Skip to content
2000
image of Exosomes as Next-Generation Carriers for Brain Drug Delivery: Engineering, Formulation, Characterization, and Neurotherapeutic Applications

Abstract

Background

Exosomes, nanoscale extracellular vesicles, have emerged as promising drug delivery carriers due to their ability to cross the blood-brain barrier (BBB) and deliver therapeutic cargo efficiently. Their biocompatibility and capacity for engineering make them ideal candidates for treating neurological disorders.

Methods

This review examines various strategies for exosome engineering, including donor cell selection, isolation techniques, and cargo loading methods. Key characterization techniques such as nanoparticle tracking analysis (NTA), dynamic light scattering (DLS), electron microscopy, and biomarker profiling are discussed. Additionally, and models used to evaluate exosome-mediated drug delivery efficacy are analyzed.

Results

Exosomes have demonstrated significant potential in neurotherapeutic applications, including targeted drug delivery for neurodegenerative diseases such as Alzheimer’s and Parkinson’s disease, glioblastoma therapy, and neural repair in stroke models. Clinical studies and experimental models confirm their ability to encapsulate and protect therapeutic molecules, enhance drug stability, and ensure precise targeting. However, challenges such as large-scale production, reproducibility, and safety concerns remain.

Conclusion

Exosomes represent a transformative approach to overcoming BBB-related drug delivery challenges, providing a natural, non-invasive platform for neurological therapies. Advances in engineering techniques and characterization will be critical to optimizing their therapeutic potential and clinical translation.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385383438250526063154
2025-07-03
2025-09-25
Loading full text...

Full text loading...

References

  1. Yang T. Martin P. Fogarty B. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 2015 32 6 2003 2014 10.1007/s11095‑014‑1593‑y 25609010
    [Google Scholar]
  2. Alvarez-Erviti L. Seow Y. Yin H. Betts C. Lakhal S. Wood M.J.A. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 2011 29 4 341 345 10.1038/nbt.1807 21423189
    [Google Scholar]
  3. Schiffelers R. Kooijmans S. Vader, van Dommelen, Van Solinge. Exosome mimetics: A novel class of drug delivery systems. Int. J. Nanomedicine 2012 7 1525 1541 10.2147/IJN.S29661 22619510
    [Google Scholar]
  4. Chen C. Sun W. Jiang H. Advances in engineered exosomes for brain-targeted drug delivery. Neural Regen. Res. 2022 17 12 2583 2590 10.4103/1673‑5374.334859
    [Google Scholar]
  5. Lamichhane T. Jay S. Aryal S. Exosome-based drug delivery: Progress and challenges. Nanoscale Adv. 2020 2 2 376 389 10.1039/C9NA00630E【25】
    [Google Scholar]
  6. Yang Z. Shi J. Xie J. Wang Y. Sun J. Liu T. Engineering exosomes for the delivery of drug-loaded nanocarriers. Chem. Rev. 2020 120 16 9861 9906 10.1021/acs.chemrev.9b00697
    [Google Scholar]
  7. Tiwari-Woodruff S.K. Gupta A. Exosome-based drug delivery systems in treating neurological disorders. *. Nat. Rev. Neurol. 2021 17 706 718 10.1038/s41582‑021‑00520‑4
    [Google Scholar]
  8. Haney M.J. Zhao Y. Harrison E.B. Exosomes as drug delivery vehicles for the treatment of brain diseases. Adv. Drug Deliv. Rev. 2020 148 112 127 10.1016/j.addr.2020.01.001
    [Google Scholar]
  9. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  10. Chai C. Lim S.K. Harnessing exosome technology in crossing the blood-brain barrier for brain drug delivery. J Nanobiotech 2021 19 163 10.1186/s12951‑021‑00962‑3
    [Google Scholar]
  11. Wasmuth E.V. Januszyk K. Lima C.D. Structure of an Rrp6–RNA exosome complex bound to poly(A) RNA. Nature 2014 511 7510 435 439 10.1038/nature13406 25043052
    [Google Scholar]
  12. Halbach F. Reichelt P. Rode M. Conti E. The yeast ski complex: Crystal structure and RNA channeling to the exosome complex. Cell 2013 154 4 814 826 10.1016/j.cell.2013.07.017 23953113
    [Google Scholar]
  13. Théry C. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. 2006 10.1002/0471143030.cb0322s30
    [Google Scholar]
  14. Yáñez-Mó M. Siljander P.R.M. Andreu Z. Biological properties of extracellular vesicles and their physiological functions. J. Extracell. Vesicles 2015 4 1 27066 10.3402/jev.v4.27066 25979354
    [Google Scholar]
  15. Kusuma G.D. Barabadi M. Tan J.L. Gauthaman K. Exosome-based therapeutics: Current developments and future perspectives. Front. Mol. Biosci. 2017 4 63 10.3389/fmolb.2017.00063
    [Google Scholar]
  16. Haney M.J. Klyachko N.L. Zhao Y. Exosomes as drug delivery vehicles for Parkinson’s disease therapy. J. Control. Release 2015 207 18 30 10.1016/j.jconrel.2015.03.033 25836593
    [Google Scholar]
  17. Saari H Lázaro-Ibáñez E Viitala T Vuorimaa-Laukkanen E Siljander P Yliperttula M. Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. J Control Release 2015 220 Pt B 727 37 10.1016/j.jconrel.2015.09.031 26390807
    [Google Scholar]
  18. Vázquez-Ríos A.J. Molina-Crespo Á. Bouzo B.L. López-López R. Moreno-Bueno G. de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. J. Nanobiotechnology 2019 17 1 85 10.1186/s12951‑019‑0517‑8 31319859
    [Google Scholar]
  19. Khongkow M. Yata T. Boonrungsiman S. Ruktanonchai U.R. Graham D. Namdee K. Surface modification of gold nanoparticles with neuron-targeted exosome for enhanced blood–brain barrier penetration. Sci. Rep. 2019 9 1 8278 10.1038/s41598‑019‑44569‑6 31164665
    [Google Scholar]
  20. Ceña V. Játiva P. Nanoparticle crossing of blood-brain barrier: A road to new therapeutic approaches to central nervous system diseases. Nanomedicine (Lond.) 2018 13 13 1513 1516 10.2217/nnm‑2018‑0139 29998779
    [Google Scholar]
  21. Allison A.C. Davies P. Mechanisms of endocytosis and exocytosis. Symp. Soc. Exp. Biol. 1974 1974 28 419 446
    [Google Scholar]
  22. Neves G. Lagnado L. The kinetics of exocytosis and endocytosis in the synaptic terminal of goldfish retinal bipolar cells. J. Physiol. 1999 515 1 181 202 10.1111/j.1469‑7793.1999.181ad.x 9925888
    [Google Scholar]
  23. Vieira A.V. Lamaze C. Schmid S.L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 1996 274 5295 2086 2089 10.1126/science.274.5295.2086 8953040
    [Google Scholar]
  24. Motley A. Bright N.A. Seaman M.N.J. Robinson M.S. Clathrin-mediated endocytosis in AP-2–depleted cells. J. Cell Biol. 2003 162 5 909 918 10.1083/jcb.200305145 12952941
    [Google Scholar]
  25. Granseth B. Odermatt B. Royle S.J. Lagnado L. Clathrin-mediated endocytosis is the dominant mechanism of vesicle retrieval at hippocampal synapses. Neuron 2006 51 6 773 786 10.1016/j.neuron.2006.08.029 16982422
    [Google Scholar]
  26. Kitakura S. Vanneste S. Robert S. Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 2011 23 5 1920 1931 10.1105/tpc.111.083030 21551390
    [Google Scholar]
  27. Rejman J. Oberle V. Zuhorn I.S. Hoekstra D. Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J. 2004 377 1 159 169 10.1042/bj20031253 14505488
    [Google Scholar]
  28. Rejman J. Bragonzi A. Conese M. Role of clathrin- and caveolae-mediated endocytosis in gene transfer mediated by lipo- and polyplexes. Mol. Ther. 2005 12 3 468 474 10.1016/j.ymthe.2005.03.038 15963763
    [Google Scholar]
  29. Commisso C. Davidson S.M. Soydaner-Azeloglu R.G. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 2013 497 7451 633 637 10.1038/nature12138 23665962
    [Google Scholar]
  30. Tian T. Zhu Y.L. Zhou Y.Y. Exosome uptake through clathrin-mediated endocytosis and macropinocytosis and mediating miR-21 delivery. J. Biol. Chem. 2014 289 32 22258 22267 10.1074/jbc.M114.588046 24951588
    [Google Scholar]
  31. Sutton R.B. Fasshauer D. Jahn R. Brunger A.T. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 Å resolution. Nature 1998 395 6700 347 353 10.1038/26412 9759724
    [Google Scholar]
  32. Medina D.L. Fraldi A. Bouche V. Transcriptional activation of lysosomal exocytosis promotes cellular clearance. Dev. Cell 2011 21 3 421 430 10.1016/j.devcel.2011.07.016 21889421
    [Google Scholar]
  33. Johanson C.E. Duncan J.A. Klinge P.M. Brinker T. Stopa E.G. Silverberg G.D. Multiplicity of cerebrospinal fluid functions: New challenges in health and disease. Cerebrospinal Fluid Res. 2008 5 1 10 10.1186/1743‑8454‑5‑10 18479516
    [Google Scholar]
  34. Park T.E. Mustafaoglu N. Herland A. Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies. Nat. Commun. 2019 10 1 2621 10.1038/s41467‑019‑10588‑0 31197168
    [Google Scholar]
  35. Kobayashi T. Ishida T. Okada Y. Ise S. Harashima H. Kiwada H. Effect of transferrin receptor-targeted liposomal doxorubicin in P-glycoprotein-mediated drug resistant tumor cells. Int. J. Pharm. 2007 329 1-2 94 102 10.1016/j.ijpharm.2006.08.039 16997518
    [Google Scholar]
  36. Sun T. Wu H. Li Y. Targeting transferrin receptor delivery of temozolomide for a potential glioma stem cell-mediated therapy. Oncotarget 2017 8 43 74451 74465 10.18632/oncotarget.20165 29088799
    [Google Scholar]
  37. Frank-Kamenetsky M. Grefhorst A. Anderson N.N. Therapeutic RNAi targeting PCSK9 acutely lowers plasma cholesterol in rodents and LDL cholesterol in nonhuman primates. Proc. Natl. Acad. Sci. USA 2008 105 33 11915 11920 10.1073/pnas.0805434105 18695239
    [Google Scholar]
  38. Stanimirovic D.B. Sandhu J.K. Costain W.J. Emerging technologies for delivery of biotherapeutics and gene therapy across the Blood–Brain barrier. BioDrugs 2018 32 6 547 559 10.1007/s40259‑018‑0309‑y 30306341
    [Google Scholar]
  39. Kumar P. Wu H. McBride J.L. Transvascular delivery of small interfering RNA to the central nervous system. Nature 2007 448 7149 39 43 10.1038/nature05901 17572664
    [Google Scholar]
  40. Kumthekar P. Tang S.C. Brenner A.J. ANG1005, a brain-penetrating peptide–drug conjugate, shows activity in patients with breast cancer with leptomeningeal carcinomatosis and recurrent brain metastases. Clin. Cancer Res. 2020 26 12 2789 2799 10.1158/1078‑0432.CCR‑19‑3258 31969331
    [Google Scholar]
  41. Stalmans S. Bracke N. Wynendaele E. Cell-Penetrating peptides selectively cross the Blood-Brain barrier in vivo. PLoS One 2015 10 10 0139652 10.1371/journal.pone.0139652 26465925
    [Google Scholar]
  42. Zhao S. Xiu G. Wang J. Engineering exosomes derived from subcutaneous fat MSCs specially promote cartilage repair as miR-199a-3p delivery vehicles in Osteoarthritis. J. Nanobiotechnology 2023 21 1 341 10.1186/s12951‑023‑02086‑9 37736726
    [Google Scholar]
  43. Iyaswamy A. Thakur A. Guan X.J. Fe65-engineered neuronal exosomes encapsulating corynoxine-B ameliorate cognition and pathology of Alzheimer’s disease. Signal Transduct. Target. Ther. 2023 8 1 404 10.1038/s41392‑023‑01657‑4 37867176
    [Google Scholar]
  44. Sato Y.T. Umezaki K. Sawada S. Engineering hybrid exosomes by membrane fusion with liposomes. Sci. Rep. 2016 6 1 21933 10.1038/srep21933 26911358
    [Google Scholar]
  45. Lathwal S. Yerneni S.S. Boye S. Engineering exosome polymer hybrids by atom transfer radical polymerization. Proc. Natl. Acad. Sci. USA 2021 118 2 2020241118 10.1073/pnas.2020241118 33384328
    [Google Scholar]
  46. Takata M.A. Gonçalves-Carneiro D. Zang T.M. CG dinucleotide suppression enables antiviral defence targeting non-self RNA. Nature 2017 550 7674 124 127 10.1038/nature24039 28953888
    [Google Scholar]
  47. Lener T. Gimona M. Aigner L. Applying extracellular vesicles based therapeutics in clinical trials – an ISEV position paper. J. Extracell. Vesicles 2015 4 1 30087 10.3402/jev.v4.30087 26725829
    [Google Scholar]
  48. Leao A.A.P. Spreading depression of activity in the cerebral cortex. J. Neurophysiol. 1944 7 6 359 390 10.1152/jn.1944.7.6.359
    [Google Scholar]
  49. Komor A.C. Kim Y.B. Packer M.S. Zuris J.A. Liu D.R. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 2016 533 7603 420 424 10.1038/nature17946 27096365
    [Google Scholar]
  50. Terakura S. Yamamoto T.N. Gardner R.A. Turtle C.J. Jensen M.C. Riddell S.R. Generation of CD19-chimeric antigen receptor modified CD8+ T cells derived from virus-specific central memory T cells. Blood 2012 119 1 72 82 10.1182/blood‑2011‑07‑366419 22031866
    [Google Scholar]
  51. Mizrak A. Bolukbasi M.F. Ozdener G.B. Genetically engineered microvesicles carrying suicide mRNA/protein inhibit schwannoma tumor growth. Mol. Ther. 2013 21 1 101 108 10.1038/mt.2012.161 22910294
    [Google Scholar]
  52. Tang L. Zheng Y. Melo M.B. Enhancing T cell therapy through TCR-signaling-responsive nanoparticle drug delivery. Nat. Biotechnol. 2018 36 8 707 716 10.1038/nbt.4181 29985479
    [Google Scholar]
  53. Mir R. Tonelli F. Lis P. The Parkinson’s disease VPS35[D620N] mutation enhances LRRK2-mediated Rab protein phosphorylation in mouse and human. Biochem. J. 2018 475 11 1861 1883 10.1042/BCJ20180248 29743203
    [Google Scholar]
  54. Eskandari S.K. Sulkaj I. Melo M.B. Regulatory T cells engineered with TCR signaling–responsive IL-2 nanogels suppress alloimmunity in sites of antigen encounter. Sci. Transl. Med. 2020 12 569 eaaw4744 10.1126/scitranslmed.aaw4744 33177180
    [Google Scholar]
  55. Yang Y. Wang Y. Wei S. Extracellular vesicles isolated by size-exclusion chromatography present suitability for RNomics analysis in plasma. J. Transl. Med. 2021 19 1 104 10.1186/s12967‑021‑02775‑9 33712033
    [Google Scholar]
  56. Zhang Y. Wu X. Tao W.A. Characterization and applications of extracellular vesicle proteome with post-translational modifications. Trends Analyt. Chem. 2018 107 21 30 10.1016/j.trac.2018.07.014 31598025
    [Google Scholar]
  57. Kumar M.A. Baba S.K. Sadida H.Q. Extracellular vesicles as tools and targets in therapy for diseases. Signal Transduct. Target. Ther. 2024 9 1 27 10.1038/s41392‑024‑01735‑1 38311623
    [Google Scholar]
  58. Zheng J.J. Agus J.K. Hong B.V. Isolation of HDL by sequential flotation ultracentrifugation followed by size exclusion chromatography reveals size-based enrichment of HDL-associated proteins. Sci. Rep. 2021 11 1 16086 10.1038/s41598‑021‑95451‑3 34373542
    [Google Scholar]
  59. Maia J. Batista S. Couto N. Employing flow cytometry to extracellular vesicles sample microvolume analysis and quality control. Front. Cell Dev. Biol. 2020 8 593750 10.3389/fcell.2020.593750 33195266
    [Google Scholar]
  60. Khalbas A.H. Albayati T.M. Ali N.S. Salih I.K. Drug loading methods and kinetic release models using of mesoporous silica nanoparticles as a drug delivery system: A review. S. Afr. J. Chem. Eng. 2024 50 261 280 10.1016/j.sajce.2024.08.013
    [Google Scholar]
  61. de Vos P. Faas M.M. Spasojevic M. Sikkema J. Encapsulation for preservation of functionality and targeted delivery of bioactive food components. Int. Dairy J. 2010 20 4 292 302 10.1016/j.idairyj.2009.11.008
    [Google Scholar]
  62. Mohamad N.R. Marzuki N.H.C. Buang N.A. Huyop F. Wahab R.A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes. Biotechnol. Biotechnol. Equip. 2015 29 2 205 220 10.1080/13102818.2015.1008192 26019635
    [Google Scholar]
  63. Weksler B. Romero I.A. Couraud P.O. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013 10 1 16 10.1186/2045‑8118‑10‑16 23531482
    [Google Scholar]
  64. Munagala R. Aqil F. Jeyabalan J. Gupta R.C. Exosome-mediated drug delivery: Challenges, opportunities, and translational perspectives. Adv. Drug Deliv. Rev. 2016 91 1 16 10.1016/j.addr.2016.05.009
    [Google Scholar]
  65. Wu H.B. Chen J.S. Hng H.H. Lou X.W. Nanostructured metal oxide-based materials as advanced anodes for lithium-ion batteries. Nanoscale 2012 4 8 2526 2542 10.1039/c2nr11966h 22460594
    [Google Scholar]
  66. Klemm D. Cranston E.D. Fischer D. Nanocellulose as a natural source for groundbreaking applications in materials science: Today’s state. Mater. Today 2018 21 7 720 748 10.1016/j.mattod.2018.02.001
    [Google Scholar]
  67. Viswanathan C.T. Bansal S. Booth B. Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. Pharm. Res. 2007 24 10 1962 1973 10.1007/s11095‑007‑9291‑7 17458684
    [Google Scholar]
  68. Viswanathan C.T. Bansal S. Booth B. Workshop/conference report—Quantitative bioanalytical methods validation and implementation: Best practices for chromatographic and ligand binding assays. AAPS J. 2007 9 1 E30 E42 10.1208/aapsj0901004
    [Google Scholar]
  69. Bors L.A. Erdő F. Overcoming the blood–brain barrier. challenges and tricks for CNS drug delivery. Sci. Pharm. 2019 87 1 6 10.3390/scipharm87010006
    [Google Scholar]
  70. Stremersch S. Vandenbroucke R.E. Van Wonterghem E. Hendrix A. De Smedt S.C. Raemdonck K. Comparing exosome-like vesicles with liposomes for the functional cellular delivery of small RNAs. J. Control. Release 2016 232 51 61 10.1016/j.jconrel.2016.04.005 27072025
    [Google Scholar]
  71. Ploetz E. Engelke H. Lächelt U. Wuttke S. The chemistry of reticular framework nanoparticles: MOF, ZIF, and COF materials. Adv. Funct. Mater. 2020 30 41 1909062 10.1002/adfm.201909062
    [Google Scholar]
  72. Li H. Jin H. Wan W. Wu C. Wei L. Cancer nanomedicine: Mechanisms, obstacles and strategies. Nanomedicine (Lond.) 2018 13 13 1639 1656 10.2217/nnm‑2018‑0007 30035660
    [Google Scholar]
  73. Verdugo-Molinares M.G. Ku-Centurion M. Melo Z. Exosomes in Reperfusion Injuries: Role in Pathophysiology and Perspectives as Treatment. Reperfusion Injuries - Advances in Understanding, Prevention, and Treatmen. London, UK IntechOpen 2023 10.5772/intechopen.113828
    [Google Scholar]
  74. Tyagi R. Sharma P. Mehta M. Liposomes - Recent Advances, New Perspectives and Applications. London, UK IntechOpen 2022 10.5772/intechopen.102167
    [Google Scholar]
  75. Harati R. Barar J. Aghanejad A. Exosomes as intelligent nanocarriers for drug delivery to the central nervous system. Int. J. Mol. Sci. 2023 24 21 15635 10.3390/ijms242115635 37958619
    [Google Scholar]
  76. Gialeli A.M. Theocharis A.D. Karamanos N.K. Exosomes as therapeutic vehicles across the blood-brain barrier: Challenges and opportunities. Molecules 2022 27 23 7974 10.3390/molecules27237974
    [Google Scholar]
  77. Shah R. Patel T. Exosomes in neurodegenerative diseases and their potential as therapeutic agents. Front. Mol. Neurosci. 2021 14 653040 10.3389/fnmol.2021.653040
    [Google Scholar]
  78. Tieu T. Wu C. Chen J. Advances in exosome-based strategies for brain drug delivery. Brain Res. Bull. 2021 170 280 291 10.1016/j.brainresbull.2021.04.013
    [Google Scholar]
  79. Zhuang X. Xiang X. Grizzle W. Exosome-mediated drug delivery: Targeting the blood-brain barrier. Adv. Drug Deliv. Rev. 2021 174 1 23 10.1016/j.addr.2021.02.004
    [Google Scholar]
  80. Ha D. Yang N. Nadithe V. Exosomes as bio-inspired carriers for drug and gene delivery. Biol. Rev. Camb. Philos. Soc. 2020 95 4 1210 1229 10.1111/brv.12613
    [Google Scholar]
  81. Agliardi C. Clerici M. Blood extracellular vesicles (EVs) of central nervous system origin: A window into the brain. Neural Regen. Res. 2020 15 1 55 56 10.4103/1673‑5374.264454 31535644
    [Google Scholar]
  82. Yim N. Ryu S.W. Choi K. Exosomes as novel drug delivery systems for central nervous system diseases. Cell Rep. 2016 15 3 282 295 10.1016/j.celrep.2016.03.011
    [Google Scholar]
  83. Ridder K. Keller S. Dams M. Exosome-mediated transfer across the blood-brain barrier. Nat. Rev. Neurol. 2014 10 4 206 218 10.1038/nrneurol.2014.13
    [Google Scholar]
  84. Tkach M. Théry C. Communication by extracellular vesicles: Where we are and where we need to go. Cell 2016 164 6 1226 1232 10.1016/j.cell.2016.01.043 26967288
    [Google Scholar]
  85. Harati R. Exosomes in the regulation of the blood-brain barrier: Implications for neurological disorders. Int. J. Mol. Sci. 2023 24 21 15635 10.3390/ijms242115635 37958619
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385383438250526063154
Loading
/content/journals/pnt/10.2174/0122117385383438250526063154
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test