Skip to content
2000
image of Cracking the Code: How Nano-Informatics is Crafting Intelligent Nano-Weapons to Outsmart Multiple Drug Resistance (MDR)

Abstract

Introduction

Multiple Drug Resistance (MDR) is one of the prime concerns globally in the health sector. The emergence and proliferation of ESKAPE pathogens, along with drug resistance in cancer cells, represent a significant challenge to public health, emphasizing the need for novel therapeutics, improved infection control practices, and ongoing research to understand and combat antibiotic resistance. Addressing multiple drug resistance involves several modern therapeutic strategies, such as phage therapy, immunotherapy, combinatorial therapy, and more. Advanced diagnostic tools, effective control measures, and stringent regulatory and policy initiatives raising public awareness are also crucial.

Methods

This study scouted computational approaches, focusing on their application in nanotechnology and nano-drug systems in clinical settings. A systematic approach was employed to gather, screen, and critically analyze the relevant literature for this review.

Results

This study found that various tools and databases are evolving for reconnaissance in the field of nano-informatics, which will lead to research and development.

Discussion

This study highlights the rapid advancement of nano-informatics tools and databases, which are crucial for advancing computational approaches in nanomedicine and therapeutic research. These emerging resources support predictive analysis and integration with biological datasets, though challenges remain in data standardization, accessibility, and interoperability across platforms.

Conclusion

To mitigate multiple drug resistance, researchers are exploring various approaches, and nano-informatics can provide new insight into dealing with it. This approach will advance the development of medical devices, drug design, and delivery systems.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385383102250818052847
2025-09-12
2025-11-04
Loading full text...

Full text loading...

References

  1. Mitscher L.A. Pillai S.P. Gentry E.J. Shankel D.M. Multiple drug resistance. Med. Res. Rev. 1999 19 6 477 496 10.1002/(SICI)1098‑1128(199911)19:6<477:AID‑MED2>3.0.CO;2‑W 10557366
    [Google Scholar]
  2. Domingues F. Rebelo J.S. Dionيsio F, Nogueira T. Multi-drug resistance in bacterial genomes: A comprehensive bioinformatic analysis. Int. J. Mol. Sci. 2023 24 14 11438 8 10.3390/ijms241411438 37511196
    [Google Scholar]
  3. Zhou Z. Liu Y. Jiang X. Metformin modified chitosan as a multi-functional adjuvant to enhance cisplatin-based tumor chemotherapy efficacy. Int. J. Biol. Macromol. 2023 224 797 809 10.1016/j.ijbiomac.2022.10.167
    [Google Scholar]
  4. Zheng C. Luo W. Liu Y. Killing three birds with one stone: Multi-stage metabolic regulation mediated by clinically usable berberine liposome to overcome photodynamic immunotherapy resistance. Chem. Eng. J. 2023 454 140164 10.1016/j.cej.2022.140164
    [Google Scholar]
  5. Parmanik A. Das S. Kar B. Bose A. Dwivedi G.R. Pandey M.M. Current treatment strategies against multidrug-resistant bacteria: A review. Curr. Microbiol. 2022 79 12 388 10.1007/s00284‑022‑03061‑7 36329256
    [Google Scholar]
  6. Nandhini P. Kumar P. Mickymaray S. Alothaim A.S. Somasundaram J. Rajan M. Recent developments in methicillin-resistant Staphylococcus aureus (MRSA) treatment: A review. Antibiotics 2022 11 5 606 10.3390/antibiotics11050606 35625250
    [Google Scholar]
  7. Yu W. MacKerell A.D. Computer-aided drug design methods. Methods Mol. Biol. 2017 ••• 85 106 10.1007/978‑1‑4939‑6634‑9_5
    [Google Scholar]
  8. Niazi S.K. Mariam Z. Computer-aided drug design and drug discovery: A prospective analysis. Pharmaceuticals 2023 17 1 22 2 10.3390/ph17010022 38256856
    [Google Scholar]
  9. De Oliveira D.M.P. Forde B.M. Kidd T.J. Antimicrobial resistance in ESKAPE pathogens. Clin. Microbiol. Rev. 2020 33 3 e00181 e19 10.1128/CMR.00181‑19 32404435
    [Google Scholar]
  10. Nikaido H. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1998 1 5 516 523 10.1016/S1369‑5274(98)80083‑0 10066525
    [Google Scholar]
  11. Patil A. Banerji R. Kanojiya P. Saroj S.D. Foodborne ESKAPE biofilms and antimicrobial resistance: Lessons learned from clinical isolates. Pathog. Glob. Health 2021 115 6 339 356 10.1080/20477724.2021.1916158 33851566
    [Google Scholar]
  12. Wu Q. Yang Z. Nie Y. Shi Y. Fan D. Multi-drug resistance in cancer chemotherapeutics: Mechanisms and lab approaches. Cancer Lett. 2014 347 2 159 166 10.1016/j.canlet.2014.03.013 24657660
    [Google Scholar]
  13. Bukowski K. Kciuk M. Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci. 2020 21 9 3233 10.3390/ijms21093233 32370233
    [Google Scholar]
  14. O’Driscoll L. Clynes M. Molecular markers of multiple drug resistance in breast cancer. Chemotherapy 2006 52 3 125 129 10.1159/000092540 16612055
    [Google Scholar]
  15. Mulani M.S. Kamble E.E. Kumkar S.N. Tawre M.S. Pardesi K.R. Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review. Front. Microbiol. 2019 10 539 539 10.3389/fmicb.2019.00539 30988669
    [Google Scholar]
  16. Shan X. Gong X. Li J. Wen J. Li Y. Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B 2022 12 7 3028 3048 10.1016/j.apsb.2022.02.025 35865096
    [Google Scholar]
  17. Malik S. Muhammad K. Waheed Y. Nanotechnology: A Revolution in Modern Industry. Molecules 2023 28 2 661 10.3390/molecules28020661 36677717
    [Google Scholar]
  18. Anjum S. Ishaque S. Fatima H. Emerging applications of nanotechnology in healthcare systems: Grand challenges and perspectives. Pharmaceuticals 2021 14 8 707 10.3390/ph14080707
    [Google Scholar]
  19. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  20. Mody V.V. Siwale R. Singh A. Mody H.R. Introduction to metallic nanoparticles. J. Pharm. Bioallied Sci. 2010 2 4 282 289 10.4103/0975‑7406.72127 21180459
    [Google Scholar]
  21. Zhang X-F. Liu Z-G. Shen W. Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016 17 9 1534 10.3390/ijms17091534 27649147
    [Google Scholar]
  22. Dykman L.A. Khlebtsov N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae 2011 3 2 34 55 10.32607/20758251‑2011‑3‑2‑34‑55
    [Google Scholar]
  23. Crisan M.C. Teodora M. Lucian M. Copper nanoparticles: Synthesis and characterization, physiology, toxicity and antimicrobial applications. Appl. Sci. 2021 12 1 141 10.3390/app12010141
    [Google Scholar]
  24. Gharpure S. Ankamwar B. Synthesis and antimicrobial properties of zinc oxide nanoparticles. J. Nanosci. Nanotechnol. 2020 20 10 5977 5996 10.1166/jnn.2020.18707 32384943
    [Google Scholar]
  25. Wiesmann N. Tremel W. Brieger J. Zinc oxide nanoparticles for therapeutic purposes in cancer medicine. J. Mater. Chem. B Mater. Biol. Med. 2020 8 23 4973 4989 10.1039/D0TB00739K 32427264
    [Google Scholar]
  26. Girija A.R. Balasubramanian S. Cowin A.J. Nanomaterials-based drug delivery approaches for wound healing. Curr. Pharm. Des. 2022 28 9 711 726 10.2174/1381612828666220328121211 35345993
    [Google Scholar]
  27. Durmus N.G. Webster T.J. Eradicating antibiotic-resistant biofilms with silver-conjugated superparamagnetic iron oxide nanoparticles. Adv. Healthc. Mater. 2013 2 1 165 171 10.1002/adhm.201200215 23184367
    [Google Scholar]
  28. Chen Y. Huang X. Luo Y. Chang Y. Hsieh Y-Z. Hsu H-Y. Non-metallic nanomaterials in cancer theranostics: A review of silica- and carbon-based drug delivery systems. Sci. Technol. Adv. Mater. 2013 14 4 044407 7 10.1088/1468‑6996/14/4/044407
    [Google Scholar]
  29. Roy M. Roy A. Rustagi S. Pandey N. An overview of nanomaterial applications in pharmacology. BioMed Res. Int. 2023 2023 1 4838043 10.1155/2023/4838043 37388336
    [Google Scholar]
  30. Maleki A. He J. Bochani S. Nosrati V. Shahbazi M-A. Guo B. Multifunctional photoactive hydrogels for wound healing acceleration. ACS Nano 2021 15 12 18895 18930 10.1021/acsnano.1c08334 34870413
    [Google Scholar]
  31. Allen T.M. Cullis P.R. Liposomal drug delivery systems: From concept to clinical applications. Adv. Drug Deliv. Rev. 2013 65 1 36 48 10.1016/j.addr.2012.09.037 23036225
    [Google Scholar]
  32. Zielińska A. Carreiró F. Oliveira A.M. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  33. Sousa M.G.C. Rezende T.M.B. Franco O.L. Nanofibers as drug-delivery systems for antimicrobial peptides. Drug Discov. Today 2021 26 8 2064 2074 10.1016/j.drudis.2021.03.008 33741497
    [Google Scholar]
  34. Pentlavalli S. Coulter S. Laverty G. Peptide nanomaterials for drug delivery applications. Curr. Protein Pept. Sci. 2020 21 4 401 412 10.2174/1389203721666200101091834 31893991
    [Google Scholar]
  35. Rode A. Sharma S. Mishra D.K. Carbon nanotubes: Classification, method of preparation and pharmaceutical application. Curr. Drug Deliv. 2018 15 5 620 629 10.2174/1567201815666171221124711 29268686
    [Google Scholar]
  36. Zhong X. Tong C. Liu T. Silver nanoparticles coated by green graphene quantum dots for accelerating the healing of MRSA -infected wounds. Biomater. Sci. 2020 8 23 6670 6682 10.1039/D0BM01398F 33084664
    [Google Scholar]
  37. Maojo V. Fritts M. Martin-Sanchez F. Nanoinformatics: Developing new computing applications for nanomedicine. Comput. Sci. Eng. 2012 94 6 521 539 10.1007/s00607‑012‑0191‑2 22942787
    [Google Scholar]
  38. González-Nilo F. Pérez-Acle T. Guínez-Molinos S. Nanoinformatics: An emerging area of information technology at the intersection of bioinformatics, computational chemistry and nanobiotechnology. Biol. Res. 2011 44 1 43 51 10.4067/S0716‑97602011000100006 21720680
    [Google Scholar]
  39. Maojo V. Fritts M. de la Iglesia D. Nanoinformatics: A new area of research in nanomedicine. Int. J. Nanomedicine 2012 7 3867 3890 10.2147/IJN.S24582
    [Google Scholar]
  40. Nanoinformatics: A newly introduced tool for research. Indian J. Biochem. Biophys. 2022 10.56042/ijbb.v59i4.61939
    [Google Scholar]
  41. Chopra A. Shan L. Eckelman W.C. Molecular Imaging and Contrast Agent Database (MICAD): Evolution and progress. Mol. Imaging Biol. 2012 14 1 4 13 10.1007/s11307‑011‑0521‑3 21989943
    [Google Scholar]
  42. Morris S.A. Gaheen S. Lijowski M. CaNanoLab: A nanomaterial data repository for biomedical research. 2014 https://www.computer.org/csdl/csdl/proceedings-article/bibm/2014/06999371/12OmNwdtwcB 10.1109/BIBM.2014.6999371
    [Google Scholar]
  43. Karcher S.C. Harper B.J. Harper S.L. Hendren C.O. Wiesner M.R. Lowry G.V. Visualization tool for correlating nanomaterial properties and biological responses in zebrafish. Environ. Sci. Nano 2016 3 6 1280 1292 10.1039/C6EN00273K
    [Google Scholar]
  44. Lo Y-C. Torres J.Z. Chemical Similarity Networks for Drug Discovery. In:Special Topics in Drug Discovery. IntechOpen 2016 10.5772/65106
    [Google Scholar]
  45. Skovlund Madsen J. Geisler M. Berri Lotz M. In-line characterization of nanostructures produced by roll-to-roll nanoimprinting. Opt. Express 2021 29 3 3882 3890 10.1364/OE.411669 33770978
    [Google Scholar]
  46. Dundar Arisoy F. Czolkos I. Johansson A. Nielsen T. Watkins J.J. Low-cost, durable master molds for thermal-NIL, UV-NIL, and injection molding. Nanotechnology 2020 31 1 015302 10.1088/1361‑6528/ab4507 31530757
    [Google Scholar]
  47. Woodward R.T. The Organisation for Economic Co-operation and Development. OECD 2022 10.4324/9781351025867
    [Google Scholar]
  48. Kulinowski K.M. The International Council on nanotechnology: A new model of engagement. Nanoscale 2007 393 411 10.1002/9780470165874.ch22
    [Google Scholar]
  49. Pibida L Regits W Diaz OG Ayala LM Nava HM Bilateral comparison of the activity concentration for a standardized 137Cs solution between the National Institute of Standards Technology (NIST) and the National Institute of Nuclear Research. ININ 2021 10.6028/NIST.TN.2192
    [Google Scholar]
  50. National Standards Institute 2025 Available from: https://www.ncbi.nlm.nih.gov/books/NBK218374/
  51. Thomas D.G. Pappu R.V. Baker N.A. NanoParticle ontology for cancer nanotechnology research. J. Biomed. Inform. 2011 44 1 59 74 10.1016/j.jbi.2010.03.001 20211274
    [Google Scholar]
  52. Li X. Hu D. Dang Y. Nano Mapper: An internet knowledge mapping system for nanotechnology development. J. Nanopart. Res. 2009 11 3 529 552 10.1007/s11051‑008‑9491‑z 21170121
    [Google Scholar]
  53. Ji Z. Guo W. Sakkiah S. Liu J. Patterson T.A. Hong H. Nanomaterial databases: Data sources for promoting design and risk assessment of nanomaterials. Nanomaterials 2021 11 6 1599 10.3390/nano11061599 34207026
    [Google Scholar]
  54. Afantitis A. Melagraki G. Isigonis P. NanoSolveIT Project: Driving nanoinformatics research to develop innovative and integrated tools for in silico nanosafety assessment. Comput. Struct. Biotechnol. J. 2020 18 583 602 10.1016/j.csbj.2020.02.023 32226594
    [Google Scholar]
  55. 2023 Available from:https://pubs.aip.org/aip/apm/article/4/5/053204/121545/Perspective-NanoMine-A-material-genome-approach
  56. Brinson L.C. Deagen M. Chen W. Polymer nanocomposite data: Curation, frameworks, access, and potential for discovery and design. ACS Macro Lett. 2020 9 8 1086 1094 10.1021/acsmacrolett.0c00264 35653211
    [Google Scholar]
  57. Maojo V. Martin-Sanchez F. Kulikowski C. Rodriguez-Paton A. Fritts M. Nanoinformatics and DNA-based computing: Catalyzing nanomedicine. Pediatr. Res. 2010 67 5 481 489 10.1203/PDR.0b013e3181d6245e 20118825
    [Google Scholar]
  58. Nwankwo W. Ukhurebor K.E. Nanoinformatics: Opportunities and challenges in the development and delivery of healthcare products in developing countries. IOP Conf. Ser. Earth Environ. Sci. 2021 655 1 012018 10.1088/1755‑1315/655/1/012018
    [Google Scholar]
  59. Pushpakom S. Iorio F. Eyers P.A. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019 18 1 41 58 10.1038/nrd.2018.168 30310233
    [Google Scholar]
  60. Parvathaneni V. Kulkarni N.S. Muth A. Gupta V. Drug repurposing: A promising tool to accelerate the drug discovery process. Drug Discov. Today 2019 24 10 2076 2085 10.1016/j.drudis.2019.06.014 31238113
    [Google Scholar]
  61. Tan G.S.Q. Sloan E.K. Lambert P. Kirkpatrick C.M.J. Ilomäki J. Drug repurposing using real-world data. Drug Discov. Today 2023 28 1 103422 10.1016/j.drudis.2022.103422 36341896
    [Google Scholar]
  62. Jampilek J. Drug repurposing to overcome microbial resistance. Drug Discov. Today 2022 27 7 2028 2041 10.1016/j.drudis.2022.05.006 35561965
    [Google Scholar]
  63. Roessler H.I. Knoers N.V.A.M. van Haelst M.M. van Haaften G. Drug Repurposing for Rare Diseases. Trends Pharmacol. Sci. 2021 42 4 255 267 10.1016/j.tips.2021.01.003 33563480
    [Google Scholar]
  64. Hartenfeller M. Schneider G. De novo drug design. Methods Mol. Biol. 2011 672 299 323 10.1007/978‑1‑60761‑839‑3_12
    [Google Scholar]
  65. Mouchlis V.D. Afantitis A. Serra A. Advances in de novo drug design: From Conventional to machine learning methods. Int. J. Mol. Sci. 2021 22 4 1676 10.3390/ijms22041676 33562347
    [Google Scholar]
  66. Katiyar S.P. Malik V. Kumari A. Singh K. Sundar D. Fragment-based ligand designing. Methods Mol. Biol. 2018 1762 123 144 10.1007/978‑1‑4939‑7756‑7_8 29594771
    [Google Scholar]
  67. Krishnan S.R. Bung N. Vangala S.R. Srinivasan R. Bulusu G. Roy A. De novo structure-based drug design using deep learning. J. Chem. Inf. Model. 2021 10.1021/acs.jcim.0c01060 34792338
    [Google Scholar]
  68. Tong X. Liu X. Tan X. Generative models for de novo drug design. J. Med. Chem. 2021 64 19 14011 14027 10.1021/acs.jmedchem.1c00927 34533311
    [Google Scholar]
  69. Kerstjens A. De Winter H. LEADD: Lamarckian evolutionary algorithm for de novo drug design. J. Cheminform. 2022 14 1 3 10.1186/s13321‑022‑00582‑y 35033209
    [Google Scholar]
  70. Gupta R. Rai B. In-silico design of nanoparticles for transdermal drug delivery application. Nanoscale 2018 10 10 4940 4951 10.1039/C7NR07898F 29485168
    [Google Scholar]
  71. Gupta R. Srivastava D. Sahu M. Tiwari S. Ambasta R.K. Kumar P. Artificial intelligence to deep learning: Machine intelligence approach for drug discovery. Mol. Divers. 2021 25 3 1315 1360 10.1007/s11030‑021‑10217‑3 33844136
    [Google Scholar]
  72. Davenport T. Kalakota R. The potential for artificial intelligence in healthcare. Future Healthc. J. 2019 6 2 94 98 10.7861/futurehosp.6‑2‑94 31363513
    [Google Scholar]
  73. Ho D. Wang P. Kee T. Artificial intelligence in nanomedicine. Nanoscale Horiz. 2019 4 2 365 377 10.1039/C8NH00233A 32254089
    [Google Scholar]
  74. Hassanzadeh P. Atyabi F. Dinarvand R. The significance of artificial intelligence in drug delivery system design. Adv. Drug Deliv. Rev. 2019 151-152 169 190 10.1016/j.addr.2019.05.001 31071378
    [Google Scholar]
  75. Singh A.V. Ansari M.H.D. Rosenkranz D. Artificial intelligence and machine learning in computational nanotoxicology: Unlocking and empowering nanomedicine. Adv. Healthc. Mater. 2020 9 17 e1901862 10.1002/adhm.201901862 32627972
    [Google Scholar]
  76. Adir O. Poley M. Chen G. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 2020 32 13 e1901989 10.1002/adma.201901989 31286573
    [Google Scholar]
  77. Issa N.T. Stathias V. Schürer S. Dakshanamurthy S. Machine and deep learning approaches for cancer drug repurposing. Semin. Cancer Biol. 2020 10.1016/j.semcancer.2019.12.011 31904426
    [Google Scholar]
  78. Kar P. Oriola A.O. Oyedeji A.O. Molecular docking approach for biological interaction of green synthesized nanoparticles. Molecules 2024 29 11 2428 10.3390/molecules29112428 38893302
    [Google Scholar]
  79. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  80. Karplus M. Molecular dynamics simulations of biomolecules. Acc. Chem. Res. 2002 35 6 321 323 10.1021/ar020082r 12069615
    [Google Scholar]
  81. De Vivo M. Masetti M. Bottegoni G. Cavalli A. Role of molecular dynamics and related methods in drug discovery. J. Med. Chem. 2016 59 9 4035 4061 10.1021/acs.jmedchem.5b01684 26807648
    [Google Scholar]
  82. Hospital A. Goñi J.R. Orozco M. Gelpí J.L. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem. 2015 8 37 47 10.2147/AABC.S70333 26604800
    [Google Scholar]
  83. Khan R. Molecular Dynamics (MD) applications in materials science and engineering and nanotechnology. J Material Sci Chem Eng 2023 11 11 1 6 10.4236/msce.2023.1111001
    [Google Scholar]
  84. Nakamura Hiroki Molecular dynamics simulation study on interaction of nanoparticle with cell membrane. Jpn J Multiph Flow 2018 32 3 321 328 10.3811/jjmf.2018.t006
    [Google Scholar]
  85. Chiara M. Marco B. Promising strategies for overcoming cancer drug resistance: From nanomedicine to artificial intelligence. In: Zenodo. Geneva (Switzerland): CERN European Organization for Nuclear Research 2022. 10.5281/zenodo.5813137
    [Google Scholar]
  86. Ghaderzadeh M. Shalchian A. Irajian G. Sadeghsalehi H. Artificial intelligence in drug discovery and development against antimicrobial resistance: A narrative review. Iran. J. Med. Microbiol. 2024 18 3 135 147 10.30699/ijmm.18.3.135
    [Google Scholar]
  87. Chugh V. Basu A. Kaushik A. Employing nano-enabled artificial intelligence (AI)-based smart technologies for prediction, screening, and detection of cancer. Nanoscale 2024 16 11 5458 5486 10.1039/D3NR05648A
    [Google Scholar]
  88. Ur Rehman I. Ullah I. Khan H. A comprehensive systematic literature review of ML in nanotechnology for sustainable development. Nanotechnol. Rev. 2024 13 1 20240069 10.1515/ntrev‑2024‑0069
    [Google Scholar]
  89. Jolliffe I.T. Cadima J. Principal component analysis: A review and recent developments. Philos. Trans.- Royal Soc., Math. Phys. Eng. Sci. 2016 374 2065 20150202 10.1098/rsta.2015.0202 26953178
    [Google Scholar]
  90. Ortner L. Bayesian optimization of material synthesis parameters. Thesis, TECHNISCHE UNIVERSITY MÜNCHEN
    [Google Scholar]
  91. Das P. Sercu T. Wadhawan K. Accelerated antimicrobial discovery via deep generative models and molecular dynamics simulations. Nat. Biomed. Eng. 2021 5 6 613 623 10.1038/s41551‑021‑00689‑x 33707779
    [Google Scholar]
  92. Alfieri A. Anantharaman S.B. Zhang H. Jariwala D. Nanomaterials for quantum information science and engineering. Adv. Mater. 2022 35 2109621 10.1002/adma.202109621
    [Google Scholar]
  93. Ramamurthy R. Mehta C.H. Nayak U.Y. Structurally nanoengineered antimicrobial peptide polymers: Design, synthesis and biomedical applications. World J. Microbiol. Biotechnol. 2021 37 8 139 10.1007/s11274‑021‑03109‑z 34278535
    [Google Scholar]
  94. Xin Y. Huang M. Guo W.W. Huang Q. Zhang L. Nano-based delivery of RNAi in cancer therapy. Mol. Cancer 2017 16 1 134 10.1186/s12943‑017‑0683‑y 28754120
    [Google Scholar]
  95. Nadeem A.Y. Shehzad A. Islam S.U. Al-Suhaimi E.A. Lee Y.S. Mosquirix™ RTS, S/AS01 vaccine development, immunogenicity, and efficacy. Vaccines 2022 10 5 713 10.3390/vaccines10050713 35632469
    [Google Scholar]
  96. Polack F.P. Thomas S.J. Kitchin N. Safety and efficacy of the BNT162b2 mRNA Covid-19 vaccine. N. Engl. J. Med. 2020 383 27 2603 2615 10.1056/NEJMoa2034577 33301246
    [Google Scholar]
  97. Fathizadeh H. Afshar S. Masoudi M.R. SARS-CoV-2 (Covid-19) vaccines structure, mechanisms and effectiveness: A review. Int. J. Biol. Macromol. 2021 188 740 750 10.1016/j.ijbiomac.2021.08.076 34403674
    [Google Scholar]
  98. Markham A. Cabotegravir plus Rilpivirine: First approval. Drugs 2020 80 9 915 922 10.1007/s40265‑020‑01326‑8 32495274
    [Google Scholar]
  99. Kalhapure R.S. Palekar S. Patel K. Monpara J. Nanocrystals for controlled delivery: State of the art and approved drug products. Expert Opin. Drug Deliv. 2022 19 10 1303 1316 10.1080/17425247.2022.2110579 35930427
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385383102250818052847
Loading
/content/journals/pnt/10.2174/0122117385383102250818052847
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test