Skip to content
2000
image of A Comprehensive Review of Nanotechnology Based Nanoemulsion Delivery Systems for Targeted Drug Delivery and Enhanced Therapeutic Efficacy

Abstract

Herbal medicine has been a cornerstone of traditional healthcare for centuries, offering a wide array of bioactive compounds derived from plants. However, its efficacy is often limited by poor bioavailability, instability, and non-targeted delivery. Recent advancements in nanotechnology have provided innovative solutions to these challenges through developing nanoemulsion delivery systems. These systems enhance the solubility and stability of herbal extracts, ensuring targeted delivery to specific tissues or cells. Nanocarriers such as liposomes, solid lipid nanoparticles, and polymeric nanoparticles can encapsulate bioactive compounds, protecting them from degradation and facilitating controlled release. This approach not only improves therapeutic outcomes but also reduces side effects by minimizing exposure to non-targeted areas. Furthermore, nanotechnology allows for personalized medicine by tailoring nanocarriers to individual patient needs, enhancing treatment efficacy and compliance. The integration of nanotechnology with herbal medicine holds significant potential for revolutionizing healthcare by providing more effective and targeted treatments for various diseases, including cancer, neurological disorders, and cardiovascular diseases.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385388338250711001010
2025-07-17
2025-11-04
Loading full text...

Full text loading...

References

  1. Singh J. Garg T. Rath G. Goyal A.K. Advances in nanotechnology-based carrier systems for targeted delivery of bioactive drug molecules with special emphasis on immunotherapy in drug resistant tuberculosis – A critical review. Drug Deliv. 2016 23 5 1676 1698 10.3109/10717544.2015.1074765 26289212
    [Google Scholar]
  2. Fonseca-Santos B. Chorilli M. Palmira Daflon Gremião M. Nanotechnology-based drug delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2015 10 4981 5003 10.2147/IJN.S87148 26345528
    [Google Scholar]
  3. Mohd-Setapar S. John C. Mohd-Nasir H. Azim M. Ahmad A. Alshammari M. Application of nanotechnology incorporated with natural ingredients in natural cosmetics. Cosmetics 2022 9 6 110 10.3390/cosmetics9060110
    [Google Scholar]
  4. Maluin F.N. Hussein M.Z. Idris A.S. An overview of the oil palm industry: Challenges and some emerging opportunities for nanotechnology development. Agronomy 2020 10 3 356 10.3390/agronomy10030356
    [Google Scholar]
  5. Kumar G. Virmani T. Pathak K. Alhalmi A. A revolutionary blueprint for mitigation of hypertension via nanoemulsion. BioMed Res. Int. 2022 2022 1 4109874 10.1155/2022/4109874 35463984
    [Google Scholar]
  6. Gul H. The therapeutic application of Tamarix aphylla extract loaded nanoemulsion cream for acid-burn wound healing and skin regeneration. Medicina 2022 59 1 34 10.3390/medicina59010034
    [Google Scholar]
  7. Ali E.S. Sharker S.M. Islam M.T. Targeting cancer cells with nanotherapeutics and nanodiagnostics: Current status and future perspectives. Semin. Cancer Biol. 2021 69 52 68 10.1016/j.semcancer.2020.01.011 32014609
    [Google Scholar]
  8. Ahari H. Naeimabadi M. Employing nanoemulsions in food packaging: Shelf life enhancement. Food Eng. Rev. 2021 13 4 858 883 10.1007/s12393‑021‑09282‑z
    [Google Scholar]
  9. Putri R.E. Mubarik N.R. Ambarsari L. Wahyudi A.T. The disease suppression of soybean (var. Grobogan) by the implementation of Bacillus subtilis strain CR.9 antifungal compounds nanoemulsion. J. Saudi Soc. Agric. Sci. 2023 22 6 384 393 10.1016/j.jssas.2023.03.004
    [Google Scholar]
  10. Algahtani M.S. Ahmad M.Z. Shaikh I.A. Abdel-Wahab B.A. Nourein I.H. Ahmad J. Thymoquinone loaded topical nanoemulgel for wound healing: Formulation design and in-vivo evaluation. Molecules 2021 26 13 3863 10.3390/molecules26133863 34202733
    [Google Scholar]
  11. dos Santos Ramos M.A. dos Santos K.C. da Silva P.B. Nanotechnological strategies for systemic microbial infections treatment: A review. Int. J. Pharm. 2020 589 119780 10.1016/j.ijpharm.2020.119780 32860856
    [Google Scholar]
  12. Huang Q. Yu H. Ru Q. Bioavailability and delivery of nutraceuticals using nanotechnology. J. Food Sci. 2010 75 1 R50 R57 10.1111/j.1750‑3841.2009.01457.x 20492195
    [Google Scholar]
  13. Moghassemi S. Dadashzadeh A. Azevedo R.B. Amorim C.A. Nanoemulsion applications in photodynamic therapy. J. Control. Release 2022 351 164 173 10.1016/j.jconrel.2022.09.035 36165834
    [Google Scholar]
  14. Ofori D.A. Anjarwalla P. Mwaura L. Nursing care for patients with chronic kidney failure who are treated in hospital. Molecules 2020
    [Google Scholar]
  15. Yang C. Wu T. Qi Y. Zhang Z. Recent advances in the application of vitamin E TPGS for drug delivery. Theranostics 2018 8 2 464 485 10.7150/thno.22711 29290821
    [Google Scholar]
  16. Chavda V.P. Nalla L.V. Balar P. Advanced phytochemical-based nanocarrier systems for the treatment of breast cancer. Cancers 2023 15 4 1023 10.3390/cancers15041023 36831369
    [Google Scholar]
  17. Rehman A. Biopolymer based nanoemulsion delivery system: An effective approach to boost the antioxidant potential of essential oil in food products. Carbohydr Polym Technol Appl 2021 2 100082 10.1016/j.carpta.2021.100082
    [Google Scholar]
  18. Al Jbour N.D. Enhanced oral bioavailability through nanotechnology in Saudi Arabia: A meta-analysis. Arab. J. Chem. 2022 15 4 103715 10.1016/j.arabjc.2022.103715
    [Google Scholar]
  19. Paliwal S. Pandey K. Joshi H. Kaur G. Akbar N. An overview of nanoemulgel as a nanocarrier drug delivery. J Med Pharm Allied Sci 2022 10.22270/jmpas.VIC2I2.1836
    [Google Scholar]
  20. Mahmad A. Chua L.S. Noh T.U. Siew C.K. Seow L.J. Harnessing the potential of Heterotrigona itama propolis: An overview of antimicrobial and antioxidant properties for nanotechnology–Based delivery systems. Biocatal. Agric. Biotechnol. 2023 54 102946 10.1016/j.bcab.2023.102946
    [Google Scholar]
  21. Ozogul Y. Karsli G.T. Durmuş M. Recent developments in industrial applications of nanoemulsions. Adv. Colloid Interface Sci. 2022 304 102685 10.1016/j.cis.2022.102685 35504214
    [Google Scholar]
  22. Singh S. Grewal S. Sharma N. Unveiling the pharmacological and nanotechnological facets of daidzein: Present state-of-the-art and future perspectives. Molecules 2023 28 4 1765 10.3390/molecules28041765 36838751
    [Google Scholar]
  23. Prasad M. Lambe U.P. Brar B. Nanotherapeutics: An insight into healthcare and multi-dimensional applications in medical sector of the modern world. Biomed. Pharmacother. 2018 97 1521 1537 10.1016/j.biopha.2017.11.026 29793315
    [Google Scholar]
  24. Gorantla S. Wadhwa G. Jain S. Recent advances in nanocarriers for nutrient delivery. Drug Deliv. Transl. Res. 2022 12 10 2359 2384 10.1007/s13346‑021‑01097‑z 34845678
    [Google Scholar]
  25. Bahadur S. Sachan N. Harwansh R.K. Deshmukh R. Nanoparticlized system: Promising approach for the management of alzheimer’s disease through intranasal delivery. Curr. Pharm. Des. 2020 26 12 1331 1344 10.2174/1381612826666200311131658 32160843
    [Google Scholar]
  26. Vasconcelos A.G. Promising self-emulsifying drug delivery system loaded with lycopene from red guava (Psidium guajava L.): In vivo toxicity, biodistribution and cytotoxicity on DU-145 prostate cancer cells. Cancer Nanotechnol. 2021 10.1186/s12645‑021‑00103‑w
    [Google Scholar]
  27. Man D.K.W. Casettari L. Cespi M. Oleanolic acid loaded PEGylated PLA and PLGA nanoparticles with enhanced cytotoxic activity against cancer cells. Mol. Pharm. 2015 12 6 2112 2125 10.1021/acs.molpharmaceut.5b00085 25881668
    [Google Scholar]
  28. Asadi S. Madrakian T. Ahmadi M. Aerosol assisted synthesis of a pH responsive curcumin anticancer drug nanocarrier using chitosan and alginate natural polymers. Sci. Rep. 2023 13 1 19389 10.1038/s41598‑023‑46904‑4 37938669
    [Google Scholar]
  29. Xu Y. Xie L. Hou T. Wang D. Zhang T. Li C. Preparation and properties of asymmetric polyvinyl pyrroli-done/polycaprolactone composite nanofiber loaded with tea tree extract. Polymers 2022 14 18 3714 10.3390/polym14183714 36145862
    [Google Scholar]
  30. Pena-Rodríguez E. García-Vega L. Lajarin Reinares M. Pastor-Anglada M. Pérez-Torras S. Fernandez-Campos F. Latanoprost-loaded nanotransfersomes designed for scalp administration enhance keratinocytes proliferation. Mol. Pharm. 2023 20 5 2317 2325 10.1021/acs.molpharmaceut.2c00796 36503244
    [Google Scholar]
  31. Almehmady A.M. Elsisi A.M. Development, optimization, and evaluation of tamsulosin nanotransfersomes to enhance its permeation and bioavailability. J. Drug Deliv. Sci. Technol. 2020 57 101667 10.1016/j.jddst.2020.101667
    [Google Scholar]
  32. Teja P.K. Mithiya J. Kate A.S. Bairwa K. Chauthe S.K. Herbal nanomedicines: Recent advancements, challenges, opportunities and regulatory overview. Phytomedicine 2022 96 153890 10.1016/j.phymed.2021.153890 35026510
    [Google Scholar]
  33. Jalili A. Bagherifar R. Nokhodchi A. Conway B. Javadzadeh Y. Current advances in nanotechnology-mediated delivery of herbal and plant-derived medicines. Adv. Pharm. Bull. 2023 13 4 712 722 10.34172/apb.2023.087 38022806
    [Google Scholar]
  34. Mamillapalli V. Atmakuri A.M. Khantamneni P. Nanoparticles for herbal extracts. Asian J. Pharm. 2016
    [Google Scholar]
  35. Sharma N. Bora K.S. Kumar A. Holistic care management for diabetes mellitus: A futuristic approach. J Med Pharm Allied Sci 2023 2 1 4588 10.55522/jmpas.V12I1.4588
    [Google Scholar]
  36. Chakraborty K. Shivakumar A. Ramachandran S. Nano-technology in herbal medicines: A review. Int. J. Herb. Med. 2016 4 3 21 27 10.22271/flora.2016.v4.i3.05
    [Google Scholar]
  37. Patil R.R. Pingale P.L. Nano-carrier based drug delivery systems containing bioactive from Carica papaya for anti-diabetic activity. J Med Pharm Allied Sci 2021 10 6 1907 10.22270/jmpas.V10I6.1907
    [Google Scholar]
  38. Mansingh P.P. Adhikari L. Dhara M. Herbal Nanoparticles: A Commitment towards Contemporary Approach. Indian J Pharm Educ Res 2023 10.5530/ijper.57.3s.55
    [Google Scholar]
  39. Asghari N. Houshmand S. Rigi A. Mohammadzadeh V. Dizaj M.P. Hiagh Z.S.M. PEGylated cationic nano-niosomes formulation containing herbal medicine curcumin for drug delivery to MCF-7 breast cancer cells. Eurasian Chem Commun 2023 10.22034/ecc.2023.381375.1592
    [Google Scholar]
  40. Ganjali M. Ganjali M. Aljabali A.A.A. Barhoum A. Drug delivery systems based on nano-herbal medicine. In:Bionanotechnology: Emerging Applications of Bionanomaterials. Elsevier 2022 491 530 10.1016/B978‑0‑12‑823915‑5.00007‑1
    [Google Scholar]
  41. Kumari S. Goyal A. Sönmez Gürer E. Bioactive loaded novel nano-formulations for targeted drug delivery and their therapeutic potential. Pharmaceutics 2022 14 5 1091 10.3390/pharmaceutics14051091 35631677
    [Google Scholar]
  42. Prabakar K. Sivalingam P. Mohamed Rabeek S.I. Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids Surf. B Biointerfaces 2013 104 282 288 10.1016/j.colsurfb.2012.11.041 23334182
    [Google Scholar]
  43. Bollimpelli V.S. Kumar P. Kumari S. Kondapi A.K. Neuroprotective effect of curcumin-loaded lactoferrin nano particles against rotenone induced neurotoxicity. Neurochem. Int. 2016 95 37 45 10.1016/j.neuint.2016.01.006 26826319
    [Google Scholar]
  44. Fahimirad S. Abtahi H. Satei P. Ghaznavi-Rad E. Moslehi M. Ganji A. Wound healing performance of PCL/chitosan based electrospun nanofiber electrosprayed with curcumin loaded chitosan nanoparticles. Carbohydr. Polym. 2021 259 117640 10.1016/j.carbpol.2021.117640 33673981
    [Google Scholar]
  45. Di Santo M.C. D’ Antoni C.L. Domínguez Rubio A.P. Alaimo A. Pérez O.E. Chitosan-tripolyphosphate nanoparticles designed to encapsulate polyphenolic compounds for biomedical and pharmaceutical applications − A review. Biomed. Pharmacother. 2021 142 111970 10.1016/j.biopha.2021.111970 34333289
    [Google Scholar]
  46. Khan M.S. Mohapatra S. Gupta V. Potential of lipid-based nanocarriers against two major barriers to drug delivery—skin and blood–brain barrier. Membranes 2023 13 3 343 10.3390/membranes13030343 36984730
    [Google Scholar]
  47. Kumar L. Bisen M. Harjai K. Advances in nanotechnology for biofilm inhibition. ACS Omega 2023 8 24 21391 21409 10.1021/acsomega.3c02239 37360468
    [Google Scholar]
  48. Zhang R.X. Li J. Zhang T. Importance of integrating nanotechnology with pharmacology and physiology for innovative drug delivery and therapy – An illustration with firsthand examples. Acta Pharmacol. Sin. 2018 39 5 825 844 10.1038/aps.2018.33 29698389
    [Google Scholar]
  49. Bhosale A. Paul G. Mazahir F. Yadav A.K. Theoretical and applied concepts of nanocarriers for the treatment of Parkinson’s diseases. OpenNano 2023 10.1016/j.onano.2022.100111
    [Google Scholar]
  50. Parhi P. Mohanty C. Sahoo S.K. Nanotechnology-based combinational drug delivery: An emerging approach for cancer therapy. Drug Discov. Today 2012 17 17-18 1044 1052 10.1016/j.drudis.2012.05.010 22652342
    [Google Scholar]
  51. Nie Y. Fu G. Leng Y. Nuclear delivery of nanoparticle-based drug delivery systems by nuclear localization signals. Cells 2023 12 12 1637 10.3390/cells12121637 37371107
    [Google Scholar]
  52. Pathak N. Singh P. Singh P.K. Biopolymeric nanoparticles based effective delivery of bioactive compounds toward the sustainable development of anticancerous therapeutics. Front. Nutr. 2022 9 963413 10.3389/fnut.2022.963413 35911098
    [Google Scholar]
  53. Taouzinet L. Djaoudene O. Fatmi S. Trends of nanoencapsulation strategy for natural compounds in the food industry. Processes 2023 11 5 1459 10.3390/pr11051459
    [Google Scholar]
  54. Ezhilarasi P.N. Karthik P. Chhanwal N. Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food Bioprocess Technol. 2013 6 3 628 647 10.1007/s11947‑012‑0944‑0
    [Google Scholar]
  55. Ferreira C.D. Nunes I.L. Oil nanoencapsulation: development, application, and incorporation into the food market. Nanoscale Res. Lett. 2019 14 1 9 10.1186/s11671‑018‑2829‑2 30617711
    [Google Scholar]
  56. Santos P.D.F. Coqueiro A. Brum E.S. Endogenous antioxidant properties of curcuminoids from Curcuma longa L. obtained by a single-step extraction/nanoencapsulation approach. J. Food Biochem. 2020 44 12 13531 10.1111/jfbc.13531 33084103
    [Google Scholar]
  57. Castro M.L. Ferreira J.P. Pintado M. Ramos O.L. Borges S. Baptista-Silva S. Grape by-products in sustainable cosmetics: Nanoencapsulation and market trends. Appl. Sci. 2023 13 16 9168 10.3390/app13169168
    [Google Scholar]
  58. Chadorshabi S. Hallaj-Nezhadi S. Ghasempour Z. Liposomal system based on lyophilization of a monophase solution for stabilization of bioactives from red onion skin. Lebensm. Wiss. Technol. 2022 172 114174 10.1016/j.lwt.2022.114174
    [Google Scholar]
  59. Fu J. Zhang K. Lu L. Improved therapeutic efficacy of CBD with good tolerance in the treatment of breast cancer through nanoencapsulation and in combination with 20(S)-Protopanaxadiol (PPD). Pharmaceutics 2022 14 8 1533 10.3390/pharmaceutics14081533 35893789
    [Google Scholar]
  60. Gani A. Ashraf Z.U. Shah A. Naik A.S. Wani I.A. Gani A. Upscaling of apple by-product by utilising apple seed protein as a novel wall material for encapsulation of chlorogenic acid as model bioactive compound. Foods 2022 11 22 3702 10.3390/foods11223702 36429294
    [Google Scholar]
  61. Witika B.A. Makoni P.A. Matafwali S.K. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials 2020 10 9 1649 10.3390/nano10091649 32842562
    [Google Scholar]
  62. Ghosh S. Sarkar B. Ranadheera C.S. Thongmee S. Synergistic effects of plant extracts and nanoparticles for therapy. In: Nanotechnology and in Silico Tools. Natural Remedies and Drug Discovery 2023 10.1016/B978‑0‑443‑15457‑7.00003‑4
    [Google Scholar]
  63. Priani S.E. Setianty T.N. Aryani R. Fitrianingsih S.P. Syafnir L. Development of nanocapsules containing cytotoxic agents- A review. J Farm Galen 2021 7 2 15578 10.22487/j24428744.2021.v7.i2.15578
    [Google Scholar]
  64. Safithri M. Indariani S. Septiyani D. Antioxidant and total phenolic activity of nanoencapsulated functional beverage based on red betel leaf extract. Indones J Hum Nutr 2020 10.21776/ub.ijhn.2020.007.01.7
    [Google Scholar]
  65. Croitoru A. Ficai D. Craciun L. Ficai A. Andronescu E. Evaluation and exploitation of bioactive compounds of Walnut, Juglans regia. Curr. Pharm. Des. 2019 25 2 119 131 10.2174/1381612825666190329150825 30931854
    [Google Scholar]
  66. Wardana A.P. Aminah N.S. Kristanti A.N. Nano Uncaria gambir as chemopreventive agent against breast cancer. Int. J. Nanomedicine 2023 18 4471 4484 10.2147/IJN.S403385 37555190
    [Google Scholar]
  67. Rahman MM Dhar PS Sumaia Exploring the plant-derived bioactive substances as antidiabetic agent: An extensive review. Biomed. Pharmacother. 2022 152 113217 10.1016/j.biopha.2022.113217 35679719
    [Google Scholar]
  68. Narayanaswamy R. Torchilin V.P. Hydrogels and their applications in targeted drug delivery. Molecules 2019 24 3 603 10.3390/molecules24030603 30744011
    [Google Scholar]
  69. Shah A. Aftab S. Nisar J. Ashiq M.N. Iftikhar F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol. 2021 62 102426 10.1016/j.jddst.2021.102426
    [Google Scholar]
  70. Bahrami B. Hojjat-Farsangi M. Mohammadi H. Nanoparticles and targeted drug delivery in cancer therapy. Immunol. Lett. 2017 190 64 83 10.1016/j.imlet.2017.07.015 28760499
    [Google Scholar]
  71. Cho H. Cho Y.Y. Shim M.S. Lee J.Y. Lee H.S. Kang H.C. Mitochondria-targeted drug delivery in cancers. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 8 165808 10.1016/j.bbadis.2020.165808 32333953
    [Google Scholar]
  72. Wang X. Zeng H. Zhu X. TP-CSO: A triptolide prodrug for pancreatic cancer treatment. Molecules 2022 27 12 3686 10.3390/molecules27123686 35744811
    [Google Scholar]
  73. Li J.X. Shi J.F. Wu Y.H. Xu H.T. Fu C.M. Zhang J.M. Mechanisms and application of triptolide against breast cancer. Zhongguo Zhongyao Zazhi 2021 46 13 3249 3256 10.19540/j.cnki.cjcmm.20210225.601 34396744
    [Google Scholar]
  74. Ratan Z.A. Haidere M.F. Hong Y.H. Pharmacological potential of ginseng and its major component ginsenosides. J. Ginseng Res. 2021 45 2 199 210 10.1016/j.jgr.2020.02.004 33841000
    [Google Scholar]
  75. Liu W. Di J. Ma Y. Mitochondria-mediated HSP inhibition strategy for enhanced low-temperature photothermal therapy. ACS Appl. Mater. Interfaces 2023 15 22 26252 26262 10.1021/acsami.3c00870 37218741
    [Google Scholar]
  76. You W. Wang K. Yu C. Song L. Retracted: Baicalin prevents tumor necrosis factor-α-induced apoptosis and dysfunction of pancreatic β‐cell line Min6 via upregulation of miR‐205. J. Cell. Biochem. 2018 119 10 8547 8554 10.1002/jcb.27095 30058243
    [Google Scholar]
  77. Li X. Li S. Ma C. Li T. Yang L. Preparation of baicalin-loaded ligand-modified nanoparticles for nose-to-brain delivery for neuroprotection in cerebral ischemia. Drug Deliv. 2022 29 1 1282 1298 10.1080/10717544.2022.2064564 35467483
    [Google Scholar]
  78. Zhou Z. Li W. Sun W.J. Resveratrol cocrystals with enhanced solubility and tabletability. Int. J. Pharm. 2016 509 1-2 391 399 10.1016/j.ijpharm.2016.06.006 27282539
    [Google Scholar]
  79. Cheng Y. Zhao P. Wu S. Cisplatin and curcumin co-loaded nano-liposomes for the treatment of hepatocellular carcinoma. Int. J. Pharm. 2018 545 1-2 261 273 10.1016/j.ijpharm.2018.05.007 29730175
    [Google Scholar]
  80. Velhal K. Barage S. Roy A. A promising review on cyclodextrin conjugated paclitaxel nanoparticles for cancer treatment. Polymers 2022 14 15 3162 10.3390/polym14153162 35956677
    [Google Scholar]
  81. Ma Y. Li R. Dong Y. tLyP-1 peptide functionalized human H chain ferritin for targeted delivery of paclitaxel. Int. J. Nanomedicine 2021 16 789 802 10.2147/IJN.S289005 33568906
    [Google Scholar]
  82. Kashyap D. Tuli H.S. Sharma A.K. Ursolic acid (UA): A metabolite with promising therapeutic potential. Life Sci. 2016 146 201 213 10.1016/j.lfs.2016.01.017 26775565
    [Google Scholar]
  83. Wang R. Yang Y. Yang M. Synergistic inhibition of metastatic breast cancer by dual-chemotherapy with excipient-free rhein/DOX nanodispersions. J. Nanobiotechnology 2020 18 1 116 10.1186/s12951‑020‑00679‑2 32847586
    [Google Scholar]
  84. Meng R.Y. Jin H. Nguyen T.V. Chai O.H. Park B.H. Kim S.M. Ursolic acid accelerates paclitaxel-induced cell death in esophageal cancer cells by suppressing akt/foxm1 signaling cascade. Int. J. Mol. Sci. 2021 22 21 11486 10.3390/ijms222111486 34768915
    [Google Scholar]
  85. Shen R. Chen Y. Li X. Wang X. Yang A. Kou X. Carrier-free Chinese herbal small molecules self-assembly with 3D-porous crystal framework as a synergistic anti-AD agent. Int. J. Pharm. 2023 630 122458 10.1016/j.ijpharm.2022.122458 36462740
    [Google Scholar]
  86. Elkomy M.H. Eid H.M. Elmowafy M. Bilosomes as a promising nanoplatform for oral delivery of an alkaloid nutraceutical: Improved pharmacokinetic profile and snowballed hypoglycemic effect in diabetic rats. Drug Deliv. 2022 29 1 2694 2704 10.1080/10717544.2022.2110997 35975320
    [Google Scholar]
  87. Nowak-Perlak M. Bromke M.A. Ziółkowski P. Woźniak M. The comparison of the efficiency of emodin and aloe-emodin in photodynamic therapy. Int. J. Mol. Sci. 2022 23 11 6276 10.3390/ijms23116276 35682955
    [Google Scholar]
  88. Chen J. Xie J. Jiang Z. Wang B. Wang Y. Hu X. Shikonin and its analogs inhibit cancer cell glycolysis by targeting tumor pyruvate kinase-M2. Oncogene 2011 30 42 4297 4306 10.1038/onc.2011.137 21516121
    [Google Scholar]
  89. Taheri Y. Myricetin bioactive effects: Moving from preclinical evidence to potential clinical applications. BMC Complement Med Ther 2020 10.1186/s12906‑020‑03033‑z
    [Google Scholar]
  90. Li Z. Zou J. Cao D. Ma X. Pharmacological basis of tanshinone and new insights into tanshinone as a multitarget natural product for multifaceted diseases. Biomed. Pharmacother. 2020 130 110599 10.1016/j.biopha.2020.110599 33236719
    [Google Scholar]
  91. Zhu L. Chen L. Progress in research on paclitaxel and tumor immunotherapy. Cell. Mol. Biol. Lett. 2019 24 1 40 10.1186/s11658‑019‑0164‑y 31223315
    [Google Scholar]
  92. Evangelista T.F.S. Andrade G.R.S. Nascimento K.N.S. Supramolecular polyelectrolyte complexes based on cyclodextrin-grafted chitosan and carrageenan for controlled drug release. Carbohydr. Polym. 2020 245 116592 10.1016/j.carbpol.2020.116592 32718656
    [Google Scholar]
  93. Lago B. Brito M. Almeida C.M.M. Ferreira I. Baptista A.C. Functionalisation of electrospun cellulose acetate membranes with PEDOT and PPy for electronic controlled drug release. Nanomaterials 2023 13 9 1493 10.3390/nano13091493 37177038
    [Google Scholar]
  94. Kim Y.K. Kim E.J. Lim J.H. Dual stimuli-triggered nanogels in response to temperature and ph changes for controlled drug release. Nanoscale Res. Lett. 2019 14 1 77 10.1186/s11671‑019‑2909‑y 30830486
    [Google Scholar]
  95. Odberg K.R. A human factors approach to medication administration in nursing homes. Doctoral thesis, Stavanger: Universitety of Stavanger 2020. 10.31265/usps.48
    [Google Scholar]
  96. Ali S. Ekbbal R. Salar S. Quality standards and pharmacological interventions of natural oils: Current scenario and future perspectives. ACS Omega 2023 8 43 39945 39963 10.1021/acsomega.3c05241 37953833
    [Google Scholar]
  97. Ekbbal R. Indian medicinal plants for the management of endometriosis: A comprehensive review on their phytopharmacology. Nat Resour Hum Health 2023 4 1 75 88 10.53365/nrfhh/174668
    [Google Scholar]
  98. Obireddy S.R. Lai W.F. Multi-component hydrogel beads incorporated with reduced graphene oxide for pH-responsive and controlled co-delivery of multiple agents. Pharmaceutics 2021 13 3 313 10.3390/pharmaceutics13030313 33670952
    [Google Scholar]
  99. Obireddy S.R. Lai W.F. Preparation and characterization of 2-hydroxyethyl starch microparticles for co-delivery of multiple bioactive agents. Drug Deliv. 2021 28 1 1562 1568 10.1080/10717544.2021.1955043 34286634
    [Google Scholar]
  100. Lai W.F. Huang E. Lui K.H. Alginate-based complex fibers with the Janus morphology for controlled release of co-delivered drugs. Asian J Pharm Sci 2021 10.1016/j.ajps.2020.05.003
    [Google Scholar]
  101. Kerilos I.E. El-Sawy H.S. Abu Elyazid S.K. Ibrahim M. Nanosponge for enhancing solubility and bioavailability of oral drugs: Review. Int J Appl Pharm 2024 10.22159/ijap.2024v16i1.49490
    [Google Scholar]
  102. Li Y. Mann A.K.P. Zhang D. Yang Z. Processing impact on in vitro and in vivo performance of solid dispersions—a comparison between hot-melt extrusion and spray drying. Pharmaceutics 2021 13 8 1307 10.3390/pharmaceutics13081307 34452269
    [Google Scholar]
  103. Alharbi W.S. Almughem F.A. Almehmady A.M. Phytosomes as an emerging nanotechnology platform for the topical delivery of bioactive phytochemicals. Pharmaceutics 2021 13 9 1475 10.3390/pharmaceutics13091475 34575551
    [Google Scholar]
  104. Xiao Q. Li X. Li Y. Biological drug and drug delivery-mediated immunotherapy. Acta Pharm. Sin. B 2021 11 4 941 960 10.1016/j.apsb.2020.12.018 33996408
    [Google Scholar]
  105. Cong Y. Baimanov D. Zhou Y. Chen C. Wang L. Penetration and translocation of functional inorganic nanomaterials into biological barriers. Adv. Drug Deliv. Rev. 2022 191 114615 10.1016/j.addr.2022.114615 36356929
    [Google Scholar]
  106. Kandemir K. Tomas M. McClements D.J. Capanoglu E. Recent advances on the improvement of quercetin bioavailability. Trends Food Sci. Technol. 2022 119 192 200 10.1016/j.tifs.2021.11.032
    [Google Scholar]
  107. Her C. Venier-Julienne M.C. Roger E. Improvement of curcumin bioavailability for medical applications. Med. Aromat. Plants 2018 7 6 10.4172/2167‑0412.1000326
    [Google Scholar]
  108. Jayan H. Maria Leena M. Sivakama Sundari S.K. Moses J.A. Anandharamakrishnan C. Improvement of bioavailability for resveratrol through encapsulation in zein using electrospraying technique. J. Funct. Foods 2019 57 417 424 10.1016/j.jff.2019.04.007
    [Google Scholar]
  109. Ravi P.R. Aditya N. Patil S. Cherian L. Nasal in-situ gels for delivery of rasagiline mesylate: Improvement in bioavailability and brain localization. Drug Deliv. 2015 22 7 903 910 10.3109/10717544.2013.860501 24286183
    [Google Scholar]
  110. Kamal S.S. An investigative and explanatory review on use of milk as a broad-spectrum drug carrier for improvement of bioavailability and patient compliance. J. Young Pharm. 2016 10.5530/jyp.2016.2.3
    [Google Scholar]
  111. Samman B.S. Hussein A. Samman R.S. Alharbi A.S. Common sensitive diagnostic and prognostic markers in hepatocellular carcinoma and their clinical significance: A review. Cureus 2022 14 4 23952 10.7759/cureus.23952 35547447
    [Google Scholar]
  112. Senapati R. Nayak B. Kar S.K. Dwibedi B. HPV genotypes co-infections associated with cervical carcinoma: Special focus on phylogenetically related and non-vaccine targeted genotypes. PLoS One 2017 12 11 0187844 10.1371/journal.pone.0187844 29161285
    [Google Scholar]
  113. Woelber L. Mathey S. Prieske K. Targeted therapeutic approaches in vulvar squamous cell cancer (VSCC): Case series and review of the literature. Oncol. Res. 2020 28 6 645 659 10.3727/096504020X16076861118243 33308371
    [Google Scholar]
  114. Rothschild H.T. Clelland E. Patterson A. HER-2 low status in early-stage invasive lobular carcinoma of the breast: Associated factors and outcomes in an institutional series. Breast Cancer Res. Treat. 2023 199 2 349 354 10.1007/s10549‑023‑06927‑x 37017812
    [Google Scholar]
  115. Tuvdendorj A. Feenstra T. Tseveen B. Buskens E. Smoking-attributable burden of lung cancer in Mongolia a data synthesis study on differences between men and women. PLoS One 2020 15 2 0229090 10.1371/journal.pone.0229090 32059049
    [Google Scholar]
  116. van den Broek E. Krijgsman O. Sie D. Genomic profiling of stage II and III colon cancers reveals APC mutations to be associated with survival in stage III colon cancer patients. Oncotarget 2016 7 45 73876 73887 10.18632/oncotarget.12510 27729614
    [Google Scholar]
  117. Phillips M.C.L. Fasting as a therapy in neurological disease. Nutrients 2019 11 10 2501 10.3390/nu11102501 31627405
    [Google Scholar]
  118. Misra M.K. Damotte V. Hollenbach J.A. The immunogenetics of neurological disease. Immunology 2018 153 4 399 414 10.1111/imm.12869 29159928
    [Google Scholar]
  119. Panebianco M. Marchese-Ragona R. Masiero S. Restivo D.A. Dysphagia in neurological diseases: A literature review. Neurol. Sci. 2020 41 11 3067 3073 10.1007/s10072‑020‑04495‑2 32506360
    [Google Scholar]
  120. Becheva M.S.V. Kirkova-Bogdanova A.G. Ivanova S.A. Atanasov P.J. Chaneva M.S. Petkova V.B. Prevention of cardiovascular diseases. Pharmacia 2023 10.3897/pharmacia.70.e114071
    [Google Scholar]
  121. Kamstrup P.R. Lipoprotein(a) and cardiovascular disease. Clin. Chem. 2021 67 1 154 166 10.1093/clinchem/hvaa247 33236085
    [Google Scholar]
  122. Chung S.T. Krenek A. Magge S.N. Childhood obesity and cardiovascular disease risk. Curr. Atheroscler. Rep. 2023 25 7 405 415 10.1007/s11883‑023‑01111‑4 37256483
    [Google Scholar]
  123. Ciumărnean L. Cardiovascular risk factors and physical activity for the prevention of cardiovascular diseases in the elderly. Int. J. Environ. Res. Public Health 2022 10.3390/ijerph19010207 35010467
    [Google Scholar]
  124. Mushtaq A. Mohd Wani S. Malik A.R. Recent insights into nanoemulsions: Their preparation, properties and applications. Food Chem. X 2023 18 100684 10.1016/j.fochx.2023.100684 37131847
    [Google Scholar]
  125. Ayuhastuti A. Syah I. Megantara S. Chaerunisaa A. Nanotechnology-enhanced cosmetic application of kojic acid dipalmitate, a kojic acid derivate with improved properties. Cosmetics 2024 11 1 21 10.3390/cosmetics11010021
    [Google Scholar]
  126. Kim I. Elliott J.C. Lawanprasert A. Wood G.M. Simon J.C. Medina S.H. Real-time, in situ imaging of macrophages via phase-change peptide nanoemulsions. Small 2023 19 46 2301673 10.1002/smll.202301673 37452514
    [Google Scholar]
  127. Sulistiani D.A. Comparison of learning assisted by corner clock promotional tools and corner clock video media reviewed from students’ conceptual understanding abilities. Molecules 2022
    [Google Scholar]
  128. Oktavia R. The influence of product variation and packaging on purchasing decisions on aice ice cream in Bengkulu. Thesis, State Islamic Institute of PALANGKA RAYA, Faculty of Economics and Islamic Business. 2020
    [Google Scholar]
  129. Abdullahi A. Isolation and identification of bacteria associated with aerial part of rice plant from Kware Lake. Asian J Res Bot 2018
    [Google Scholar]
  130. Sandhiya V. Ubaidulla U. Herbal nanomedicines and cellular uptake mechanism. In:Nanotechnology in Herbal Medicine: Applications and Innovations. Woodhead Publishing 2023 10.1016/B978‑0‑323‑99527‑6.00011‑2
    [Google Scholar]
  131. Hazarika H. Krishnatreyya H. Chattopadhyay P. Saha A. Pathak Y.V. Zaman M.K. Nanoemulsion delivery of herbal products: Prospects and challenges. In:Nano Medicine and Nano Safety. Singapore Springer 2020 267 288 10.1007/978‑981‑15‑6255‑6_11
    [Google Scholar]
  132. Huang L. Huang X.H. Yang X. Novel nano-drug delivery system for natural products and their application. Pharmacol. Res. 2024 201 107100 10.1016/j.phrs.2024.107100 38341055
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385388338250711001010
Loading
/content/journals/pnt/10.2174/0122117385388338250711001010
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test