Skip to content
2000
image of A Review on Green Synthesis of Copper Nanoparticles Using Plant Extracts: Methods, Characterization, and Applications

Abstract

Introduction

This review examines the green synthesis of copper nanoparticles (CuNPs) using plant extracts, highlighting eco-friendly, cost-effective, and biocompatible alternatives to traditional chemical and physical methods for sustainable nanotechnology applications.

Methods

Studies on green synthesis using plant extracts, comparative analyses with traditional methods, and applications of CuNPs in agriculture, medicine, and wastewater treatment were prioritized. Characterization data, including UV-Vis, XRD, SEM, TEM, FTIR, and EDX, along with particle size and quantitative metrics (., MICs, inhibition zones), were compiled.

Results

Green-synthesized CuNPs (1.8–37 nm) exhibit spherical morphology observed by SEM/TEM, surface functionalities identified by FTIR, and elemental composition determined by EDX. Compared to traditional methods such as laser ablation (12 nm) and chemical reduction (10–30 nm), green synthesis reduces toxicity and energy consumption but faces scalability challenges. CuNPs outperform AgNPs, AuNPs, and SeNPs, with MICs of 6.25-25 µg/mL and inhibition zones of 14-18 mm against and . In agriculture, CuNPs reduce the severity of Fusarium infection by 88%.

Discussion

Green CuNPs are effective germicides and catalysts due to the release of Cu2+ ions and generation of reactive oxygen species. However, variable particle sizes and concentration-dependent toxicity, such as 100 mg/L in wheat, limit scalability and environmental safety.

Conclusion

Green synthesis offers a sustainable approach to producing CuNPs for applications in agriculture, medicine, and wastewater treatment. Standardized protocols are needed to ensure reproducibility and scalability while minimizing environmental risks.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385384107250825115755
2025-09-25
2025-12-13
Loading full text...

Full text loading...

References

  1. Nasrollahzadeh M Sajadi SM Green synthesis of copper nanoparticles using Ginkgo biloba L. leaf extract and their catalytic activity for the Huisgen [3 + 2] cycloaddition of azides and alkynes at room temperature. J Colloid Interface Sci 2015 427 141 7 10.1016/J.JCIS.2015.07.004
    [Google Scholar]
  2. Nasrollahzadeh M. Momeni S.S. Sajadi S.M. Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J. Colloid Interface Sci. 2017 506 471 477 10.1016/j.jcis.2017.07.072 28755642
    [Google Scholar]
  3. Pugazhendhi A. Prabhu R. Muruganantham K. Shanmuganathan R. Natarajan S. Anticancer, antimicrobial and photocatalytic activities of green synthesized magnesium oxide nanoparticles (MgONPs) using aqueous extract of sargassum wightii. J. Photochem. Photobiol. B 2019 190 86 97 10.1016/j.jphotobiol.2018.11.014 30504053
    [Google Scholar]
  4. Santhoshkumar J. Agarwal H. Menon S. Rajeshkumar S. Venkat Kumar S. A biological synthesis of copper nanoparticles and its potential applications. Green Synthesis. Characterization and Applications of Nanoparticles 2019 199 221 10.1016/B978‑0‑08‑102579‑6.00009‑5
    [Google Scholar]
  5. Gawande M.B. Goswami A. Felpin F.X. Cu and Cu-Based Nanoparticles: Synthesis and Applications in Catalysis. Chem. Rev. 2016 116 6 3722 3811 10.1021/acs.chemrev.5b00482 26935812
    [Google Scholar]
  6. Cheviron P. Gouanvé F. Espuche E. Green synthesis of colloid silver nanoparticles and resulting biodegradable starch/silver nanocomposites. Carbohydr. Polym. 2014 108 1 291 298 10.1016/j.carbpol.2014.02.059 24751276
    [Google Scholar]
  7. Issaabadi Z. Nasrollahzadeh M. Sajadi S.M. Green synthesis of the copper nanoparticles supported on bentonite and investigation of its catalytic activity. J. Clean. Prod. 2017 142 3584 3591 10.1016/j.jclepro.2016.10.109
    [Google Scholar]
  8. Kaur P. Thakur R. Chaudhury A. Biogenesis of copper nanoparticles using peel extract of punica granatum and their antimicrobial activity against opportunistic pathogens. Green Chem. Lett. Rev. 2016 9 1 33 38 10.1080/17518253.2016.1141238
    [Google Scholar]
  9. Khan I. Saeed K. Khan I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 2019 12 7 908 931 10.1016/j.arabjc.2017.05.011
    [Google Scholar]
  10. Delma M.T. Jaya Rajan M. Green Synthesis of Copper and Lead Nanoparticles using ZingiberOfficinale stemextract. Int J Sci Res Publ 2016 6 11 134
    [Google Scholar]
  11. Muthulakshmi L. Rajini N. Nellaiah H. Kathiresan T. Jawaid M. Rajulu A.V. Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int. J. Biol. Macromol. 2017 95 1064 1071 10.1016/j.ijbiomac.2016.09.114 27984140
    [Google Scholar]
  12. Shende S. Ingle A.P. Gade A. Rai M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015 31 6 865 873 10.1007/s11274‑015‑1840‑3 25761857
    [Google Scholar]
  13. Thakur S. Sharma S. Thakur S. Rai R. Green synthesis of copper nano-particles using asparagus adscendens roxb. root and leaf extract and their antimicrobial activities. Int. J. Curr. Microbiol. Appl. Sci. 2018 7 4 683 694 10.20546/ijcmas.2018.704.077
    [Google Scholar]
  14. Asghar M.A. Zahir E. Shahid S.M. Iron, copper and silver nanoparticles: Green synthesis using green and black tea leaves extracts and evaluation of antibacterial, antifungal and aflatoxin B1 adsorption activity. Lebensm. Wiss. Technol. 2018 90 98 107 10.1016/j.lwt.2017.12.009
    [Google Scholar]
  15. Ahmed S. Saifullah M. Ahmad M. Swami B.L. Ikram S. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci 2016 9 1 1 7 10.1016/j.jrras.2015.06.006
    [Google Scholar]
  16. Chaudhary J. Tailor G. Yadav B.L. Michael O. Synthesis and biological function of Nickel and Copper nanoparticles. Heliyon 2019 5 6 e01878 10.1016/j.heliyon.2019.e01878 31198877
    [Google Scholar]
  17. Pourmadadi M. Holghoomi R. shamsabadipour A, Maleki-baladi R, Rahdar A, Pandey S. Copper nanoparticles from chemical, physical, and green synthesis to medicinal application: A review. Plant Nano Biology 2024 8 100070 10.1016/j.plana.2024.100070
    [Google Scholar]
  18. Bhagat M. Anand R. Sharma P. Rajput P. Sharma N. Singh K. Review—multifunctional copper nanoparticles: synthesis and applications. ECS J. Solid State Sci. Technol. 2021 10 6 063011 10.1149/2162‑8777/ac07f8
    [Google Scholar]
  19. Khan F. Shariq M. Asif M. Siddiqui M.A. Malan P. Ahmad F. Green nanotechnology: Plant-mediated nanoparticle synthesis and application. Nanomaterials 2022 12 4 673 10.3390/nano12040673 35215000
    [Google Scholar]
  20. Ying S. Guan Z. Ofoegbu P.C. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022 26 102336 10.1016/j.eti.2022.102336
    [Google Scholar]
  21. Gupta D. Boora A. Thakur A. Gupta T.K. Green and sustainable synthesis of nanomaterials: Recent advancements and limitations. Environ. Res. 2023 231 Pt 3 116316 10.1016/j.envres.2023.116316 37270084
    [Google Scholar]
  22. Tito I.A. Uddin S. Islam S. Bhowmik S. Copper Nanoparticle(CuNP’s)Synthesis: A review of the various ways with Photocatalytic and Antibacterial Activity. Orient. J. Chem. 2021 37 5 1030 1040 10.13005/ojc/370503
    [Google Scholar]
  23. AL-Thabaiti SA, Obaid AY, Khan Z, Bashir O, Hussain S. Cu nanoparticles: Synthesis, crystallographic characterization, and stability. Colloid Polym. Sci. 2015 293 9 2543 2554 10.1007/s00396‑015‑3633‑5
    [Google Scholar]
  24. Singh J. Dutta T. Kim K.H. Rawat M. Samddar P. Kumar P. ‘Green’ synthesis of metals and their oxide nanoparticles: Applications for environmental remediation. J. Nanobiotechnology 2018 16 1 1 24 10.1186/S12951‑018‑0408‑4
    [Google Scholar]
  25. Kumari S. Raturi S. Kulshrestha S. A comprehensive review on various techniques used for synthesizing nanoparticles. J. Mater. Res. Technol. 2023 27 1739 1763 10.1016/j.jmrt.2023.09.291
    [Google Scholar]
  26. Nkosi N.C. Basson A.K. Ntombela Z.G. Dlamini N.G. Pullabhotla R.V.S.R. A review on bioflocculant-synthesized copper nanoparticles: Characterization and application in wastewater treatment. Bioengineering 2024 11 10 1007 10.3390/BIOENGINEERING11101007
    [Google Scholar]
  27. Khane Y. Albukhaty S. Sulaiman G.M. Fabrication, characterization and application of biocompatible nanocomposites: A review. Eur. Polym. J. 2024 214 113187 10.1016/j.eurpolymj.2024.113187
    [Google Scholar]
  28. Kumar A. Gautam Y.K. Singh N. State-of-the-art developments in surface functionalized carbon-based bio/nanocomposites for theranostic antibacterials, advanced bioimaging, and molecular bioelectronics inspired biosensing platforms. J. Ind. Eng. Chem. 2024 140 103 145 10.1016/j.jiec.2024.05.065
    [Google Scholar]
  29. Gari Tesfaye Asfaw Tessema, Arumugasamy SK, Abo Deso, Jayakumar M. Natural Resources-Based Activated Carbon Synthesis. Encyclopedia of Green Materials. Baskar C. Ramakrishna S. Rosa A.D.L. Singapore Springer 2025 10.1007/978‑981‑97‑4618‑7_275
    [Google Scholar]
  30. Hou X. Li Y. Zhang H. Lund P.D. Kwan J. Tsang S.C.E. Black titanium oxide: Synthesis, modification, characterization, physiochemical properties, and emerging applications for energy conversion and storage, and environmental sustainability. Chem. Soc. Rev. 2024 53 21 10660 10708 10.1039/D4CS00420E 39269216
    [Google Scholar]
  31. Azimi G. Chan K.H. A review of contemporary and emerging recycling methods for lithium-ion batteries with a focus on NMC cathodes. Resour. Conserv. Recycling 2024 209 107825 10.1016/j.resconrec.2024.107825
    [Google Scholar]
  32. Attallah A.H. Abdulwahid F.S. Ali Y.A. Haider A.J. Effect of liquid and laser parameters on fabrication of nanoparticles via pulsed laser ablation in liquid with their applications: A review. Plasmonics 2023 18 4 1307 1323 10.1007/s11468‑023‑01852‑7
    [Google Scholar]
  33. Mancuso A. Iervolino G. Synthesis and application of innovative and environmentally friendly photocatalysts: A review. Catal 2022 12 10 1074 4 10.3390/CATAL12101074
    [Google Scholar]
  34. Mohamadpour F. Amani A.M. Photocatalytic systems: Reactions, mechanism, and applications. RSC Advances 2024 14 29 20609 20645 10.1039/D4RA03259D 38952944
    [Google Scholar]
  35. Joudeh N. Linke D. Nanoparticle classification, physicochemical properties, characterization, and applications: A comprehensive review for biologists. J. Nanobiotechnology 2022 20 1 10.1186/S12951‑022‑01477‑8
    [Google Scholar]
  36. Yazdanian M. Rostamzadeh P. Rahbar M. The potential application of green‐synthesized metal nanoparticles in dentistry: A comprehensive review. Bioinorg. Chem. Appl. 2022 2022 1 2311910 10.1155/2022/2311910 35281331
    [Google Scholar]
  37. Salem S.S. Hammad E.N. Mohamed A.A. El-Dougdoug W. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022 13 1 41 10.33263/BRIAC131.041
    [Google Scholar]
  38. Huber D.L. Synthesis, properties, and applications of iron nanoparticles. Small 2005 1 5 482 501 10.1002/smll.200500006 17193474
    [Google Scholar]
  39. Eker F. Duman H. Akdaşçi E. A comprehensive review of nanoparticles: From classification to application and toxicity. Molecules 2024 29 15 3482 10.3390/molecules29153482 39124888
    [Google Scholar]
  40. Rasheed R. Bhat A. Singh B. Tian F. Biogenic synthesis of selenium and copper oxide nanoparticles and inhibitory effect against multi-drug resistant biofilm-forming bacterial pathogens. Biomedicines 2024 12 5 994 10.3390/biomedicines12050994 38790956
    [Google Scholar]
  41. Guo L. Panderi I. Yan D.D. A comparative study of hollow copper sulfide nanoparticles and hollow gold nanospheres on degradability and toxicity. ACS Nano 2013 7 10 8780 8793 10.1021/nn403202w 24053214
    [Google Scholar]
  42. Mohanta Y.K. Panda S.K. Jayabalan R. Sharma N. Bastia A.K. Mohanta T.K. Antimicrobial, antioxidant and cytotoxic activity of silver nanoparticles synthesized by leaf extract of Erythrina suberosa (Roxb.). Front. Mol. Biosci. 2017 4 MAR 14 10.3389/fmolb.2017.00014 28367437
    [Google Scholar]
  43. Solangi J.A. Memon T.F. Umair M. Antimicrobial efficacy of copper nanoparticles: A comprehensive review. Insights J Health Rehabil 2024 2 2 243 254 10.71000/ijhr145
    [Google Scholar]
  44. Aderolu H.A. Aboaba O.O. Aderolu A.Z. Abdulwahab K.O. Suliman A.A. Emmanuel U.C. Biological synthesis of copper nanoparticles and its antimicrobial potential on selected bacteria food-borne pathogens. Ife J. Sci. 2021 23 1 11 21 10.4314/ijs.v23i1.2
    [Google Scholar]
  45. Abbas S.F. Haider A.J. Al-Musawi S. Selman M.K. Antibacterial effect of copper oxide nanoparticles prepared by laser production in water against Staphylococcus aureus and Escherichia coli. Plasmonics 2024 19 5 2401 2411 10.1007/s11468‑023‑02135‑x
    [Google Scholar]
  46. Vaid P. Raizada P. Saini A.K. Saini R.V. Biogenic silver, gold and copper nanoparticles - A sustainable green chemistry approach for cancer therapy. Sustain. Chem. Pharm. 2020 16 100247 10.1016/j.scp.2020.100247
    [Google Scholar]
  47. Xie J. Jiang J. Davoodi P. Srinivasan M.P. Wang C.H. Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials. Chem. Eng. Sci. 2015 125 32 57 10.1016/j.ces.2014.08.061 25684778
    [Google Scholar]
  48. Sun L. Zhou J. Chen Y. Yu D.G. Liu P. A combined electrohydrodynamic atomization method for preparing nanofiber/microparticle hybrid medicines. Front. Bioeng. Biotechnol. 2023 11 1308004 10.3389/fbioe.2023.1308004 38033817
    [Google Scholar]
  49. Burwell T. Thangamuthu M. Aliev G.N. Direct formation of copper nanoparticles from atoms at graphitic step edges lowers overpotential and improves selectivity of electrocatalytic CO2 reduction. Commun. Chem. 2024 7 140 10.1038/s42004‑024‑01218‑y
    [Google Scholar]
  50. Kamikoriyama Y. Imamura H. Muramatsu A. Ambient aqueous-phase synthesis of copper nanoparticles and nanopastes with low-temperature sintering and ultra-high bonding abilities. Sci. Rep. 2019 9 899 10.1038/s41598‑018‑38422‑5
    [Google Scholar]
  51. Al-Antaki A.H.M. Luo X. Duan X. Continuous flow copper laser ablation synthesis of copper(I and II) oxide nanoparticles in water. ACS Omega 2019 4 8 13577 13584 10.1021/acsomega.9b01983 31460487
    [Google Scholar]
  52. Goncharova D.A. Kharlamova T.S. Lapin I.N. Svetlichnyi V.A. Chemical and morphological evolution of copper nanoparticles obtained by pulsed laser ablation in liquid. J. Phys. Chem. C 2019 123 35 21731 21742 10.1021/acs.jpcc.9b03958
    [Google Scholar]
  53. Theerthagiri J. Karuppasamy K. Lee S.J. Fundamentals and comprehensive insights on pulsed laser synthesis of advanced materials for diverse photo- and electrocatalytic applications. Light Sci. Appl. 2022 11 1 250 10.1038/s41377‑022‑00904‑7 35945216
    [Google Scholar]
  54. Abbati de Assis C Greca LG Ago M Techno-economic assessment, scalability, and applications of aerosol lignin microand nanoparticles. 2018 6 9 11853 68 10.1021/acssuschemeng.8b02151 30221095
    [Google Scholar]
  55. Hamidu A. Pitt W.G. Husseini G.A. Recent breakthroughs in using quantum dots for cancer imaging and drug delivery purposes. Nanomaterials 2023 13 18 2566 10.3390/NANO13182566
    [Google Scholar]
  56. Lu R. Hao W. Kong L. Zhao K. Bai H. Liu Z. A simple method for the synthesis of copper nanoparticles from metastable intermediates. RSC Advances 2023 13 21 14361 14369 10.1039/D3RA01082A 37179993
    [Google Scholar]
  57. Pricop Maria Negrea Adina Pascu Bogdan Copper nanoparticles synthesized by chemical reduction with medical applications. Int. J. Mol. Sci. 2025 26 1628 10.3390/ijms26041628
    [Google Scholar]
  58. Jo Y.S. Park H.M. Jin G.H. Pure copper nanoparticles prepared by coating-assisted vapor phase synthesis without agglomeration. RSC Advances 2022 12 43 27820 27825 10.1039/D2RA05281D 36320232
    [Google Scholar]
  59. Tian J. Huang H. Ratova M. Wu D. Harnessing point defects for advanced Cu-based catalysts in electrochemical CO2 reduction. Mater. Sci. Eng. Rep. 2025 164 100979 10.1016/j.mser.2025.100979
    [Google Scholar]
  60. Saif S. Tahir A. Chen Y. Green synthesis of iron nanoparticles and their environmental applications and implications. Nanomaterials 2016 6 11 209 10.3390/NANO6110209
    [Google Scholar]
  61. Devatha C.P. Thalla A.K. Green Synthesis of Nanomaterials. Synthesis of Inorganic Nanomaterials. Advances and Key Technologies 2018 169 184 10.1016/B978‑0‑08‑101975‑7.00007‑5
    [Google Scholar]
  62. Machado S. Pinto S.L. Grosso J.P. Nouws H.P.A. Albergaria J.T. Delerue-Matos C. Green production of zero-valent iron nanoparticles using tree leaf extracts. Sci. Total Environ. 2013 445-446 1 8 10.1016/j.scitotenv.2012.12.033 23298788
    [Google Scholar]
  63. Luo F. Yang D. Chen Z. Megharaj M. Naidu R. One-step green synthesis of bimetallic Fe/Pd nanoparticles used to degrade orange II. J. Hazard. Mater. 2016 303 145 153 10.1016/j.jhazmat.2015.10.034 26530891
    [Google Scholar]
  64. Khashan K.S. Sulaiman G.M. Abdulameer F.A. Synthesis and antibacterial activity of CuO nanoparticles suspension induced by laser ablation in liquid. Arab. J. Sci. Eng. 2016 41 1 301 310 10.1007/s13369‑015‑1733‑7
    [Google Scholar]
  65. Kumar S. Kaushik N. Sahu J.K. Jatav S. Quinoline analogues and nanocarrier systems: A dual approach to anti-tubercular therapy. Eur. J. Med. Chem. Rep. 2024 12 100212 10.1016/j.ejmcr.2024.100212
    [Google Scholar]
  66. Adewale Akintelu S. Kolawole Oyebamiji A. Charles Olugbeko S. Felix Latona D. Green chemistry approach towards the synthesis of copper nanoparticles and its potential applications as therapeutic agents and environmental control. Curr Res Green Sustain Chem 2021 4 100176 10.1016/j.crgsc.2021.100176
    [Google Scholar]
  67. Sreeju N. Rufus A. Philip D. Microwave-assisted rapid synthesis of copper nanoparticles with exceptional stability and their multifaceted applications. J. Mol. Liq. 2016 221 1008 1021 10.1016/j.molliq.2016.06.080
    [Google Scholar]
  68. Khalid H. Shamaila S. Zafar N. Antibacterial behavior of laser-ablated copper nanoparticles. Acta Metall Sin 2016 29 8 748 754 10.1007/s40195‑016‑0450‑x
    [Google Scholar]
  69. LewisOscar F, MubarakAli D, Nithya C, One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 2015 31 4 379 391 10.1080/08927014.2015.1048686 26057498
    [Google Scholar]
  70. Betancourt-Galindo R. Reyes-Rodriguez P.Y. Puente-Urbina B.A. Synthesis of copper nanoparticles by thermal decomposition and their antimicrobial properties. J. Nanomater. 2014 2014 980545 10.1155/2014/980545
    [Google Scholar]
  71. Khan Y Sadia H Shah SZA Classification, synthetic, and characterization approaches to nanoparticles, and their applications in various fields of nanotechnology: A review. Catal 2022 12 11 10.3390/catal12111386
    [Google Scholar]
  72. Rilda Y. Arief S. Agustien A. Yerizel E. Pardi H. Sofyan N. RETRACTED: Growth inhibition of bacterial pathogens by photo-catalyst process of nano-alloys FeCuNi doped TiO2 under ultraviolet irradiation. Heliyon 2022 8 9 e10611 10.1016/j.heliyon.2022.e10611 36158092
    [Google Scholar]
  73. Akinola P.O. Lateef A. Asafa T.B. Beukes L.S. Abbas S.H. Irshad H.M. Phytofabrication of titanium-silver alloy nanoparticles (Ti-AgNPs) by Cola nitida for biomedical and catalytic applications. Inorg. Chem. Commun. 2022 139 109357 10.1016/j.inoche.2022.109357
    [Google Scholar]
  74. Green A. Vrestal J. Kustov L.M. Salman S.H. Khashan K.S. Hadi A.A. Green synthesis and characterization of palladium nanoparticles by pulsed laser ablation and their antibacterial activity. Metals 2023 13 2 273 10.3390/MET13020273
    [Google Scholar]
  75. Biswas J. Singh S.S. Samuel G.L. Effect of pulse repetition rate on synthesis of TiOx nanoparticles by femtosecond pulsed laser ablation in aqueous medium. Mater. Today Proc. 2024 10.1016/j.matpr.2024.04.032
    [Google Scholar]
  76. Üçüncü E. Özkan A.D. Kurşungöz C. Effects of laser ablated silver nanoparticles on Lemna minor. Chemosphere 2014 108 251 257 10.1016/j.chemosphere.2014.01.049 24529395
    [Google Scholar]
  77. Harishchandra B.D. Pappuswamy M. Pu A. Copper nanoparticles: A review on synthesis, characterization and applications. Asian Pac J Cancer Biol 2020 5 4 201 210 10.31557/apjcb.2020.5.4.201‑210
    [Google Scholar]
  78. Roy A. Kunwar S. Bhusal U. Dye degradation activity of biogenically synthesized Cu/Fe/Ag trimetallic nanoparticles. Green Process Synth 2024 13 1 20230267 10.1515/gps‑2023‑0267
    [Google Scholar]
  79. Hou X. Lv S. Chen Z. Xiao F. Applications of fourier transform infrared spectroscopy technologies on asphalt materials. Measurement 2018 121 304 316 10.1016/j.measurement.2018.03.001
    [Google Scholar]
  80. Zhang H. Lv X. Li Y. Wang Y. Li J. P25-graphene composite as a high performance photocatalyst. ACS Nano 2010 4 1 380 386 10.1021/nn901221k 20041631
    [Google Scholar]
  81. Mast J. Verleysen E. Hodoroaba V.D. Kaegi R. Characterization of nanomaterials by transmission electron microscopy: Measurement procedures. Characterization of Nanoparticles. Measurement Processes for Nanoparticles 2020 29 48 10.1016/B978‑0‑12‑814182‑3.00004‑3
    [Google Scholar]
  82. Chung I.M. Abdul Rahuman A. Marimuthu S. Green synthesis of copper nanoparticles using Eclipta prostrata leaves extract and their antioxidant and cytotoxic activities. Exp. Ther. Med. 2017 14 1 18 24 10.3892/ETM.2017.4466/HTML 28672888
    [Google Scholar]
  83. Peralta-Videa J.R. Huang Y. Parsons J.G. Plant-based green synthesis of metallic nanoparticles: Scientific curiosity or a realistic alternative to chemical synthesis? Nanoscale Environ Eng 2016 1 1 4 29 10.1007/S41204‑016‑0004‑5
    [Google Scholar]
  84. Murty BS Shankar P Raj B Rath BB Murday J Textbook of nanoscience and nanotechnology. 2013
    [Google Scholar]
  85. Prabhu Y.T. Venkateswara Rao K. Sesha Sai V. Pavani T. A facile biosynthesis of copper nanoparticles: A micro-structural and antibacterial activity investigation. J. Saudi Chem. Soc. 2017 21 2 180 185 10.1016/j.jscs.2015.04.002
    [Google Scholar]
  86. Hassan E. Gahlan A.A. Gouda G.A. Biosynthesis approach of copper nanoparticles, physicochemical characterization, cefixime wastewater treatment, and antibacterial activities. BMC Chem. 2023 17 1 71 10.1186/s13065‑023‑00982‑7 37424027
    [Google Scholar]
  87. Viet P.V. Nguyen H.T. Cao T.M. Hieu L.V. Fusarium antifungal activities of copper nanoparticles synthesized by a chemical reduction method. J. Nanomater. 2016 2016 1 1 7 10.1155/2016/1957612
    [Google Scholar]
  88. Bramhanwade K. Shende S. Bonde S. Gade A. Rai M. Fungicidal activity of Cu nanoparticles against fusarium causing crop diseases. Environ. Chem. Lett. 2016 14 2 229 235 10.1007/s10311‑015‑0543‑1
    [Google Scholar]
  89. Nagajyothi P.C. Muthuraman P. Sreekanth T.V.M. Kim D.H. Shim J. Green synthesis: In-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab. J. Chem. 2017 10 2 215 225 10.1016/j.arabjc.2016.01.011
    [Google Scholar]
  90. Bhavyasree P.G. Xavier T.S. A critical green biosynthesis of novel CuO/C porous nanocomposite via the aqueous leaf extract of Ficus religiosa and their antimicrobial, antioxidant, and adsorption properties. Chem. Eng. J. Adv. 2021 8 100152 10.1016/j.ceja.2021.100152
    [Google Scholar]
  91. Bakshi M. Kumar A. Copper-based nanoparticles in the soil-plant environment: Assessing their applications, interactions, fate and toxicity. Chemosphere 2021 281 130940 10.1016/j.chemosphere.2021.130940 34289610
    [Google Scholar]
  92. Kausar H. Mehmood A. Khan R.T. Green synthesis and characterization of copper nanoparticles for investigating their effect on germination and growth of wheat. PLoS One 2022 17 6 e0269987 10.1371/journal.pone.0269987 35727761
    [Google Scholar]
  93. Bakshi M. Kumar A. Applications of copper nanoparticles in plant protection and pollution sensing: Toward promoting sustainable agriculture. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems. 2022 393 413 10.1016/B978‑0‑12‑823833‑2.00014‑3
    [Google Scholar]
  94. Eid A.M. Fouda A. Hassan S.E. Plant-based copper oxide nanoparticles; biosynthesis, characterization, antibacterial activity, tanning wastewater treatment, and heavy metals sorption. Catal 2023 13 2 348 10.3390/CATAL13020348
    [Google Scholar]
  95. Thomas A.A. Babu H. Rajeshkumar S. Evaluation of cytotoxic and antioxidant properties of copper nanoparticles using green tea and neem formulation. Int. J. Health Sci. 2022 6 S8 773 780 10.53730/ijhs.v6nS8.11568
    [Google Scholar]
  96. Varshney S. Gupta A. Environmental benign approach for copper oxide nanoparticles synthesis for efficient wastewater treatment and biomedical applications. Surf. Interfaces 2025 63 106285 10.1016/j.surfin.2025.106285
    [Google Scholar]
  97. Dlamini N.G. Basson A.K. Pullabhotla V.S.R. Optimization and application of bioflocculant passivated copper nanoparticles in the wastewater treatment. Int. J. Environ. Res. Public Health 2019 16 12 2185 10.3390/IJERPH16122185
    [Google Scholar]
  98. Woźniak-Budych M.J. Staszak K. Staszak M. Copper and copper-based nanoparticles in medicine—perspectives and challenges. Molecules 2023 28 18 6687 10.3390/molecules28186687 37764463
    [Google Scholar]
  99. Ahmad I.Z. Advances in the applications of copper- based nanocomposites in wastewater treatment. Copper Nanostructures: Next-Generation of Agrochemicals for Sustainable Agroecosystems. 2022 661 75 10.1016/B978‑0‑12‑823833‑2.00005‑2
    [Google Scholar]
  100. Cheng H.H. Pien T.T. Lee Y.C. Lu I.C. Whang L.M. Effects of copper on biological treatment of NMF- and MDG-containing wastewater from TFT-LCD industry. Chemosphere 2020 258 127125 10.1016/j.chemosphere.2020.127125 32540540
    [Google Scholar]
  101. Chen Y. Wu Y. Bian Y. Dong L. Zheng X. Chen Y. Long-term effects of copper nanoparticles on volatile fatty acids production from sludge fermentation: Roles of copper species and bacterial community structure. Bioresour. Technol. 2022 348 126789 10.1016/j.biortech.2022.126789 35104652
    [Google Scholar]
  102. Grass G. Rensing C. Solioz M. Metallic copper as an antimicrobial surface. Appl. Environ. Microbiol. 2011 77 5 1541 1547 10.1128/AEM.02766‑10 21193661
    [Google Scholar]
  103. Bordbar M. Sharifi-Zarchi Z. Khodadadi B. Green synthesis of copper oxide nanoparticles/clinoptilolite using Rheum palmatum L. root extract: High catalytic activity for reduction of 4-nitro phenol, rhodamine B, and methylene blue. J. Sol-Gel Sci. Technol. 2017 81 3 724 733 10.1007/s10971‑016‑4239‑1
    [Google Scholar]
  104. Moores A. Goettmann F. The plasmon band in noble metal nanoparticles: An introduction to theory and applications. New J. Chem. 2006 30 8 1121 1132 10.1039/b604038c
    [Google Scholar]
  105. Gellé A. Moores A. Plasmonic nanoparticles: Photocatalysts with a bright future. Curr. Opin. Green Sustain. Chem. 2019 15 60 66 10.1016/j.cogsc.2018.10.002
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385384107250825115755
Loading
/content/journals/pnt/10.2174/0122117385384107250825115755
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test