Skip to content
2000
image of High Flavonoid Content in Apium graveolens Nanocrystals Improves Colitis in Dextran Sodium Sulfate-induced Colitis Mice

Abstract

Aim

To develop medicinal plant nanoparticles as colitis alternative/supplementary therapy.

Background

Limited reports about the effectiveness of medicinal plant nanocrystals in treating or preventing colitis.

Objectives

We investigated the effect of nanonizing (AG) on improving dextran sodium sulfate (DSS)- induced colitis.

Methods

Nanonization was performed the bead milling process. The nanocrystal product was characterized (., particle size, zeta potential (ZP), polydispersity index (PDI) values) and freeze-dried. Total flavonoids and phenolic compounds in nanocrystal products were compared with ethanolic extract of AG (AGEE). Anti-colitis activity of AG-nanocrystal water suspensions (AGNS) was compared to AG bulk powder suspensions (AGBS). Colitis severity was determined physiological, macroscopic, and microscopic colon assessment. In addition, the fecal Enterobacteriaceae population and urine glucose levels were determined.

Results

The AG nanoparticle products are 200-400 nm, with PDI values 0.5-0.6, and ZP values -12 to -20 mV. The total flavonoid and phenolic compounds of AGNS were 115.12±4.32 ppm and 37.11±0.34 ppm, respectively. This value is higher compared to the content in AGEE. AGNS (350 mg/kg) improves physiological (., fecal blood), macroscopic (., length, diameter), and microscopic (., structure and immune cell infiltration) colon conditions in a comparable level to the positive control of 5-aminosalicylic acid (100 mg/kg). AGNS have a compelling ability to restore colon microscopic and Enterobacteriaceae population compared to AGBS (700 mg/kg). AGNS (350 mg/kg) also recovered colon permeability as marked by the lower urine glucose concentration (9.90±0.15 mg/dL) compared to colitis mice (12.43±0.09 mg/dL).

Conclusion

The nanonization of AG contributes to improved anti-colitis activities compared to AGBS. Nanonization of medicinal plants will reduce organic solvent extraction, which supports the sustainable development goals.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385358037250415034215
2025-05-12
2025-09-26
Loading full text...

Full text loading...

References

  1. Guan Q. A comprehensive review and update on the pathogenesis of inflammatory bowel disease. J. Immunol. Res. 2019 2019 1 16 10.1155/2019/7247238 31886308
    [Google Scholar]
  2. Weisman M.H. Stens O. Kim S.H. Hou J.K. Miller F.W. Dillon C.F. Inflammatory bowel disease prevalence: Surveillance data from the U.S. national health and nutrition examination survey. Prev. Med. Rep. 2023 33 102173 10.1016/j.pmedr.2023.102173 37223580
    [Google Scholar]
  3. Cleveland K.N. Torres J. Rubin D.T. What does disease progression look like in ulcerative colitis, and how might it be prevented? Gastroenterology 2022 162 5 1396 1408 10.1053/j.gastro.2022.01.023 35101421
    [Google Scholar]
  4. Newman D.J. Cragg G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020 83 3 770 803 10.1021/acs.jnatprod.9b01285 32162523
    [Google Scholar]
  5. Plaskova A. Mlcek J. New insights of the application of water or ethanol-water plant extract rich in active compounds in food. Front. Nutr. 2023 10 1118761 10.3389/fnut.2023.1118761 37057062
    [Google Scholar]
  6. Hao H. Zheng X. Wang G. Insights into drug discovery from natural medicines using reverse pharmacokinetics. Trends Pharmacol. Sci. 2014 35 4 168 177 10.1016/j.tips.2014.02.001 24582872
    [Google Scholar]
  7. Rasoanaivo P. Wright C.W. Willcox M.L. Gilbert B. Whole plant extracts versus single compounds for the treatment of malaria: Synergy and positive interactions. Malar. J. 2011 10 S1 Suppl. 1 S4 10.1186/1475‑2875‑10‑S1‑S4 21411015
    [Google Scholar]
  8. Liu D.K. Xu C.C. Zhang L. Ma H. Chen X.J. Sui Y.C. Zhang H.Z. Evaluation of bioactive components and antioxidant capacity of four celery ( Apium graveolens L.) leaves and petioles. Int. J. Food Prop. 2020 23 1 1097 1109 10.1080/10942912.2020.1778027
    [Google Scholar]
  9. Minaiyan M. Ghanadian S.M. Hossaini M. Protective effect of Apium graveolens L. (Celery) seeds extracts and luteolin on acetic acid-induced colitis in rats. Int. J. Prev. Med. 2021 12 1 100 10.4103/ijpvm.IJPVM_651_20 34729134
    [Google Scholar]
  10. Zhao D. Cao J. Jin H. Shan Y. Fang J. Liu F. Beneficial impacts of fermented celery ( Apium graveolens L.) juice on obesity prevention and gut microbiota modulation in high-fat diet fed mice. Food Funct. 2021 12 19 9151 9164 10.1039/D1FO00560J 34606532
    [Google Scholar]
  11. Soliman M.M. Nassan M.A. Aldhahrani A. Althobaiti F. Mohamed W.A. Molecular and histopathological study on the ameliorative impacts of petroselinum crispum and apium graveolens against experimental hyperuricemia. Sci. Rep. 2020 10 1 9512 10.1038/s41598‑020‑66205‑4 32528050
    [Google Scholar]
  12. Li S. Li L. Yan H. Jiang X. Hu W. Han N. Wang D. Anti‑gouty arthritis and anti‑hyperuricemia properties of celery seed extracts in rodent models. Mol. Med. Rep. 2019 20 5 4623 4633 10.3892/mmr.2019.10708 31702020
    [Google Scholar]
  13. Mohsenpour M.A. Samadani M. Shahsavani Z. Golmakani M.T. Pishdad G.R. Ekramzadeh M. The effect of celery ( Apium graveolens ) powder on cardiometabolic factors in overweight/obese individuals with type 2 diabetes mellitus: A pilot randomized, double‐blinded, placebo‐controlled clinical trial. Food Sci. Nutr. 2023 11 9 5351 5363 10.1002/fsn3.3493 37701242
    [Google Scholar]
  14. Rad S.M. Moohebati M. Mohajeri S.A. Beneficial effects of celery seed extract (Apium graveolens), as a supplement, on anxiety and depression in hypertensive patients: A randomized clinical trial. Inflammopharmacology 2023 31 1 395 410 10.1007/s10787‑022‑01083‑y 36334223
    [Google Scholar]
  15. Rad S.M. Moohebati M. Mohajeri S.A. Effect of celery ( Apium graveolens ) seed extract on hypertension: A randomized, triple‐blind, placebo‐controlled, cross‐over, clinical trial. Phytother. Res. 2022 36 7 2889 2907 10.1002/ptr.7469 35624525
    [Google Scholar]
  16. Liu Y. Liang Y. Yuhong J. Xin P. Han J.L. Du Y. Yu X. Zhu R. Zhang M. Chen W. Ma Y. Advances in nanotechnology for enhancing the solubility and bioavailability of poorly soluble drugs. Drug Des. Devel. Ther. 2024 18 1469 1495 10.2147/DDDT.S447496 38707615
    [Google Scholar]
  17. Khodarahmi M. Abbasi H. Kouchak M. Mahdavinia M. Handali S. Rahbar N. Nanoencapsulation of aptamer-functionalized 5-Fluorouracil liposomes using alginate/chitosan complex as a novel targeting strategy for colon-specific drug delivery. J. Drug Deliv. Sci. Technol. 2022 71 103299 10.1016/j.jddst.2022.103299
    [Google Scholar]
  18. Wang N. Qian R. Liu T. Wu T. Wang T. Nanoparticulate carriers used as vaccine adjuvant delivery systems. Crit. Rev. Ther. Drug Carrier Syst. 2019 36 5 449 484 10.1615/CritRevTherDrugCarrierSyst.2019027047 32421952
    [Google Scholar]
  19. Agnello L. Tortorella S. d’Argenio A. Carbone C. Camorani S. Locatelli E. Auletta L. Sorrentino D. Fedele M. Zannetti A. Franchini M.C. Cerchia L. Optimizing cisplatin delivery to triple-negative breast cancer through novel EGFR aptamer-conjugated polymeric nanovectors. J. Exp. Clin. Cancer Res. 2021 40 1 239 10.1186/s13046‑021‑02039‑w 34294133
    [Google Scholar]
  20. Giram P.S. Nimma R. Bulbule A. Yadav A. S. Gorain M. Radharani V.N.N. Garnaik B. Poly(d,l-lactide-co-glycolide) surface-anchored biotin-loaded irinotecan nanoparticles for active targeting of colon cancer. ACS Omega 2024 9 3 3807 3826 10.1021/acsomega.3c07833
    [Google Scholar]
  21. Abraham A.M. Alnemari R.M. Jacob C. Keck C.M. Plantcrystals—nanosized plant material for improved bioefficacy of medical plants. Materials 2020 13 19 4368 10.3390/ma13194368 33008071
    [Google Scholar]
  22. Royal Society of Chemistry. chemspider.com. (2024, November 23). Apiin. 2024 Retrieved from: https://www.chemspider.com/Chemical-Structure.4444321.html?rid=bee80a97-68af-43ee-b5e8-cad8a2117347&page_num=0
  23. Griffin S. Sarfraz M. Hartmann S. Pinnapireddy S. Nasim M. Bakowsky U. Keck C. Jacob C. Resuspendable powders of lyophilized chalcogen particles with activity against microorganisms. Antioxidants 2018 7 2 23 10.3390/antiox7020023 29382037
    [Google Scholar]
  24. Dolati K. Rakhshandeh H. Golestani M. Forouzanfar F. Sadeghnia R. Sadeghnia H.R. Inhibitory Effects of Apium graveolens on Xanthine Oxidase Activity and Serum Uric Acid Levels in Hyperuricemic Mice. Prev. Nutr. Food Sci. 2018 23 2 127 133 10.3746/pnf.2018.23.2.127 30018891
    [Google Scholar]
  25. García B.I. Ledezma D.A.K. Montaño M.E. Leyva S.J.A. Carrera E. Ruiz O.I. Identification and quantification of plant growth regulators and antioxidant compounds in aqueous extracts of padina durvillaei and ulva lactuca. Agronomy 2020 10 6 866 10.3390/agronomy10060866
    [Google Scholar]
  26. Sanahuja B.A. Landete P.M. Martínez D.M.I. Moya P.M.S. García V.A. Optimization of volatile compounds extraction from industrial celery (Apium graveolens) by-products by using response surface methodology and study of their potential as antioxidant sources. Foods 2021 10 11 2664 10.3390/foods10112664 34828944
    [Google Scholar]
  27. Sahid M.N.A. Dewangga A. Saputra C. Gani A.P. Apium graveolens herbs ethanolic-extract improve acetic acid–induced colitis condition in rats. Indones. J. Pharm. 2024 239 249 10.22146/ijp.7158
    [Google Scholar]
  28. Govindan N. Mohammed M.K.A. Tamilarasu S. Nano-sized plant particles for next generation green-medicine. Mater. Lett. 2022 309 131301 10.1016/j.matlet.2021.131301
    [Google Scholar]
  29. Ghosh S. Nandi S. Basu T. Nano-antibacterials using medicinal plant components: An overview. Front. Microbiol. 2022 12 768739 10.3389/fmicb.2021.768739 35273578
    [Google Scholar]
  30. Schiavi D. Francesconi S. Taddei A.R. Fortunati E. Balestra G.M. Exploring cellulose nanocrystals obtained from olive tree wastes as sustainable crop protection tool against bacterial diseases. Sci. Rep. 2022 12 1 6149 10.1038/s41598‑022‑10225‑9 35413981
    [Google Scholar]
  31. Ai S. Li Y. Zheng H. Zhang M. Tao J. Liu W. Peng L. Wang Z. Wang Y. Collision of herbal medicine and nanotechnology: A bibliometric analysis of herbal nanoparticles from 2004 to 2023. J. Nanobiotechnology 2024 22 1 140 10.1186/s12951‑024‑02426‑3 38556857
    [Google Scholar]
  32. Ren C. Gao Y. Huang Y. Peng S. Zhang X. Wang W. Wu C. Pan X. Huang Z. Nanocrystals: Versatile platform for traditional chinese medicine delivery. Curr. Drug Deliv. 2024 21 10.2174/0115672018322054240813112111 39171477
    [Google Scholar]
  33. Guo M. Qin S. Wang S. Sun M. Yang H. Wang X. Fan P. Jin Z. Herbal medicine nanocrystals: A potential novel therapeutic strategy. Molecules 2023 28 17 6370 10.3390/molecules28176370 37687199
    [Google Scholar]
  34. Chen Y. Tang Y. Li Y. Rui Y. Zhang P. Enhancing the efficacy of active pharmaceutical ingredients in medicinal plants through nanoformulations: A promising field. Nanomaterials 2024 14 19 1598 10.3390/nano14191598 39404324
    [Google Scholar]
  35. Mok Z.H. The effect of particle size on drug bioavailability in various parts of the body. Phar. Sci. Adv. 2024 2 100031 10.1016/j.pscia.2023.100031
    [Google Scholar]
  36. Schwarz J.C. Baisaeng N. Hoppel M. Löw M. Keck C.M. Valenta C. Ultra-small NLC for improved dermal delivery of coenyzme Q10. Int. J. Pharm. 2013 447 1-2 213 217 10.1016/j.ijpharm.2013.02.037 23438979
    [Google Scholar]
  37. Huang T.K. McDonald K.A. Bioreactor engineering for recombinant protein production in plant cell suspension cultures. Biochem. Eng. J. 2009 45 3 168 184 10.1016/j.bej.2009.02.008
    [Google Scholar]
  38. Abraham A.M. Quintero C. Carrillo-Hormaza L. Osorio E. Keck C.M. Production and characterization of sumac plantcrystals: Influence of high-pressure homogenization on antioxidant activity of sumac (Rhus coriaria L.). Plants 2021 10 6 1051 10.3390/plants10061051 34071143
    [Google Scholar]
  39. Sardar A. Gautam S. Sinha S. Rai D. Tripathi A.K. Dhaniya G. Mishra P.R. Trivedi R. Nanoparticles of naturally occurring PPAR-γ inhibitor betulinic acid ameliorates bone marrow adiposity and pathological bone loss in ovariectomized rats via Wnt/β-catenin pathway. Life Sci. 2022 309 121020 10.1016/j.lfs.2022.121020 36191680
    [Google Scholar]
  40. Quintanar-Guerrero D. Ganem-Quintanar A. Allémann E. Fessi H. Doelker E. Influence of the stabilizer coating layer on the purification and freeze-drying of poly(D, L-lactic acid) nanoparticles prepared by an emulsion-diffusion technique. J. Microencapsul. 1998 15 1 107 119 10.3109/02652049809006840 9463812
    [Google Scholar]
  41. Duggirala N.K. Sonje J. Yuan X. Shalaev E. Suryanarayanan R. Phase behavior of poloxamer 188 in frozen aqueous solutions – Influence of processing conditions and cosolutes. Int. J. Pharm. 2021 609 121145 10.1016/j.ijpharm.2021.121145 34600056
    [Google Scholar]
  42. Kalam M.A. Iqbal M. Alshememry A. Alkholief M. Alshamsan A. Fabrication and characterization of tedizolid phosphate nanocrystals for topical ocular application: Improved solubilization and in vitro drug release. Pharmaceutics 2022 14 7 1328 10.3390/pharmaceutics14071328 35890223
    [Google Scholar]
  43. Hosseinzadeh R. Khorsandi K. Hemmaty S. Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts. PLoS One 2013 8 3 e57353 10.1371/journal.pone.0057353 23472082
    [Google Scholar]
  44. Ai X.Y. Qin Y. Liu H.J. Cui Z.H. Li M. Yang J.H. Zhong W.L. Liu Y.R. Chen S. Sun T. Zhou H.G. Yang C. Apigenin inhibits colonic inflammation and tumorigenesis by suppressing STAT3-NF-κB signaling. Oncotarget 2017 8 59 100216 100226 10.18632/oncotarget.22145 29245972
    [Google Scholar]
  45. Rao A.S. Camilleri M. Eckert D.J. Busciglio I. Burton D.D. Ryks M. Wong B.S. Lamsam J. Singh R. Zinsmeister A.R. Urine sugars for in vivo gut permeability: Validation and comparisons in irritable bowel syndrome-diarrhea and controls. Am. J. Physiol. Gastrointest. Liver Physiol. 2011 301 5 G919 G928 10.1152/ajpgi.00168.2011 21836056
    [Google Scholar]
  46. Ghattamaneni N.K.R. Panchal S.K. Brown L. An improved rat model for chronic inflammatory bowel disease. Pharmacol. Rep. 2019 71 1 149 155 10.1016/j.pharep.2018.10.006 30550995
    [Google Scholar]
  47. Wang M. Firrman J. Zhang L. Arango-Argoty G. Tomasula P. Liu L. Xiao W. Yam K. Apigenin impacts the growth of the gut microbiota and alters the gene expression of enterococcus. Molecules 2017 22 8 1292 10.3390/molecules22081292 28771188
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385358037250415034215
Loading
/content/journals/pnt/10.2174/0122117385358037250415034215
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: plant nanocrystals ; celery ; Enterobacteriaceae ; Ulcerative colitis ; nanonization
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test