Skip to content
2000
Volume 13, Issue 4
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

Solid lipid nanoparticles (SLNs) are gaining significant attention in the pharmaceutical industry due to their biocompatibility and biodegradability, making them a popular functional nanocarrier. SLNs are a popular nanocarrier due to their ability to bypass the spleen and liver, offer high drug stability, and improve bioavailability, sterilization, immobilization, targeted drug release, and biocompatible ingredients. This article discusses various SLN preparation techniques, including high shear homogenization, hot homogenization, cold homogenization, microemulsion-based, solvent evaporation, solvent emulsification-evaporation, supercritical fluid-based, spray drying, double emulsion, and precipitation techniques, focusing on methodological aspects. This review discusses the physicochemical behavior of SLNs, including drug loading, release, particle size, stability, cytotoxicity, and cellular uptake, and their major biomedical applications.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385312175240502100018
2024-05-23
2025-10-14
Loading full text...

Full text loading...

References

  1. ButaniD. YewaleC. MisraA. Topical Amphotericin B solid lipid nanoparticles: Design and development.Colloids Surf. B Biointerfaces2016139172410.1016/j.colsurfb.2015.07.032 26700229
    [Google Scholar]
  2. ChenJ. WeiN. GarciaL.M. Development and evaluation of resveratrol, Vitamin E, and epigallocatechin gallate loaded lipid nanoparticles for skin care applications.Eur. J. Pharm. Biopharm.201711728629110.1016/j.ejpb.2017.04.008 28411056
    [Google Scholar]
  3. DesmetE. Van GeleM. LambertJ. Topically applied lipid- and surfactant-based nanoparticles in the treatment of skin disorders.Expert Opin. Drug Deliv.201714110912210.1080/17425247.2016.1206073 27348356
    [Google Scholar]
  4. LauterbachA GoymannMCC Applications and limitations of lipid nanoparticles in dermal and transdermal drug delivery via the follicular route. Eur J Pharm Biopharm201597(Pt A)1526310.1016/j.ejpb.2015.06.020
    [Google Scholar]
  5. MartoJ. SangalliC. CapraP. Development and characterization of new and scalable topical formulations containing N-acetyld -glucosamine-loaded solid lipid nanoparticles.Drug Dev. Ind. Pharm.201743111792180010.1080/03639045.2017.1339083 28581831
    [Google Scholar]
  6. RahmatiS. KhazaeiM. NadiA. AlizadehM. RezakhaniL. Exosome-loaded scaffolds for regenerative medicine in hard tissues.Tissue Cell20238210210210.1016/j.tice.2023.102102 37178527
    [Google Scholar]
  7. RezakhaniL. AlizadehM. SharifiE. SoleimannejadM. AlizadehA. Isolation and Characterization of Crab Haemolymph Exosomes and Its Effects on Breast Cancer Cells (4T1).Cell J.202123665866410.22074/cellj.2021.7595 34939759
    [Google Scholar]
  8. NaseriN. ValizadehH. MilaniZ.P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application.Adv. Pharm. Bull.20155330531310.15171/apb.2015.043 26504751
    [Google Scholar]
  9. EbrahimiH.A. JavadzadehY. HamidiM. JalaliM.B. Repaglinide-loaded solid lipid nanoparticles: Effect of using different surfactants/stabilizers on physicochemical properties of nanoparticles.Daru20152314610.1186/s40199‑015‑0128‑3 26392174
    [Google Scholar]
  10. PatwekarS. GattaniS. GiriR. BadeA. SangewarB. RautV. Review on nanoparticles used in cosmetics and dermal products.World J. Pharm. Pharm. Sci.2014314071421
    [Google Scholar]
  11. GanesanP. NarayanasamyD. Lipid nanoparticles: Different preparation techniques, characterization, hurdles, and strategies for the production of solid lipid nanoparticles and nanostructured lipid carriers for oral drug delivery.Sustain. Chem. Pharm.20176375610.1016/j.scp.2017.07.002
    [Google Scholar]
  12. EkambaramP. SathaliA. PriyankaK. Solid lipid nanoparticles: A review.Sci Rev Chem Commun2012280102
    [Google Scholar]
  13. JenningV. ThünemannA.F. GohlaS.H. Characterisation of a novel solid lipid nanoparticle carrier system based on binary mixtures of liquid and solid lipids.Int. J. Pharm.2000199216717710.1016/S0378‑5173(00)00378‑1 10802410
    [Google Scholar]
  14. KambleV.A. JagdaleD.M. KadamV.R.J. Solid lipid nanoparticles as drug delivery system.Int. J. Pharm. Biol. Sci.2010119
    [Google Scholar]
  15. ByrappaK. OharaS. AdschiriT. Nanoparticles synthesis using supercritical fluid technology – towards biomedical applications.Adv. Drug Deliv. Rev.200860329932710.1016/j.addr.2007.09.001 18192071
    [Google Scholar]
  16. ShahR. EldridgeD. PalomboE. HardingI. Lipid Nanoparticles: Production, Characterization and Stability.New York, NY, USASpringer International Publishing2015
    [Google Scholar]
  17. ChenY.J. JinR.X. ZhouY.Q. ZengJ. ZhangH. FengQ.R. Preparation of solid lipid nanoparticles loaded with Xionggui powder-supercritical carbon dioxide fluid extraction and their evaluation in vitro release.Zhongguo Zhongyao Zazhi200631376379
    [Google Scholar]
  18. KaiserC.S. RömppH. SchmidtP.C. Pharmaceutical applications of supercritical carbon dioxide.Pharmazie20015612907926 11802652
    [Google Scholar]
  19. GlaubittK. RicciM. GiovagnoliS. Exploring the Nano Spray-Drying Technology as an Innovative Manufacturing Method for Solid Lipid Nanoparticle Dry Powders.AAPS PharmSciTech20192011910.1208/s12249‑018‑1203‑0 30604256
    [Google Scholar]
  20. HeH. WangP. CaiC. YangR. TangX. VB12-coated Gel-Core-SLN containing insulin: Another way to improve oral absorption.Int. J. Pharm.20154931-245145910.1016/j.ijpharm.2015.08.004 26253378
    [Google Scholar]
  21. RainaH. KaurS. JindalA.B. Development of efavirenz loaded solid lipid nanoparticles: Risk assessment, quality-by-design (QbD) based optimisation and physicochemical characterisation.J. Drug Deliv. Sci. Technol.20173918019110.1016/j.jddst.2017.02.013
    [Google Scholar]
  22. RingeK. WalzC. SabelB. Nanoparticle drug delivery to the brain.Encyclopedia of Nanoscience and Nanotechnology.New YorkAmerican Scientific Publishers2004
    [Google Scholar]
  23. PeppasN.A. Analysis of Fickian and non-Fickian drug release from polymers.Pharm. Acta Helv.1985604110111 4011621
    [Google Scholar]
  24. PeppasN.A. KorsmeyerR.W. Dynamically swelling hydrogels in controlled release applications.Hydrogels in Medicine and Pharmacy.Boca Raton, FLCRC Press1987103135
    [Google Scholar]
  25. DarabiF. SaidijamM. NouriF. MahjubR. SoleimaniM. Anti-CD44 and EGFR dual-targeted solid lipid nanoparticles for delivery of doxorubicin to triple-negative breast cancer cell line: Preparation, statistical optimization, and in vitro characterization.BioMed Res. Int.2022202211310.1155/2022/6253978 35845934
    [Google Scholar]
  26. EmamE.G.A. GirgisG.N.S. HamedM.F. SolimanE.A.O.A. GawadA.E.A.E.G.H. Formulation and pathohistological study of mizolastine-solid lipid nanoparticles-loaded ocular hydrogels.Int. J. Nanomedicine2021167775779910.2147/IJN.S335482 34853513
    [Google Scholar]
  27. NematiS. RahimiM.H. HesariZ. Formulation of Neem oil-loaded solid lipid nanoparticles and evaluation of its anti-Toxoplasma activity.BMC Complement. Med. Ther.202222112210.1186/s12906‑022‑03607‑z
    [Google Scholar]
  28. SohaibM. ShahS.U. ShahK.U. Physicochemical characterization of chitosan-decorated finasteride solid lipid nanoparticles for skin drug delivery.BioMed Res. Int.2022202211010.1155/2022/7792180 35971450
    [Google Scholar]
  29. TrapaniA. GuerraL. CorboF. Cyto/Biocompatibility of Dopamine Combined with the Antioxidant Grape Seed-Derived Polyphenol Compounds in Solid Lipid Nanoparticles.Molecules202126491610.3390/molecules26040916 33572331
    [Google Scholar]
  30. TrapaniA. EstebanM.Á. CurciF. Solid Lipid Nanoparticles Administering Antioxidant Grape Seed-Derived Polyphenol Compounds: A Potential Application in Aquaculture.Molecules202227234410.3390/molecules27020344 35056658
    [Google Scholar]
  31. DuongV.A. NguyenT.T.L. MaengH.J. Preparation of Solid Lipid Nanoparticles and Nanostructured Lipid Carriers for Drug Delivery and the Effects of Preparation Parameters of Solvent Injection Method.Molecules20202520478110.3390/molecules25204781 33081021
    [Google Scholar]
  32. PandeyS. ShaikhF. GuptaA. TripathiP. YadavJ.S. A Recent Update: Solid Lipid Nanoparticles for Effective Drug Delivery.Adv. Pharm. Bull.2021121173310.34172/apb.2022.007 35517874
    [Google Scholar]
  33. MusielakE. GuzikF.A. NowakI. Optimization of the Conditions of Solid Lipid Nanoparticles (SLN) Synthesis.Molecules2022277220210.3390/molecules27072202 35408600
    [Google Scholar]
  34. MadkhaliO.A. Perspectives and prospective on solid lipid nanoparticles as drug delivery systems.Molecules2022275154310.3390/molecules27051543 35268643
    [Google Scholar]
  35. AdekiyaT.A. KumarP. KondiahP.P.D. UbanakoP. ChoonaraY.E. In vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models.Int. J. Mol. Sci.20222316948510.3390/ijms23169485 36012770
    [Google Scholar]
  36. MontotoS.S. MuracaG. RuizM.E. Solid Lipid Nanoparticles for Drug Delivery: Pharmacological and Biopharmaceutical Aspects.Front. Mol. Biosci.2020758799710.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  37. BuranaamnuayK. The MTT assay application to measure the viability of spermatozoa: A variety of the assay protocols.Open Vet. J.202111225126910.5455/OVJ.2021.v11.i2.9
    [Google Scholar]
  38. BenovL. Effect of growth media on the MTT colorimetric assay in bacteria.PLoS One2019148e021971310.1371/journal.pone.0219713
    [Google Scholar]
  39. YangQ. YangJ. SunS. Rhodojaponin III-Loaded Chitosan Derivatives-Modified Solid Lipid Nanoparticles for Multimodal Antinociceptive Effects in vivo.Int. J. Nanomedicine2022173633365310.2147/IJN.S362443 35996527
    [Google Scholar]
  40. MishraV. BansalK. VermaA. Solid lipid nanoparticles: Emerging colloidal nano drug delivery systems.Pharmaceutics201810419110.3390/pharmaceutics10040191 30340327
    [Google Scholar]
  41. PatelM.N. LakkadwalaS. MajradM.S. Characterization and evaluation of 5-fluorouracil-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification technique.AAPS PharmSciTech20141561498150810.1208/s12249‑014‑0168‑x 25035070
    [Google Scholar]
  42. ZhangL. JiangY. ZhengY. Selective killing of Burkitt’s lymphoma cells by mBAFF-targeted delivery of PinX1.Leukemia201125233134010.1038/leu.2010.261 21102426
    [Google Scholar]
  43. RavarF. SaadatE. GholamiM. DehghankelishadiP. MahdaviM. AzamiS. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation.J. Control. Release2016229102210.1016/j.jconrel.2016.03.012
    [Google Scholar]
  44. SzczepanowiczK. Pegylated polyelectrolyte nanoparticles containing paclitaxel as a promising candidate for drug carriers for passive targeting.Colloids Surface B201614346347110.1016/j.colsurfb.2016.03.064
    [Google Scholar]
  45. ChoiI.K. StraussR. RichterM. YunC.O. LieberA. Strategies to increase drug penetration in solid tumors.Front. Oncol.2013319310.3389/fonc.2013.00193 23898462
    [Google Scholar]
  46. YangX. LiY. LiM. ZhangL. FengL. ZhangN. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer.Cancer Lett.2013334233834510.1016/j.canlet.2012.07.002 22776563
    [Google Scholar]
  47. TajbakhshA. HasanzadehM. RezaeeM. Therapeutic potential of novel formulated forms of curcumin in the treatment of breast cancer by the targeting of cellular and physiological dysregulated pathways.J. Cell. Physiol.201823332183219210.1002/jcp.25961 28419458
    [Google Scholar]
  48. GuorguiJ. WangR. MattheolabakisG. MackenzieG.G. Curcumin formulated in solid lipid nanoparticles has enhanced efficacy in Hodgkin’s lymphoma in mice.Arch. Biochem. Biophys.2018648121910.1016/j.abb.2018.04.012 29679536
    [Google Scholar]
  49. ClementeN. FerraraB. GigliottiC. Solid lipid nanoparticles carrying temozolomide for melanoma treatment. Preliminary in vitro and in vivo studies.Int. J. Mol. Sci.201819225510.3390/ijms19020255 29364157
    [Google Scholar]
  50. ByrneJ.D. BetancourtT. PeppasB.L. Active targeting schemes for nanoparticle systems in cancer therapeutics.Adv. Drug Deliv. Rev.200860151615162610.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  51. HarashimaH. KiwadaH. The pharmacokinetics of liposomes in tumor targeting.Adv. Drug Deliver. Rev.1999401210.1016/S0169‑409X(99)00036‑8
    [Google Scholar]
  52. DüzgüneşN. NirS. Mechanisms and kinetics of liposome–cell interactions.Adv. Drug Deliver Rev.199940318
    [Google Scholar]
  53. NevesA.R. QueirozJ.F. ReisS. Brain-targeted delivery of resveratrol using solid lipid nanoparticles functionalized with apolipoprotein.E J Nanobiotechnol2016142710.1186/s12951‑016‑0177‑x
    [Google Scholar]
  54. LiuB. HanL. LiuJ. HanS. ChenZ. JiangL. Co-delivery of paclitaxel and TOS-cisplatin via TAT-targeted solid lipid nanoparticles with synergistic antitumor activity against cervical cancer.Int. J. Nanomedicine20171295596810.2147/IJN.S115136 28203075
    [Google Scholar]
  55. SiddharthaV.T. PindiproluS.K.S.S. ChintamaneniP.K. TummalaS. KumarN.S. RAGE receptor targeted bioconjuguate lipid nanoparticles of diallyl disulfide for improved apoptotic activity in triple negative breast cancer: In vitro studies.Artif. Cells Nanomed. Biotechnol.201846238739710.1080/21691401.2017.1313267 28415882
    [Google Scholar]
  56. ManjunathK. ReddyJ.S. VenkateswarluV. Solid lipid nanoparticles as drug delivery systems.Methods Find. Exp. Clin. Pharmacol.200527212714410.1358/mf.2005.27.2.876286 15834465
    [Google Scholar]
  57. BassiouniY. FaddahL. Nanocarrier-Based Drugs: The Future Promise for Treatment of Breast Cancer.J. Appl. Pharm. Sci.2012222523210.7324/JAPS.2012.2530
    [Google Scholar]
  58. CamposJ. GodoyV.M. HaidarZ.S. Physicochemical characterization of chitosan-hyaluronan-coated solid lipid nanoparticles for the targeted delivery of paclitaxel: A proof-of-concept study in breast cancer cells.Nanomedicine201712547349010.2217/nnm‑2016‑0371 28181464
    [Google Scholar]
  59. XuW. BaeE.J. LeeM.K. Enhanced anticancer activity and intracellular uptake of paclitaxel-containing solid lipid nanoparticles in multidrug-resistant breast cancer cells.Int. J. Nanomedicine2018137549756310.2147/IJN.S182621 30532538
    [Google Scholar]
  60. RompicharlaS.V.K. BhattH. ShahA. Formulation optimization, characterization, and evaluation of in vitro cytotoxic potential of curcumin loaded solid lipid nanoparticles for improved anticancer activity.Chem. Phys. Lipids2017208101810.1016/j.chemphyslip.2017.08.009 28842128
    [Google Scholar]
  61. GargN.K. SinghB. JainA. Fucose decorated solid-lipid nanocarriers mediate efficient delivery of methotrexate in breast cancer therapeutics.Colloids Surf. B Biointerfaces201614611412610.1016/j.colsurfb.2016.05.051 27268228
    [Google Scholar]
  62. RosièreR. Van WoenselM. GelbckeM. New folate-grafted chitosan derivative to improve delivery of paclitaxel-loaded solid lipid nanoparticles for lung tumor therapy by inhalation.Mol. Pharm.201815389991010.1021/acs.molpharmaceut.7b00846 29341619
    [Google Scholar]
  63. NaseriN. MilaniZ.P. HamishehkarH. SoltanahmadiP.Y. ValizadehH. Development, in vitro characterization, antitumor and aerosol performance evaluation of respirable prepared by self-nanoemulsifification method.Drug Res.201767634334810.1055/s‑0043‑102404 28288490
    [Google Scholar]
  64. GrilloneA. RivaE.R. MondiniA. Active targeting of sorafenib: Preparation, characterization and in vitro testing of drug-loaded magnetic solid lipid nanoparticles.Adv. Healthc. Mater.20154111681169010.1002/adhm.201500235 26039933
    [Google Scholar]
  65. KladniewR.B. IslanG.A. de BravoM.G. DuránN. CastroG.R. Design, characterization and in vitro evaluation of linalool-loaded solid lipid nanoparticles as potent tool in cancer therapy.Colloids Surf. B Biointerfaces201715412313210.1016/j.colsurfb.2017.03.021 28334689
    [Google Scholar]
  66. MaL YangD LiZ ZhangX PuL Co-delivery of paclitaxel and tanespimycin in lipid nanoparticles enhanced anti-gastric-tumor effect in vitro and in vivo. Artif Cells Nanomed Biotechnol201846sup29041110.1080/21691401.2018.1472101 29757014
    [Google Scholar]
  67. MinelliR. SerpeL. PettazzoniP. Cholesteryl butyrate solid lipid nanoparticles inhibit the adhesion and migration of colon cancer cells.Br. J. Pharmacol.2012166258760110.1111/j.1476‑5381.2011.01768.x 22049973
    [Google Scholar]
  68. YangS.C. LuL.F. CaiY. ZhuJ.B. LiangB.W. YangC.Z. Body distribution in mice of intravenously injected camptothecin solid lipid nanoparticles and targeting effect on brain.J. Control. Release199959329930710.1016/S0168‑3659(99)00007‑3 10332062
    [Google Scholar]
  69. PedersenN. HansenS. HeydenreichA.V. KristensenH.G. PoulsenH.S. Solid lipid nanoparticles can effectively bind DNA, streptavidin and biotinylated ligands.Eur. J. Pharm. Biopharm.200662215516210.1016/j.ejpb.2005.09.003 16290122
    [Google Scholar]
  70. IgartuaM. SaulnierP. HeurtaultB. Development and characterization of solid lipid nanoparticles loaded with magnetite.Int. J. Pharm.20022331-214915710.1016/S0378‑5173(01)00936‑X 11897419
    [Google Scholar]
  71. RostamiE. KashanianS. AzandaryaniA.H. FaramarziH. DolatabadiJ.E.N. OmidfarK. Drug targeting using solid lipid nanoparticles.Chem. Phys. Lipids2014181566110.1016/j.chemphyslip.2014.03.006 24717692
    [Google Scholar]
  72. MüllerR. MaaßenS. WeyhersH. SpechtF. LucksJ.S. Cytotoxicity of magnetite-loaded polylactide, polylactide/glycolide particles and solid lipid nanoparticles.Int. J. Pharm.19961381859410.1016/0378‑5173(96)04539‑5
    [Google Scholar]
  73. BabincováM. ČičmanecP. AltanerováV. AltanerČ. BabinecP. AC-magnetic field controlled drug release from magnetoliposomes: Design of a method for site-specific chemotherapy.Bioelectrochemistry2002551-2171910.1016/S1567‑5394(01)00171‑2 11786331
    [Google Scholar]
  74. PangX. CuiF. TianJ. ChenJ. ZhouJ. ZhouW. Preparation and characterization of magnetic solid lipid nanoparticles loaded with ibuprofen.Asian J. Pharm. Sci.20094132137
    [Google Scholar]
  75. OliveiraR.R. CarriãoM.S. PachecoM.T. Triggered release of paclitaxel from magnetic solid lipid nanoparticles by magnetic hyperthermia.Mater. Sci. Eng. C20189254755310.1016/j.msec.2018.07.011 30184781
    [Google Scholar]
  76. AbidiH. GhaediM. RafieiA. Magnetic solid lipid nanoparticles co-loaded with albendazole as an anti-parasitic drug: Sonochemical preparation, characterization, and in vitro drug release.J. Mol. Liq.2018268111810.1016/j.molliq.2018.06.116
    [Google Scholar]
  77. AhmadifardZ. AhmedaA. RasekhianM. MoradiS. ArkanE. Chitosan-coated magnetic solid lipid nanoparticles for controlled release of letrozole.J. Drug Deliv. Sci. Technol.20205710162110.1016/j.jddst.2020.101621
    [Google Scholar]
  78. GhianiS. CapozzaM. CabellaC. In vivo tumor targeting and biodistribution evaluation of paramagnetic solid lipid nanoparticles for magnetic resonance imaging.Nanomedicine201713269370010.1016/j.nano.2016.09.012 27720928
    [Google Scholar]
  79. HeviaG.L. CasafontÍ. OliveiraJ. Magnetic lipid nanovehicles synergize the controlled thermal release of chemotherapeutics with magnetic ablation while enabling non-invasive monitoring by MRI for melanoma theranostics.Bioact. Mater.2022815316410.1016/j.bioactmat.2021.06.009 34541393
    [Google Scholar]
  80. DinF. AmanW. UllahI. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors.Int. J. Nanomedicine2017127291730910.2147/IJN.S146315 29042776
    [Google Scholar]
  81. DianzaniC. FogliettaF. FerraraB. Solid lipid nanoparticles delivering anti-inflammatory drugs to treat inflammatory bowel disease: Effects in an in vivo model.World J. Gastroenterol.201723234200421010.3748/wjg.v23.i23.4200 28694660
    [Google Scholar]
  82. SerpeLoredana CanaparoRoberto DapernoMarco Solid lipid nanoparticles as anti-inflammatory drug delivery system in a human inflammatory bowel disease whole-blood modelEuropean J. Pharmaceutical Sciences201039542843610.1016/j.ejps.2010.01.013
    [Google Scholar]
  83. JainD. BajajA. MaskareR. BrarooP. BabulN. KaoH. Design of solid lipid nanoparticles of the NSAID dexflurbiprofen for topical delivery.J. Pain2013144S8610.1016/j.jpain.2013.01.680
    [Google Scholar]
  84. MaiaC.S. MehnertW. KortingS.M. Solid lipid nanoparticles as drug carriers for topical glucocorticoids.Int. J. Pharm.2000196216516710.1016/S0378‑5173(99)00413‑5
    [Google Scholar]
  85. KhuranaS. BediP.M.S. JainN.K. Preparation and evaluation of solid lipid nanoparticles based nanogel for dermal delivery of meloxicam.Chem. Phys. Lipids2013175-176657210.1016/j.chemphyslip.2013.07.010 23994283
    [Google Scholar]
  86. KheradmandniaS. FarahaniV.E. NosratiM. AtyabiF. Preparation and characterization of ketoprofen-loaded solid lipid nanoparticles made from beeswax and carnauba wax.Nanomedicine20106675375910.1016/j.nano.2010.06.003 20599527
    [Google Scholar]
  87. DesoqiM.H. SawyE.H.S. KafagyE. GhorabM. GadS. Fluticasone propionate–loaded solid lipid nanoparticles with augmented anti-inflammatory activity: Optimisation, characterisation and pharmacodynamic evaluation on rats.J. Microencapsul.202138317719110.1080/02652048.2021.1887383 33583315
    [Google Scholar]
  88. CarvalhoF.O. SilvaÉ.R. NunesP.S. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation.Naunyn Schmiedebergs Arch. Pharmacol.2020393344545510.1007/s00210‑019‑01731‑1 31655855
    [Google Scholar]
  89. AhangarpourA. OroojanA.A. KhorsandiL. KouchakM. BadaviM. Solid lipid nanoparticles of myricitrin have antioxidant and antidiabetic effects on streptozotocin- nicotinamide-induced diabetic model and myotube cell of male mouse.Oxid. Med. Cell. Longev.201817749693610.1155/2018/7496936
    [Google Scholar]
  90. AnsariM.J. AnwerM.K. JamilS. Enhanced oral bioavailability of insulin-loaded solid lipid nanoparticles: Pharmacokinetic bioavailability of insulin-loaded solid lipid nanoparticles in diabetic rats.Drug Deliv.20152361810.3109/10717544.2015.1039666 26017100
    [Google Scholar]
  91. MohseniR. ArabSadeghabadi Z, Ziamajidi N, Abbasalipourkabir R, RezaeiFarimani A. Oral Administration of Resveratrol-Loaded Solid Lipid Nanoparticle Improves Insulin Resistance Through Targeting Expression of SNARE Proteins in Adipose and Muscle Tissue in Rats with Type 2 Diabetes.Nanoscale Res. Lett.201914122710.1186/s11671‑019‑3042‑7 31290033
    [Google Scholar]
  92. SarmentoB. MartinsS. FerreiraD. SoutoE.B. Oral insulin delivery by means of solid lipid nanoparticles.Int. J. Nanomedicine200724743749 18203440
    [Google Scholar]
  93. ElkarrayS.M. FaridR.M. AlhaseebA.M.M. OmranG.A. HabibD.A. Intranasal repaglinide-solid lipid nanoparticles integrated in situ gel outperform conventional oral route in hypoglycemic activity.J. Drug Deliv. Sci. Technol.20226810308610.1016/j.jddst.2021.103086
    [Google Scholar]
  94. SawantK. DodiyaS. Recent advances and patents on solid lipid nanoparticles.Recent Pat. Drug Deliv. Formul.20082212013510.2174/187221108784534081 19075903
    [Google Scholar]
  95. KaurI.P. BhandariR. BhandariS. KakkarV. Potential of solid lipid nanoparticles in brain targeting.J. Control. Release200812729710910.1016/j.jconrel.2007.12.018 18313785
    [Google Scholar]
  96. PardeshiC. RajputP. BelgamwarV. Solid lipid based nanocarriers: An overview/Nanonosači na bazi čvrstih lipida: Pregled.Acta Pharm.201262443347210.2478/v10007‑012‑0040‑z 23333884
    [Google Scholar]
  97. MukherjeeS. RayS. ThakurR.S. Solid lipid nanoparticles: A modern formulation approach in drug delivery system.Indian J. Pharm. Sci.200971434935810.4103/0250‑474X.57282 20502539
    [Google Scholar]
  98. TabattK. KneuerC. SametiM. Transfection with different colloidal systems: Comparison of solid lipid nanoparticles and liposomes.J. Control. Release200497232133210.1016/j.jconrel.2004.02.029 15196759
    [Google Scholar]
  99. HamdaniJ. MoësA.J. AmighiK. Physical and thermal characterisation of Precirol® and Compritol® as lipophilic glycerides used for the preparation of controlled-release matrix pellets.Int. J. Pharm.20032601475710.1016/S0378‑5173(03)00229‑1 12818809
    [Google Scholar]
  100. ManjunathK. VenkateswarluV. Pharmacokinetics, tissue distribution and bioavailability of nitrendipine solid lipid nanoparticles after intravenous and intraduodenal administration.J. Drug Target.200614963264510.1080/10611860600888850 17090399
    [Google Scholar]
  101. WangJ-X. SunX. ZhangZ-R. Enhanced brain targeting by synthesis of 3ʹ, 5ʹ -dioctanoyl-5-fluoro-2ʹ -deoxyuridine and incorporation into solid lipid nanoparticles.Eur. J. Pharm. Biopharm.20025428529010.1016/S0939‑6411(02)00083‑8 12445558
    [Google Scholar]
  102. MadanJ. PandeyR.S. JainV. KatareO.P. ChandraR. KatyalA. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapine improve biological half-life, brain delivery and efficacy in glioblastoma cells.Nanomedicine20139449250310.1016/j.nano.2012.10.003 23117045
    [Google Scholar]
  103. ChenD.B. YangT. LuW.L. ZhangQ. In vitro and in vivo study of two types of long-circulating solid lipid nanoparticles containing paclitaxel.Chem. Pharm. Bull.200149111444144710.1248/cpb.49.1444 11724235
    [Google Scholar]
  104. YangS. ZhuJ. LuY. LiangB. YangC. Body distribution of camptothecin solid lipid nanoparticles after oral administration.Pharm. Res.199916575175710.1023/A:1018888927852 10350020
    [Google Scholar]
  105. CavalliR. CaputoO. GascoM.R. Preparation and characterization of solid lipid nanospheres containing paclitaxel.Eur. J. Pharm. Sci.200010430530910.1016/S0928‑0987(00)00081‑6 10838020
    [Google Scholar]
  106. HassanM. TuckmanH.P. PatrickR.H. KountzD.S. KohnJ.L. Hospital length of stay and probability of acquiring infection.Int. J. Pharm. Healthc. Mark.20104432433810.1108/17506121011095182
    [Google Scholar]
  107. NamasivayamS.K.R. Nanoformulation of antibacterial antibiotics cefpirome with biocompatible polymeric nanoparticles and evaluation for the improved antibacterial activity and nontarget toxicity studies.Asian J. Pharm.201711269281
    [Google Scholar]
  108. BargoniA. CavalliR. ZaraG.P. FundaròA. CaputoO. GascoM.R. Transmucosal transport of tobramycin incorporated in solid lipid nanoparticles (sln) after duodenal administration to rats. Part II—Tissue distribution.Pharmacol. Res.200143549750210.1006/phrs.2001.0813 11394943
    [Google Scholar]
  109. DongZ. XieS. ZhuL. WangY. WangX. ZhouW. Preparation and in vitro, in vivo evaluations of norfloxacin-loaded solid lipid nanopartices for oral delivery.Drug Deliv.201118644145010.3109/10717544.2011.577109 21554156
    [Google Scholar]
  110. SharmaM. GuptaN. GuptaS. Implications of designing clarithromycin loaded solid lipid nanoparticles on their pharmacokinetics, antibacterial activity and safety.RSC Advances2016680766217663110.1039/C6RA12841F
    [Google Scholar]
  111. AljaeidB. HosnyK.M. Miconazole-loaded solid lipid nanoparticles: formulation and evaluation of a novel formula with high bioavailability and antifungal activity.Int. J. Nanomedicine20161144144710.2147/IJN.S100625 26869787
    [Google Scholar]
  112. BhandariR. KaurI.P. Pharmacokinetics, tissue distribution and relative bioavailability of isoniazid-solid lipid nanoparticles.Int. J. Pharm.20134411-220221210.1016/j.ijpharm.2012.11.042 23220081
    [Google Scholar]
  113. NegiJ.S. ChattopadhyayP. SharmaA.K. RamV. Development of solid lipid nanoparticles (SLNs) of lopinavir using hot self nano-emulsification (SNE) technique.Eur. J. Pharm. Sci.2013481-223123910.1016/j.ejps.2012.10.022 23153618
    [Google Scholar]
  114. NegiJ.S. ChattopadhyayP. SharmaA.K. RamV. Development and evaluation of glyceryl behenate based solid lipid nanoparticles (SLNs) using hot self-nanoemulsification (SNE) technique.Arch. Pharm. Res.201437336137010.1007/s12272‑013‑0154‑y 23695866
    [Google Scholar]
  115. GaurP.K. MishraS. BajpaiM. MishraA. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies.BioMed Res. Int.201420141910.1155/2014/363404 24967360
    [Google Scholar]
  116. CarboneC. FuochiV. ZielińskaA. Dual-drugs delivery in solid lipid nanoparticles for the treatment of Candida albicans mycosis.Colloids Surf. B Biointerfaces202018611070510.1016/j.colsurfb.2019.110705 31830707
    [Google Scholar]
  117. HosseiniS.M. FarmanyA. AbbasalipourkabirR. AslS.S. NourianA. ArabestaniM.R. Doxycycline-encapsulated solid lipid nanoparticles for the enhanced antibacterial potential to treat the chronic brucellosis and preventing its relapse: In vivo study.Ann. Clin. Microbiol. Antimicrob.20191813310.1186/s12941‑019‑0333‑x 31706304
    [Google Scholar]
  118. KırımlıoğluY.G. Development and characterization of lyophilized cefpodoxime proxetil-Pluronic ® F127/polyvinylpyrrolidone K30 solid dispersions with improved dissolution and enhanced antibacterial activity.Pharm. Dev. Technol.202126447648910.1080/10837450.2021.1889584 33616480
    [Google Scholar]
  119. XieS. YangF. TaoY. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.Sci. Rep.2017714110410.1038/srep41104 28112240
    [Google Scholar]
  120. ShazlyG.A. Ciprofloxacin controlled-solid lipid nanoparticles: Characterization, in vitro release, and antibacterial activity assessment.BioMed Res. Int.201720171910.1155/2017/2120734 28194408
    [Google Scholar]
  121. GasparD.P. GasparM.M. EleutérioC.V. Microencapsulated Solid Lipid Nanoparticles as a Hybrid Platform for Pulmonary Antibiotic Delivery.Mol. Pharm.20171492977299010.1021/acs.molpharmaceut.7b00169 28809501
    [Google Scholar]
  122. ZaragozaZ.M.L. RezaG.R. MuñozM.N. Nanosystems in Edible Coatings: A Novel Strategy for Food Preservation.Int. J. Mol. Sci.201819370510.3390/ijms19030705
    [Google Scholar]
  123. AlbuquerqueJ. MouraC.C. SarmentoB. ReisS. Solid Lipid Nanoparticles: A Potential Multifunctional Approach towards Rheumatoid Arthritis Theranostics.Molecules2015206111031111810.3390/molecules200611103
    [Google Scholar]
  124. StelznerJ.J. BehrensM. BehrensS.E. MäderK. Squalene containing solid lipid nanoparticles, a promising adjuvant system for yeast vaccines.Vaccine201836172314232010.1016/j.vaccine.2018.03.019 29567034
    [Google Scholar]
  125. LiS. YangY. LinX. Biocompatible cationic solid lipid nanoparticles as adjuvants effectively improve humoral and T cell immune response of foot and mouth disease vaccines.Vaccine202038112478248610.1016/j.vaccine.2020.02.004
    [Google Scholar]
  126. MüllerR.H. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art.Eur. J. Pharm. Biopharm.200050116117710.1016/s0939‑6411(00)00087‑4
    [Google Scholar]
  127. ArduinoI. LiuZ. RahikkalaA. Preparation of cetyl palmitate-based PEGylated solid lipid nanoparticles by microfluidic technique.Acta Biomater.202112156657810.1016/j.actbio.2020.12.024 33326887
    [Google Scholar]
  128. MehnertW. MäderK. Solid lipid nanoparticles Production, characterization and applications.Adv. Drug Deliv. Rev.2001472-316519610.1016/S0169‑409X(01)00105‑3 11311991
    [Google Scholar]
  129. RaoK. Polymerized Solid Lipid Nanoparticles for Oral or Mucosal Delivery of Therapeutic Proteins and Peptides. US200803112142007
    [Google Scholar]
  130. HerzogB. Formulation of UV Absorbers by Incorporation in Solid Lipid Nanoparticles. US200302355402006
    [Google Scholar]
  131. WeissJ MaierC KesslerA TedeschiC LeuenbergerB NovotnyM. Solid Lipid Nanoparticles (ii). US201600303052014
    [Google Scholar]
  132. WeissJ MaierC LeuenbergerB NovotnyM TedeschiC KesslerA. Solid lipid nanoparticles (i). US201600225502017
    [Google Scholar]
  133. DiorioC LokhnauthJ Curcumin solid lipid particles and methods for their preparation and use. US201800362482016
    [Google Scholar]
  134. TzachevC T Solid lipid nanoparticle for intracellular release of active substances and method for production the same. US20210069121A12017
    [Google Scholar]
  135. ChristopherLokhnauth D. Curcumin solid lipid particles and methods for their preparation and use. US10166187B22017
    [Google Scholar]
  136. GhainiS MaiocchiA CaminitiL MiragoliL Fluorescent solid lipid nanoparticles composition and preparation thereof. US10780184B22019
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385312175240502100018
Loading
/content/journals/pnt/10.2174/0122117385312175240502100018
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test