Skip to content
2000
Volume 13, Issue 3
  • ISSN: 2211-7385
  • E-ISSN: 2211-7393

Abstract

The ever-growing demand for safe and nutritious food has activated the scrutinization of innovative approaches to enhance food preservation and extended shelf life. Nanotechnology has progressed by making a significant contribution to the food industry at the nanoscale level and appeared as a promising avenue for these challenges. Various nanomaterials have been employed to preserve and extend the shelf life of a variety of food products. Since most harvested fruits and vegetables have a perishable nature, they cannot be preserved in natural circumstances for a long period. Due to a range of unique qualities, nanotechnology-related shelf life extension technologies can compensate for the limitations of normal preservation procedures. The encapsulation of nutraceuticals increases their stability and bioavailability, resulting in beneficial effects on humans. Nanoparticles are used as carriers of health-promoting and/or functional substances in product formulations. They have shown excellent effectiveness in encapsulating bioactive substances and retaining their qualities to ensure their functioning (antioxidant and antibacterial) in food products. This review focuses on the current developments in nanotechnology and their application for improving shelf life and food preservation techniques. Here we excavated the implementation of different types and forms of nanostructured materials (NSMs), from inorganic metals, metal oxides, and their nanocomposites to nano-organic materials incorporating bioactive chemicals in the food system. This review also focuses on exploring the slow and sustainable release of the bioactive compounds, and nutrients enriching the taste and sensory characteristics of the food. Throughout the paper, we dug deep into the regulatory, food safety, and assessment concerns about nanotechnology. The review provides a deep understanding of the developing landscape of nanotechnological applications, challenges, and future opportunities revolutionizing the preservation and extended shelf life of food products.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385260631231016102111
2024-10-24
2025-09-28
Loading full text...

Full text loading...

References

  1. PereiraR.N. TeixeiraJ.A. VicenteA.A. CappatoL.P. da Silva FerreiraM.V. da Silva RochaR. da CruzA.G. Ohmic heating for the dairy industry: a potential technology to develop probiotic dairy foods in association with modifications of whey protein structure.Curr. Opin. Food Sci.2018229510110.1016/j.cofs.2018.01.014
    [Google Scholar]
  2. BiałkowskaA. MajewskaE. OlczakA. Twarda-ClapaA. Ice binding proteins: diverse biological roles and applications in different types of industry.Biomolecules202010227410.3390/biom1002027432053888
    [Google Scholar]
  3. SaidM.I. Role and function of gelatin in the development of the food and non-food industry: A review.IOP Conf. Ser. Earth Environ. Sci.2020492101208610.1088/1755‑1315/492/1/012086
    [Google Scholar]
  4. JayasenaDD KimHJ YongHI Flexible thin-layer dielectric barrier discharge plasma treatment of porkbutt and beefloin:Effects on pathogen inactivation and meat-quality attributes.Food Microbiol201546515710.1016/j.fm.2014.07.009
    [Google Scholar]
  5. AuffanM. RoseJ. BotteroJ.Y. LowryG.V. JolivetJ.P. WiesnerM.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective.Nat. Nanotechnol.200941063464110.1038/nnano.2009.24219809453
    [Google Scholar]
  6. HeX. DengH. HwangH. The current application of nanotechnology in food and agriculture.J. Food Drug Anal.201927112110.1016/j.jfda.2018.12.00230648562
    [Google Scholar]
  7. JoshiH. ChoudharyP. MundraS.L. Future prospects of nanotechnology in agriculture.Int. J. Chem. Stud.20197957963
    [Google Scholar]
  8. ElahiN. KamaliM. BaghersadM.H. Recent biomedical applications of gold nanoparticles: A review.Talanta201818453755610.1016/j.talanta.2018.02.08829674080
    [Google Scholar]
  9. WangJ. LiuR. LiuB. Cadmium-containing quantum dots: current perspectives on their application as nano medicine and toxicity concerns.Mini Rev. Med. Chem.2016161190591610.2174/138955751666616021112124726864550
    [Google Scholar]
  10. SahooM. PanigrahiC. VishwakarmaS. KumarJ. A Review on Nano technology: Applications in Food Industry, Future Opportunities, Challenges and Potential Risks.J Nanotechnol Nanomaterials.2022312833
    [Google Scholar]
  11. VermaM.L. DhanyaB.S. Sukriti RaniV. ThakurM. JeslinJ. KushwahaR. Carbohydrate and protein based biopolymeric nanoparticles: Current status and biotechnological applications.Int. J. Biol. Macromol.202015439041210.1016/j.ijbiomac.2020.03.10532194126
    [Google Scholar]
  12. WangY. ZhengZ. WangK. TangC. LiuY. LiJ. Prebiotic carbohydrates: Effect on physicochemical stability and solubility of algal oil nanoparticles.Carbohydr. Polym.202022811537210.1016/j.carbpol.2019.11537231635745
    [Google Scholar]
  13. de MouraM.R. AouadaF.A. Avena-BustillosR.J. McHughT.H. KrochtaJ.M. MattosoL.H.C. Improved barrier and mechanical properties of novel hydroxypropyl methylcellulose edible films with chitosan/tripolyphosphate nanoparticles.J. Food Eng.200992444845310.1016/j.jfoodeng.2008.12.015
    [Google Scholar]
  14. de MouraM.R. LoreviceM.V. MattosoL.H.C. ZucolottoV. Highly stable, edible cellulose films incorporating chitosan nanoparticles.J. Food Sci.2011762N25N2910.1111/j.1750‑3841.2010.02013.x21535782
    [Google Scholar]
  15. SeverinoP. AndreaniT. MacedoA.S. FangueiroJ.F. SantanaM.H.A. SilvaA.M. SoutoE.B. Current state-of-art and new trends on lipid nanoparticles (SLN and NLC) for oral drug delivery.J. Drug Deliv.2012201211010.1155/2012/75089122175030
    [Google Scholar]
  16. PaliwalR. PaliwalS.R. KenwatR. KurmiB.D. SahuM.K. Solid lipid nanoparticles: a review on recent perspectives and patents.Expert Opin. Ther. Pat.202030317919410.1080/13543776.2020.172064932003260
    [Google Scholar]
  17. PetersR ten DamG BouwmeesterH HelsperH AllmaierG KammerF Identification and characterization of organic nanoparticles in food.TrAC, Trends Anal. Chem.20113011001210.1016/j.trac.2010.10.004
    [Google Scholar]
  18. Martínez-BallestaM.C. Gil-IzquierdoÁ. García-VigueraC. Domínguez-PerlesR. Nanoparticles and controlled delivery for bioactive compounds: Outlining challenges for new “smart-foods” for health.Foods2018757210.3390/foods705007229735897
    [Google Scholar]
  19. SamadarsiR. MishraD. DuttaD. Mangiferin nanoparticles fortified dairy beverage as a low glycemic food product: its quality attributes and antioxidant properties.Int. J. Food Sci. Technol.202055258960010.1111/ijfs.14310
    [Google Scholar]
  20. LimJ.H. SiscoP. MudaligeT.K. Sánchez-PomalesG. HowardP.C. LinderS.W. Detection and characterization of SiO2 and TiO2 nanostructures in dietary supplements.J. Agric. Food Chem.201563123144315210.1021/acs.jafc.5b0039225738207
    [Google Scholar]
  21. ZahediS.M. KarimiM. Teixeira da SilvaJ.A. The use of nanotechnology to increase quality and yield of fruit crops.J. Sci. Food Agric.20201001253110.1002/jsfa.1000431471903
    [Google Scholar]
  22. GuR. YunH. ChenL. WangQ. HuangX. Regenerated cellulose films with amino-terminated hyperbranched polyamic anchored nanosilver for active food packaging.ACS Appl. Bio Mater.20203160261010.1021/acsabm.9b0099235019404
    [Google Scholar]
  23. LiM. LiuH. DangF. HintelmannH. YinB. ZhouD. Alteration of crop yield and quality of three vegetables upon exposure to silver nanoparticles in sludge-amended soil.ACS Sustain. Chem.& Eng.2020862472248010.1021/acssuschemeng.9b06721
    [Google Scholar]
  24. Zorraquín-PeñaI. CuevaC. BartoloméB. Moreno-ArribasM.V. Silver nanoparticles against food borne bacteria. Effects at intestinal level and health limilations.Microorganisms20208113210.3390/microorganisms801013231963508
    [Google Scholar]
  25. SerayM. SkenderA. Hadj-HamouA.S. Kinetics and mechanisms of Zn2? Release from antimicrobial food packaging based on poly (butyleneadipate-co-terephthalate) and zinc oxide nanoparticles.Polym. Bull.202010.1007/s00289‑020‑03145‑z
    [Google Scholar]
  26. ZhangX XiaoG WangY Preparation of chitosan-TiO2 composite film with efficient antimicrobial activities under visible light for food packaging applications.Carbohy. Polym201716910110710.1016/j.carbpol.2017.03.073
    [Google Scholar]
  27. ZhuZ. ZhangY. ZhangY. ShangY. ZhangX. WenY. Preparation of PAN@TiO2 Nanofibers for fruit packaging materials with efficient photocatalytic degradation of ethylene.Materials (Basel)201912689610.3390/ma1206089630889799
    [Google Scholar]
  28. Hernández-HernándezH. Quiterio-GutiérrezT. Cadenas-PliegoG. Ortega-OrtizH. Hernández-FuentesA.D. Cabrera de la FuenteM. Valdés-ReynaJ. Juárez-MaldonadoA. Impact of selenium and copper nanoparticles on yield, antioxidant system, and fruit quality of tomato plants.Plants201981035510.3390/plants810035531546997
    [Google Scholar]
  29. YadavS. MehrotraG.K. DuttaP.K. Chitosan based ZnO nanoparticles loaded gallic-acid films for active food packaging.Food Chem.202133412760510.1016/j.foodchem.2020.12760532738726
    [Google Scholar]
  30. VenkatasubbuGD BaskarR AnusuyaT Toxicity mechanism of titanium dioxide and zinc oxide nanoparticles against food pathogens.Colloids Surfaces Biointerfaces201614860060610.1016/j.colsurfb.2016.09.042
    [Google Scholar]
  31. MullaM.Z. RahmanM.R.T. MarcosB. TiwariB. PathaniaS. Pathania (2021) Polylacticacid (Pla) nanocomposites: Effect of inorganic nanoparticles reinforcement on its performance and food packaging applications.Molecules2021267196710.3390/molecules2607196733807351
    [Google Scholar]
  32. AmaregoudaY KamannaK GastiT KumbarV Enhanced functional properties of biodegradable Polyvinylalcohol/carboxymethyl cellulose (PVA/CMC) composite films reinforced with L-alanine surface modified CuO nanorods.J Polym Environ202230625597810.1007/s10924‑022‑02377‑6
    [Google Scholar]
  33. XuC. ChenC. WuD. The starch nanocrystal filled biodegradable poly(ε-caprolactone) composite membrane with highly improved properties.Carbohydr. Polym.201818211512210.1016/j.carbpol.2017.11.00129279105
    [Google Scholar]
  34. ArrietaM.P. LópezJ. RayónE. JiménezA. Disintegrability under composting conditions of plasticized PLA–PHB blends.Polym. Degrad. Stabil.201410830731810.1016/j.polymdegradstab.2014.01.034
    [Google Scholar]
  35. BastarracheaL. DhawanS. SablaniS.S. Engineering properties of polymeric-based antimicrobial films for food packaging: a review.Food Eng. Rev.201132799310.1007/s12393‑011‑9034‑8
    [Google Scholar]
  36. AlehosseiniA del PulgarE-MG FabraMJ Gómez-MascaraqueLG Benítez-PáezA Sarabi-JamabM Agarose-based freeze-dried capsules prepared by the oil-induced biphasic hydrogel particle formation approach for the protection of sensitive probiotic bacteria.Food Hydrocoll2019874879610.1016/j.foodhyd.2018.08.032
    [Google Scholar]
  37. SharifiA. GolestanL. Sharifzadeh BaeiM. Studying the enrichment of icecream with alginate nanoparticles including Fe and Zn salts.Journal of Nanoparticles201320131510.1155/2013/754385
    [Google Scholar]
  38. MartyJ.J. OppenheimR.C. SpeiserP. Nanoparticles--a new colloidal drug delivery system.Pharm. Acta Helv.19785311723643885
    [Google Scholar]
  39. LefebvreF. GoreckiS. BareilleR. AmedeeJ. BordenaveL. RabaudM. New artificial connective matrix-like structure made of elastin solubilized peptides and collagens: elaboration, biochemical and structural properties.Biomaterials1992131283310.1016/0142‑9612(92)90091‑21543804
    [Google Scholar]
  40. ElzoghbyA.O. SamyW.M. ElgindyN.A. Albumin-based nanoparticles as potential controlled release drug delivery systems.J. Control. Release2012157216818210.1016/j.jconrel.2011.07.03121839127
    [Google Scholar]
  41. KhalafH. SharobaA. El-TanahiH. MorsyM. Stability of antimicrobial activity of pullulan edible films incorporated with nanoparticles and essential oils and their impact on turkey deli meat quality.Journal of Food and Dairy Sciences201341155757310.21608/jfds.2013.72104
    [Google Scholar]
  42. MohamedS.A.A. El-SakhawyM. El-SakhawyM.A.M. Polysaccharides, protein and lipid-based natural edible films in food packaging: A review.Carbohydr. Polym.202023811617810.1016/j.carbpol.2020.11617832299560
    [Google Scholar]
  43. LiJ.M. NieS.P. The functional and nutritional aspects of hydrocolloids in foods.Food Hydrocoll.201653466110.1016/j.foodhyd.2015.01.035
    [Google Scholar]
  44. ArserimUcar DK, KonukTakma D, Korel F. Exopolysaccharides in food processing industrials.in Microbial exopolysaccharides as novel and significant biomaterials.Springer202120123410.1007/978‑3‑030‑75289‑7_8
    [Google Scholar]
  45. EzhilarasiP.N. KarthikP. ChhanwalN. AnandharamakrishnanC. Nanoencapsulation techniques for food bioactive components: a review.Food Bioprocess Technol.20136362864710.1007/s11947‑012‑0944‑0
    [Google Scholar]
  46. BhardwajM. SaxenaD.C. Preparation of organic and inorganic nanoparticles and their subsequent application in nanocomposites for food packaging systems: A review.Indian J. Sci. Technol.201710311810.17485/ijst/2017/v10i31/113864
    [Google Scholar]
  47. KumarH Kuča K, Bhatia SK, et al. Applications of nanotechnology in sensor-based detection of food borne pathogens.Sensors (Basel)2020207196610.3390/s20071966 32244581
    [Google Scholar]
  48. SulaimanN.S. RovinaK. JosephV.M. Classification, extraction and current analytical approaches for detection of pesticides in various food products.J. Verbraucherschutz Lebensmsicherh.201914320922110.1007/s00003‑019‑01242‑4
    [Google Scholar]
  49. AriyarathnaI.R. RajakarunaR.M.P.I. KarunaratneD.N. The rise of inorganic nanomaterial implementation in food applications.Food Control20177725125910.1016/j.foodcont.2017.02.016
    [Google Scholar]
  50. CasatiR. VedaniM. Metal matrix composites reinforced by nano-particles—a review.Metals (Basel)201441658310.3390/met4010065
    [Google Scholar]
  51. ChaudhryQ ScotterM BlackburnJ RossB BoxallA CastleL Applications and implications of nanotechnologies for the food sector. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 20082532415810.1080/02652030701744538
    [Google Scholar]
  52. DangX. CaoX. KeL. MaY. AnJ. WangF. Combination of cellulose nanofibers and chain-end-functionalized polyethylene and their applications in nanocomposites.J. Appl. Polym. Sci.2017134424538710.1002/app.45387
    [Google Scholar]
  53. HandfordC.E. DeanM. HenchionM. SpenceM. ElliottC.T. CampbellK. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks.Trends Food Sci. Technol.201440222624110.1016/j.tifs.2014.09.007
    [Google Scholar]
  54. EaliaS.A.M. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP conference series:materials science and engineering.IOP Publishin201710.1088/1757‑899X/263/3/032019
    [Google Scholar]
  55. DrexlerK.E. Molecular engineering: An approach to the development of general capabilities for molecular manipulation.Proc. Natl. Acad. Sci. USA19817895275527810.1073/pnas.78.9.5275 16593078
    [Google Scholar]
  56. Shatrohan LalR.K. LalS. Synthesis of organic nanoparticles and their applications in drug delivery and food nanotechnology: a review.Journal of Nanomaterials & Molecular Nanotechnology201434410.4172/2324‑8777.1000150
    [Google Scholar]
  57. McClementsD.J. XiaoH. Is nano safe in foods? Establishing the factors impacting the gastrointestinal fate and toxicity of organic and inorganic food-grade nanoparticles.NPJ Sci. Food20171111310.1038/s41538‑017‑0005‑1
    [Google Scholar]
  58. PirsaS. SharifiK. A review of the applications of bioproteins in the preparation of biodegradable films and polymers.Journal of Chemistry Letters202012475810.22034/JCHEMLETT.2020.111200
    [Google Scholar]
  59. IjazI. GilaniE. NazirA. BukhariA. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles.Green Chem. Lett. Rev.202013322324510.1080/17518253.2020.1802517
    [Google Scholar]
  60. SinghJ. DuttaT. KimK.H. RawatM. SamddarP. KumarP. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation.J. Nanobiotechnology20181618410.1186/s12951‑018‑0408‑4 30373622
    [Google Scholar]
  61. KheadrE.E. VuillemardJ.C. El-DeebS.A. Acceleration of Cheddar cheese lipolysis by using liposome-entrapped Upases.J. Food Sci.200267248549210.1111/j.1365‑2621.2002.tb10624.x
    [Google Scholar]
  62. MantravadiP. KaleshK. DobsonR. HudsonA. ParthasarathyA. The Quest for Novel Antimicrobial Compounds: Emerging Trends in Research, Development, and Technologies.Antibiotics (Basel)201981810.3390/antibiotics8010008 30682820
    [Google Scholar]
  63. DuncanT.V. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. J Colloid Interface Sci2011363112410.1016/j.jcis.2011.07.017 21824625
    [Google Scholar]
  64. YadaR.Y. BuckN. CanadyR. Engineered nanoscale food ingredients:evaluation of current knowledge on material characteristics relevant to uptake from the gastrointestinal tract.Compr. Rev. Food Sci. Food Saf.201413473074410.1111/1541‑4337.12076 33412698
    [Google Scholar]
  65. UmmiA.S. SiddiqueeS. Nanotechnology applications in food: opportunities and challenges in food industry.Nanotechnology: Applications in Energy, Drug and Food. SiddiqueeS. MelvinG. RahmanM. ChamSpringer201910.1007/978‑3‑319‑99602‑8_15
    [Google Scholar]
  66. ThiesC. Nanocapsules as delivery systems in the food, beverage and nutraceutical industries.Nanotechnology in the Food, Beverage and Nutraceutical Industries. HuangQ. Woodhead Publishing201210.1533/9780857095657.2.208
    [Google Scholar]
  67. ZhongQ. ChenH. ZhangY. KangP. WangW. Delivery systems for food applications: an overview of preparation methods and encapsulation, release, and dispersion properties.Nanotechnology and Functional Foods: Effective Delivery of Bioactive Ingredients.First Edition SabliovC.M. ChenH. YadaR.Y. John Wiley & Sons, Ltd.20159111110.1002/9781118462157.ch6
    [Google Scholar]
  68. McClementsD.J. LiY. Structured emulsion-based delivery systems: Controlling the digestion and release of lipophilic food components.Adv. Colloid Interface Sci.2010159221322810.1016/j.cis.2010.06.010 20638649
    [Google Scholar]
  69. ChoH.T. Salvia-TrujilloL. KimJ. ParkY. XiaoH. McClementsD.J. Droplet size and composition of nutraceutical nanoemulsions influences bioavailability of long chain fatty acids and Coenzyme Q10.Food Chem.201415611712210.1016/j.foodchem.2014.01.084 24629946
    [Google Scholar]
  70. AswathanarayanJ.B. VittalR.R. Nanoemulsions and their potential applications in food industry.Front. Sustain. Food Syst.20193959510.3389/fsufs.2019.00095
    [Google Scholar]
  71. McClementsD.J. Edible nanoemulsions: fabrication, properties, and functional performance.Soft Matter2011762297231610.1039/C0SM00549E
    [Google Scholar]
  72. ChenH. GuanY. ZhongQ. Microemulsions based on a sunflower lecithin-Tween 20 blend have high capacity for dissolving peppermint oil and stabilizing coenzyme Q10.J. Agric. Food Chem.201563398398910.1021/jf504146t 25560905
    [Google Scholar]
  73. AlexandreE.M.C. LourençoR.V. BittanteA.M.Q.B. MoraesI.C.F. SobralP.J.A. Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications.Food Packag. Shelf Life201610879610.1016/j.fpsl.2016.10.004
    [Google Scholar]
  74. deCastroAP FernandesG FrancoOL Insights into novel antimicrobial compounds and antibiotic resistance genes from soil metagenomes. Frontiers inmicrobiology.2014548910.3389/fmicb.2014.00489
    [Google Scholar]
  75. D’AndreaM.M. FrazianoM. ThallerM.C. RossoliniG.M. The urgent need for novel antimicrobial agents and strategies to fight antibiotic resistance.Antibiotics (Basel)20198425410.3390/antibiotics8040254 31817707
    [Google Scholar]
  76. AhariH. SoufianiS.P. Smart and active food packaging: insights in novel food packaging.Front. Microbiol.20211265723310.3389/fmicb.2021.657233 34305829
    [Google Scholar]
  77. OtoniC.G. MouraM.R. AouadaF.A. Antimicrobial and physical-mechanical properties of pectin/papaya puree/cinnamaldehyde nanoemulsion edible composite films.Food Hydrocoll.20144118819410.1016/j.foodhyd.2014.04.013
    [Google Scholar]
  78. Salvia-TrujilloL. Rojas-GraüM.A. Soliva-FortunyR. Martín-BellosoO. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut Fuji apples.Postharvest Biol. Technol.201510581610.1016/j.postharvbio.2015.03.009
    [Google Scholar]
  79. ÖzogulY. El AbedN. ÖzogulF. Antimicrobial effect of laurel essential oil nanoemulsion on food-borne pathogens and fish spoilage bacteria.Food Chem.202236813083110.1016/j.foodchem.2021.130831 34403999
    [Google Scholar]
  80. VasileC. BaicanM. Progresses in food packaging, food quality, and safety—controlled-release Antioxidant and/or antimicrobial packaging.Molecules2021265126310.3390/molecules26051263 33652755
    [Google Scholar]
  81. VasileC. Polymeric nanocomposites and nanocoatings for food packaging: A review.Materials (Basel)20181110183410.3390/ma11101834 30261658
    [Google Scholar]
  82. Martín-RocaJ. Horcajo-FernándezM. ValerianiC. GámezF. Martínez-PedreroF. Field-pulse-induced annealing of 2d colloidal polycrystals.Nanomaterials (Basel)202313339710.3390/nano13030397 36770358
    [Google Scholar]
  83. SharmaA. PathakD. PatilD.S. DhimanN. BhullarV. MahajanA. Electrospun PVP/TiO2 nanofibers for filtration and possible protection from various viruses like COVID-19.Technologies (Basel)2021948910.3390/technologies9040089
    [Google Scholar]
  84. AbidN. KhanA.M. ShujaitS. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review.Adv. Colloid Interface Sci.202230010259710.1016/j.cis.2021.102597 34979471
    [Google Scholar]
  85. PathakD. BediR.K. KaurD. KumarR. Fabrication of densely distributed silver indium selenide nanorods by using Ag+ ion irradiation.J. Korean Phys. Soc.201057347447910.3938/jkps.57.474
    [Google Scholar]
  86. PathakD. WagnerT. ŠubrtJ. KupcikJ. Characterization of mechanically synthesized AgInSe 2 nanostructures.Can. J. Phys.2014927/878979610.1139/cjp‑2013‑0546
    [Google Scholar]
  87. ShendeP KastureP GaudRS Nanoflowers: the future trend of nanotechnology for multi-applications.Artif Cells Nanomed Biotechnol201846sup14132210.1080/21691401.2018.142881229361844
    [Google Scholar]
  88. BrinkmannG. Van CleemputN. Classification and generation of nanocones.Discrete Appl. Math.2011159151528153910.1016/j.dam.2011.06.014
    [Google Scholar]
  89. KhanalB.P. ZubarevE.R. Gold Nanowires from Nanorods.Langmuir20203649150301503810.1021/acs.langmuir.0c02571 33259716
    [Google Scholar]
  90. PrestopinoG. OrsiniA. BarettinD. ArrabitoG. PignataroB. MedagliaP.G. Vertically aligned nanowires and quantum dots: promises and results in light energy harvesting.Materials (Basel)20231612429710.3390/ma16124297 37374481
    [Google Scholar]
  91. HosseiniA. BagheriF. MohammadiG. AzamiM. TahvilianR. Design and preparation of oral jelly candies of acetaminophen and its nanoparticles.Appl. Nanosci.202212110110710.1007/s13204‑021‑02231‑6
    [Google Scholar]
  92. SripadaK. WierzbickaA. AbassK. A children’s health perspective on nano- and microplastics.Environ. Health Perspect.2022130101500110.1289/EHP9086 35080434
    [Google Scholar]
  93. AshfaqA. KhursheedN. FatimaS. AnjumZ. YounisK. Application of nanotechnology in food packaging: Pros and Cons.Journal of Agriculture and Food Research2022710027010.1016/j.jafr.2022.100270
    [Google Scholar]
  94. BiswasR. AlamM. SarkarA. HaqueM.I. HasanM.M. HoqueM. Application of nanotechnology in food: processing, preservation, packaging and safety assessment.Heliyon2022811e1179510.1016/j.heliyon.2022.e11795 36444247
    [Google Scholar]
  95. OzcakirG. Applications of nanomaterials in food industry: A review.Mater Proc2023142210.3390/IOCN2023‑14470
    [Google Scholar]
  96. ReinaG. PengS. JacqueminL. AndradeA.F. BiancoA. Hard nanomaterials in time of viral pandemics.ACS Nano20201489364938810.1021/acsnano.0c04117 32667191
    [Google Scholar]
  97. TsoiK.M. MacParlandS.A. MaX.Z. Mechanism of hard-nanomaterial clearance by the liver.Nat. Mater.201615111212122110.1038/nmat4718 27525571
    [Google Scholar]
  98. ChaudhryQ. CastleL. Food applications of nanotechnologies: An overview of opportunities and challenges for developing countries.Trends Food Sci. Technol.2011221159560310.1016/j.tifs.2011.01.001
    [Google Scholar]
  99. HuangJ. ZhanG. ZhengB. Biogenic silver nanoparticles by Cacumen Platycladi extract: Synthesis, formation mechanism, and antibacterial activity.Ind. Eng. Chem. Res.201150159095910610.1021/ie200858y
    [Google Scholar]
  100. BradleyE.L. CastleL. ChaudhryQ. Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries.Trends Food Sci. Technol.2011221160461010.1016/j.tifs.2011.01.002
    [Google Scholar]
  101. CushenM. KerryJ. MorrisM. Cruz-RomeroM. CumminsE. Nanotechnologies in the food industry – Recent developments, risks and regulation.Trends Food Sci. Technol.2012241304610.1016/j.tifs.2011.10.006
    [Google Scholar]
  102. MominJ. JayakumarC. PrajapatiJ. Potential of nanotechnology in functional foods.Emir. J. Food Agric.20132511010.9755/ejfa.v25i1.9368
    [Google Scholar]
  103. SinghR. DuttS. SharmaP. Future of nanotechnology in food industry: challenges in processing, packaging, and food safety.Glob. Chall.202374220020910.1002/gch2.202200209 37020624
    [Google Scholar]
  104. LingleR. The nanotechnology market for food packaging is expected to increase 15% yearly driven by food waste-reducing innovations in material science and technology.Packaging Digest2023
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385260631231016102111
Loading
/content/journals/pnt/10.2174/0122117385260631231016102111
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): food preservation; food products; nanoparticles; nanosensors; nanotechnology; Shelf life
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test