2020 12 9 855 10.3390/pharmaceutics12090855 32916782
    [Google Scholar]
  45. Characterization and in vitro skin permeation of meloxicam‐loaded liposomes versus transfersomes. J. Drug Deliv. 2011 2011 1 1 9 10.1155/2011/418316 21490750
    [Google Scholar]
  46. Implementation of design of experiments in development and optimization of transfersomal carrier system of tacrolimus for the dermal management of psoriasis in albino wistar rat. J. Bioequivalence Bioavailab. 2018 10 5 98 105 10.4172/0975‑0851.1000385
    [Google Scholar]
  47. Emerging topical drug delivery approaches for the treatment of Atopic dermatitis. J. Cosmet. Dermatol. 2022 21 2 536 549 10.1111/jocd.14685 34935274
    [Google Scholar]
  48. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv. 2017 24 1 61 74 10.1080/10717544.2016.1228718 28155509
    [Google Scholar]
  49. Role of penetration enhancers in the topical delivery of adapalene by transfersomal gel: An in vitro investigation. J. Young Pharm. 2021 13 3 239 245 10.5530/jyp.2021.13.49
    [Google Scholar]
  50. Topical creams of piperine loaded lipid nanocarriers for management of atopic dermatitis: Development, characterization, and in vivo investigation using BALB/c mice model. J. Liposome Res. 2022 32 1 62 73 10.1080/08982104.2021.1880436 33944670
    [Google Scholar]
  51. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. Int. J. Mol. Sci. 2022 23 17 9668 10.3390/ijms23179668 36077066
    [Google Scholar]
  52. A comparative study of levocetirizine loaded vesicular and matrix type system for topical application: appraisal of therapeutic potential against atopic dermatitis. J. Pharm. Innov. 2021 16 3 469 480 10.1007/s12247‑020‑09465‑x
    [Google Scholar]
  53. Anti-inflammatory activity of novel ammonium glycyrrhizinate/niosomes delivery system: Human and murine models. J. Control. Release 2012 164 1 17 25 10.1016/j.jconrel.2012.09.018 23041542
    [Google Scholar]
  54. Coating materials to increase the stability of liposomes. Polymers 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  55. Nanotechnology-based topical delivery of natural products for the management of atopic dermatitis. Pharmaceutics 2023 15 6 1724 10.3390/pharmaceutics15061724 37376172
    [Google Scholar]
  56. Liposome-derived nanosystems for the treatment of behavioral and neurodegenerative diseases: The promise of niosomes, transfersomes, and ethosomes for increased brain drug bioavailability. Pharmaceuticals 2023 16 10 1424 10.3390/ph16101424 37895895
    [Google Scholar]
  57. Liposomes encapsulating novel antimicrobial peptide Omiganan: Characterization and its pharmacodynamic evaluation in atopic dermatitis and psoriasis mice model. Int. J. Pharm. 2022 624 122045 10.1016/j.ijpharm.2022.122045 35878872
    [Google Scholar]
  58. Review on different vesicular drug delivery systems (VDDSs) and their applications. Recent Pat. Nanotechnol. 2023 17 1 18 32 10.2174/1872210516666220228150624 35227188
    [Google Scholar]
  59. The utilization of plant-material-loaded vesicular drug delivery systems in the management of pulmonary diseases. Curr. Issues Mol. Biol. 2023 45 12 9985 10017 10.3390/cimb45120624 38132470
    [Google Scholar]
  60. Microemulsions and nanoemulsions in skin drug delivery. Bioengineering 2022 9 4 158 10.3390/bioengineering9040158 35447718
    [Google Scholar]
  61. Lipid based drug delivery systems for oral, transdermal and parenteral delivery: Recent strategies for targeted delivery consistent with different clinical application. J. Drug Deliv. Sci. Technol. 2023 85 104526 10.1016/j.jddst.2023.104526
    [Google Scholar]
  62. Gold nanoparticles: Construction for drug delivery and application in cancer immunotherapy. Pharmaceutics 2023 15 7 1868 10.3390/pharmaceutics15071868 37514054
    [Google Scholar]
  63. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules 2017 22 9 1445 10.3390/molecules22091445 28858253
    [Google Scholar]
  64. Biocompatibility and cytotoxicity of gold nanoparticles: Recent advances in methodologies and regulations. Int. J. Mol. Sci. 2021 22 20 10952 10.3390/ijms222010952 34681612
    [Google Scholar]
  65. Applications of nanosized-lipid-based drug delivery systems in wound care. Appl. Sci. 2021 11 11 4915 10.3390/app11114915
    [Google Scholar]
  66. Intestinal delivery of non-viral gene therapeutics: Physiological barriers and preclinical models. Drug Discov. Today 2011 16 5-6 203 218 10.1016/j.drudis.2011.01.003 21262379
    [Google Scholar]
  67. Modulation of immune responses using adjuvants to facilitate therapeutic vaccination. Immunol. Rev. 2020 296 1 169 190 10.1111/imr.12889 32594569
    [Google Scholar]
  68. Review of the efficacy of nanoparticle-based drug delivery systems for cancer treatment. Biomedical Technology 2024 5 109 122 10.1016/j.bmt.2023.09.001
    [Google Scholar]
  69. Cancer nanomedicine: Emerging strategies and therapeutic potentials. Molecules 2023 28 13 5145 10.3390/molecules28135145 37446806
    [Google Scholar]
  70. Topical nano and microemulsions for skin delivery. Pharmaceutics 2017 9 4 37 10.3390/pharmaceutics9040037 28934172
    [Google Scholar]
  71. Nano- and microemulsions in biomedicine: From theory to practice. Pharmaceutics 2023 15 7 1989 10.3390/pharmaceutics15071989 37514175
    [Google Scholar]
  72. Dual delivery of fluticasone propionate and levocetirizine dihydrochloride for the management of atopic dermatitis using a microemulsion-based topical gel. ACS Omega 2022 7 9 7696 7705 10.1021/acsomega.1c06393 35284709
    [Google Scholar]
  73. A nano-emulsion containing ceramide-like lipo-amino acid cholesteryl derivatives improves skin symptoms in patients with atopic dermatitis by ameliorating the water-holding function. Int. J. Mol. Sci. 2022 23 21 13362 10.3390/ijms232113362 36362149
    [Google Scholar]
  74. Double emulsion‐mediated delivery of polyphenol mixture alleviates atopic dermatitis. Adv. Healthc. Mater. 2023 12 30 2300998 10.1002/adhm.202300998 37677107
    [Google Scholar]
  75. Numerical analysis of the thermal stratification modelling efect on comfort for the case of a commercial low-rise building. 13th International Conference on Indoor Air Quality and Climate, Indoor Air 2014. Hong-Kong, China 2014 000 0008
    [Google Scholar]
  76. An investigation of the skin barrier restoring effects of a cream and lotion containing ceramides in a multi-vesicular emulsion in people with dry, eczema-prone, skin: The RESTORE study phase 1. Dermatol. Ther. 2020 10 5 1031 1041 10.1007/s13555‑020‑00426‑3 32671664
    [Google Scholar]
  77. Microemulsions for enhancing drug delivery of hydrophilic drugs: Exploring various routes of administration. Med Drug Discov 2023 20 100162 10.1016/j.medidd.2023.100162
    [Google Scholar]
  78. Advanced drug delivery and therapeutic strategies for tuberculosis treatment. J. Nanobiotechnology 2023 21 1 414 10.1186/s12951‑023‑02156‑y 37946240
    [Google Scholar]
  79. Strategies to enhance the solubility and bioavailability of tocotrienols using self-emulsifying drug delivery system. Pharmaceuticals 2023 16 10 1403 10.3390/ph16101403 37895874
    [Google Scholar]
  80. Topical microemulsions: Skin irritation potential and anti-inflammatory effects of herbal substances. Pharmaceuticals 2023 16 7 999 10.3390/ph16070999 37513911
    [Google Scholar]
  81. Polymeric nanoparticles as tunable nanocarriers for targeted delivery of drugs to skin tissues for treatment of topical skin diseases. Pharmaceutics 2023 15 2 657 10.3390/pharmaceutics15020657 36839979
    [Google Scholar]
  82. State-of-the-art advances and current applications of gel-based membranes. Gels 2024 10 1 39 10.3390/gels10010039 38247761
    [Google Scholar]
  83. Macrolides: From toxins to therapeutics. Toxins 2021 13 5 347 10.3390/toxins13050347 34065929
    [Google Scholar]
  84. Effective topical delivery systems for corticosteroids: Dermatological and histological evaluations. Drug Deliv. 2016 23 5 1502 1513 [PMID: 25259424
    [Google Scholar]
  85. The different ways to chitosan/hyaluronic acid nanoparticles: Templated vs direct complexation. Influence of particle preparation on morphology, cell uptake and silencing efficiency. Beilstein J. Nanotechnol. 2019 10 2594 2608 10.3762/bjnano.10.250 31976191
    [Google Scholar]
  86. New and established topical corticosteroids in dermatology: Clinical pharmacology and therapeutic use. Am. J. Clin. Dermatol. 2002 3 1 47 58 10.2165/00128071‑200203010‑00005 11817968
    [Google Scholar]
  87. Hydrogel composite containing azelaic acid and tea tree essential oil as a therapeutic strategy for Propionibacterium and testosterone-induced acne. Drug Deliv. Transl. Res. 2022 12 10 2501 2517 10.1007/s13346‑021‑01092‑4 34782995
    [Google Scholar]
  88. pH-sensitive Eudragit® L 100 nanoparticles promote cutaneous penetration and drug release on the skin. J. Control. Release 2019 295 214 222 10.1016/j.jconrel.2018.12.045 30597246
    [Google Scholar]
  89. Nanodelivery Strategies for skin diseases with barrier impairment: Focusing on ceramides and glucocorticoids. Nanomaterials 2022 12 2 275 10.3390/nano12020275 35055292
    [Google Scholar]
  90. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials 2020 10 7 1403 10.3390/nano10071403 32707641
    [Google Scholar]
  91. pH and its applications in targeted drug delivery. Drug Discov. Today 2023 28 1 103414 10.1016/j.drudis.2022.103414 36273779
    [Google Scholar]
  92. Preparation and application of pH-responsive drug delivery systems. J. Control. Release 2022 348 206 238 10.1016/j.jconrel.2022.05.056 35660634
    [Google Scholar]
  93. pH-sensitive biomaterials for drug delivery. Molecules 2020 25 23 5649 10.3390/molecules25235649 33266162
    [Google Scholar]
  94. Hydrocortisone-loaded lipid–polymer hybrid nanoparticles for controlled topical delivery: Formulation design optimization and in vitro and in vivo appraisal. ACS Omega 2023 8 21 18714 18725 10.1021/acsomega.3c00638 37273643
    [Google Scholar]
  95. Dendritic core-multishell nanocarriers in murine models of healthy and atopic skin. Nanoscale Res. Lett. 2017 12 1 64 10.1186/s11671‑017‑1835‑0 28116609
    [Google Scholar]
  96. Applications and limitations of dendrimers in biomedicine. Molecules 2020 25 17 3982 10.3390/molecules25173982 32882920
    [Google Scholar]
  97. Dendritic polymers for dermal drug delivery. Ther. Deliv. 2017 8 12 1077 1096 10.4155/tde‑2017‑0091 29125060
    [Google Scholar]
  98. Recent trends in nanocarriers for the management of atopic dermatitis. Pharm. Nanotechnol. 2023 11 5 397 409 10.2174/2211738511666230330115229 36998138
    [Google Scholar]
  99. Nanoparticles enhance therapeutic outcome in inflamed skin therapy. Eur. J. Pharm. Biopharm. 2012 82 1 151 157 10.1016/j.ejpb.2012.06.006 22728016
    [Google Scholar]
  100. Ameliorative effects of epigallocatechin-3-gallate nanoparticles on 2,4-dinitrochlorobenzene induced atopic dermatitis: A potential mechanism of inflammation-related necroptosis. Front. Nutr. 2022 9 953646 10.3389/fnut.2022.953646 36017227
    [Google Scholar]
  101. Silver nanoparticles and their antibacterial applications. Int. J. Mol. Sci. 2021 22 13 7202 10.3390/ijms22137202 34281254
    [Google Scholar]
  102. Engineering the Interface between Inorganic Nanoparticles and Biological Systems through Ligand Design. Nanomaterials 2021 11 4 1001 10.3390/nano11041001 33924735
    [Google Scholar]
  103. Nanoparticles as drug delivery systems: A review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023 15 7 1596 10.3390/polym15071596 37050210
    [Google Scholar]
  104. Current knowledge of silver and gold nanoparticles in laboratory research—Application, toxicity, cellular uptake. Nanomaterials 2021 11 9 2454 10.3390/nano11092454 34578770
    [Google Scholar]
  105. Nanomaterials for wound healing: Current status and futuristic frontier. Biomedical Technology 2024 6 26 45 10.1016/j.bmt.2023.10.001
    [Google Scholar]
  106. A review of clinical translation of inorganic nanoparticles. AAPS J. 2015 17 5 1041 1054 10.1208/s12248‑015‑9780‑2 25956384
    [Google Scholar]
  107. Biomedical inorganic nanoparticles: Preparation, properties, and perspectives. In: Grumezescu V, Grumezescu AM, Eds. Materials for Biomedical Engineering Elsevier 2019 1 46 10.1016/B978‑0‑08‑102814‑8.00001‑9
    [Google Scholar]
  108. Advancements in zinc oxide nanomaterials: Synthesis, properties, and diverse applications. 2024 39 101271 10.1016/j.nanoso.2024.101271
    [Google Scholar]
  109. Unlocking potential of zinc oxide nanoparticles in enhancing topical drug delivery. 2024 39 101302 10.1016/j.nanoso.2024.101302
  110. Toxicological screening of zinc oxide nanoparticles in mongrel dogs after seven days of repeated subcutaneous injections. BMC Vet. Res. 2024 20 1 476 10.1186/s12917‑024‑04268‑5 39425163
    [Google Scholar]
  111. Zinc and atopic dermatitis: A systematic review and meta‐analysis. J. Eur. Acad. Dermatol. Venereol. 2019 33 6 1042 1050 10.1111/jdv.15524 30801794
    [Google Scholar]
  112. Human safety of sunscreens containing ZnO and TiO2 UV filters. Inorganic Ultraviolet Filters in Sunscreen Products: Status Status, Trends, and Challenges Springer 2024 29 38 10.1007/978‑3‑031‑64114‑5_5
    [Google Scholar]
  113. Titanium dioxide nanoparticles aggravate atopic dermatitis-like skin lesions in NC/Nga mice. Exp. Biol. Med. 2009 234 3 314 322 10.3181/0810‑RM‑304 19144875
    [Google Scholar]
  114. 5 nm silver nanoparticles amplify clinical features of atopic dermatitis in mice by activating mast cells. Small 2017 13 9 1602363 10.1002/smll.201602363 28005305
    [Google Scholar]
  115. A new concept for the treatment of atopic dermatitis: Silver–nanolipid complex (sNLC). Int. J. Pharm. 2014 462 1-2 44 51 10.1016/j.ijpharm.2013.12.044 24378329
    [Google Scholar]
  116. Amorphous silica nanoparticles size-dependently aggravate atopic dermatitis-like skin lesions following an intradermal injection. Part. Fibre Toxicol. 2012 9 1 3 10.1186/1743‑8977‑9‑3 22296706
    [Google Scholar]
  117. Therapeutic hydrogel patch to treat atopic dermatitis by regulating oxidative stress. Nano Lett. 2022 22 5 2038 2047 10.1021/acs.nanolett.1c04899 35226507
    [Google Scholar]
  118. Regulatory role of nitric oxide in cutaneous inflammation. Inflammation 2022 45 3 949 964 10.1007/s10753‑021‑01615‑8 35094214
    [Google Scholar]
  119. Advances in drug delivery systems, challenges and future directions. Heliyon 2023 9 6 e17488 10.1016/j.heliyon.2023.e17488 37416680
    [Google Scholar]
  120. Nanocapsules: The weapons for novel drug delivery systems. Bioimpacts 2012 2 2 71 81 10.5681/bi.2012.011 23678444
    [Google Scholar]
  121. Polymeric nanoparticles in the diagnosis and treatment of myocardial infarction: Challenges and future prospects. Mater. Today Bio 2022 14 100249 10.1016/j.mtbio.2022.100249 35434594
    [Google Scholar]
  122. Emerging Role of hydrogels in drug delivery systems, tissue engineering and wound management. Pharmaceutics 2021 13 3 357 10.3390/pharmaceutics13030357 33800402
    [Google Scholar]
  123. Polymeric nanoparticles-loaded hydrogels for biomedical applications: A systematic review on in vivo findings. Polymers 2022 14 5 1010 10.3390/polym14051010 35267833
    [Google Scholar]
  124. Thermo-responsive hydrogels encapsulating targeted core-shell nanoparticles as injectable drug delivery systems. Pharmaceutics 2023 15 9 2358 10.3390/pharmaceutics15092358 37765326
    [Google Scholar]
  125. Nanocarrier‐hydrogel composite delivery systems for precision drug release. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2022 14 2 e1756 10.1002/wnan.1756 34532989
    [Google Scholar]
  126. Therapeutic siRNA: State-of-the-art and future perspectives. BioDrugs 2022 36 5 549 571 10.1007/s40259‑022‑00549‑3 35997897
    [Google Scholar]
  127. Corrigendum to siRNA: Mechanism of action, challenges, and therapeutic approaches. [Eur. J. Pharmacol. 905 (2021) 174178]. Eur. J. Pharmacol. 2022 916 174741 10.1016/j.ejphar.2022.174741 34998574
    [Google Scholar]
  128. Therapeutic effects on atopic dermatitis by anti-RelA short interfering RNA combined with functional peptides Tat and AT1002. J. Pharmacol. Exp. Ther. 2011 338 2 443 450 10.1124/jpet.111.180042 21531792
    [Google Scholar]
  129. Development of an efficient transdermal delivery system of small interfering RNA using functional peptides, Tat and AT-1002. Chem. Pharm. Bull. 2011 59 2 196 201 10.1248/cpb.59.196 21297299
    [Google Scholar]
  130. Anti-RelA siRNA-encapsulated flexible liposome with tight junction-opening peptide as a non-invasive topical therapeutic for atopic dermatitis. Biol. Pharm. Bull. 2019 42 7 1216 1225 10.1248/bpb.b19‑00259 31257297
    [Google Scholar]
  131. Transdermal anti-nuclear kappaB siRNA therapy for atopic dermatitis using a combination of two kinds of functional oligopeptide. Int. J. Pharm. 2018 542 1-2 213 220 10.1016/j.ijpharm.2018.03.026 29551748
    [Google Scholar]
  132. Noninvasive delivery of siRNA into the epidermis by iontophoresis using an atopic dermatitis-like model rat. Int. J. Pharm. 2010 383 1-2 157 160 10.1016/j.ijpharm.2009.08.036 19732811
    [Google Scholar]
  133. Dermal/transdermal delivery of small interfering RNA and antisense oligonucleotides- Advances and hurdles. Biomed. Pharmacother. 2017 87 311 320 10.1016/j.biopha.2016.12.118 28064104
    [Google Scholar]
  134. Development of therapeutic antibodies for the treatment of diseases. J. Biomed. Sci. 2020 27 1 1 10.1186/s12929‑019‑0592‑z 31894001
    [Google Scholar]
  135. Enhancement of stratum corneum lipid structure improves skin barrier function and protects against irritation in adults with dry, eczema‐prone skin. Br. J. Dermatol. 2022 186 5 875 886 10.1111/bjd.20955 34921679
    [Google Scholar]
  136. siRNA‐based nanotherapeutics as emerging modalities for immune‐mediated diseases: A preliminary review. Cell Biol. Int. 2022 46 9 1320 1344 10.1002/cbin.11841 35830711
    [Google Scholar]
  137. Potential of nanoparticles as permeation enhancers and targeted delivery options for skin: Advantages and disadvantages. Drug Des. Devel. Ther. 2020 14 3271 3289 10.2147/DDDT.S264648 32848366
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385373434250705125526
Loading
/content/journals/pnt/10.2174/0122117385373434250705125526
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test