Skip to content
2000
image of Development and Optimization of a Cilostazol-Loaded Nanomicelle Transdermal Patch for Hypertension Management

Abstract

Background

This study aimed to develop and optimize a cilostazol-loaded nanomicelle transdermal patch to enhance solubility, stability, and controlled drug release.

Objective

To improve cilostazol bioavailability by formulating a stable, nanomicelle-loaded transdermal patch.

Methods

Nanomicelles were prepared using the thin-film hydration method with Soluplus and Poloxamer 188 as the polymer and surfactant. The transdermal patch was fabricated using the solvent casting method and evaluated for tensile strength, folding endurance, and drug diffusion.

Results

The optimized formulation showed 97.71% entrapment efficiency, 48.86% drug loading, a particle size of 129.07 nm, and a zeta potential of −21.5 mV. The patch exhibited a tensile strength of 141.83 MPa, folding endurance of over 300 folds, and sustained drug diffusion.

Conclusion

The developed transdermal patch offers a promising strategy to enhance cilostazol bioavailability by bypassing first-pass metabolism, promoting better penetration, and ensuring improved patient compliance.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385362916250630053000
2025-07-16
2025-11-04
Loading full text...

Full text loading...

References

  1. Singh S. Shankar R. Singh G.P. Prevalence and associated risk factors of hypertension: A cross-sectional study in urban varanasi. Int. J. Hypertens. 2017 2017 1 10 10.1155/2017/5491838 29348933
    [Google Scholar]
  2. Texier L. [What can be expected from current treatments of psoriasis?]. J. Med. Bord. 1961 138 20 25 13776142
    [Google Scholar]
  3. Dawson D.L. Cutler B.S. Meissner M.H. Strandness D.E. Cilostazol has beneficial effects in treatment of intermittent claudication: Results from a multicenter, randomized, prospective, double-blind trial. Circulation 1998 98 7 678 686 10.1161/01.CIR.98.7.678 9715861
    [Google Scholar]
  4. Shawish M.I. Ben-Eltriki M. Wright J.M. Effect of phosphodiesterase 5 inhibitors on blood pressure. Cochrane Libr. 2019 2019 12 1 9 10.1002/14651858.CD013507
    [Google Scholar]
  5. Otake H. Yamaguchi M. Ogata F. Transdermal system based on solid cilostazol nanoparticles attenuates ischemia/reperfusion-induced brain injury in mice. Nanomaterials 2021 11 4 1009 10.3390/nano11041009 33920878
    [Google Scholar]
  6. Piazzini V. D’Ambrosio M. Luceri C. Formulation of nanomicelles to improve the solubility and the oral absorption of silymarin. Molecules 2019 24 9 1688 10.3390/molecules24091688 31052197
    [Google Scholar]
  7. Hu Z. Guo Z. Han S. Preparation and pH/temperature dual drug release behavior of polyamino acid nanomicelles. Polym. Bull. 2022 79 7 4685 4699 10.1007/s00289‑021‑03735‑5
    [Google Scholar]
  8. Parra A. Jarak I. Santos A. Veiga F. Figueiras A. Polymeric micelles: A promising pathway for dermal drug delivery. Materials 2021 14 23 7278 10.3390/ma14237278 34885432
    [Google Scholar]
  9. Melim C. Jarak I. Tavares E. Roleira F. Veiga F. Figueiras A. Development and characterization of a novel mixed polymeric micelle as a potential therapeutic strategy for osteosarcoma. Proceedings 2021 78 1 54 10.3390/IECP2020‑08663
    [Google Scholar]
  10. Du J.Z. Tang L.Y. Song W.J. Shi Y. Wang J. Evaluation of polymeric micelles from brush polymer with poly(ε-caprolactone)-b-poly(ethylene glycol) side chains as drug carrier. Biomacromolecules 2009 10 8 2169 2174 10.1021/bm900345m 19722555
    [Google Scholar]
  11. Malekhosseini S. Rezaie A. Khaledian S. Fabrication and characterization of hydrocortisone loaded Dextran-Poly Lactic-co-Glycolic acid micelle. Heliyon 2020 6 5 e03975 10.1016/j.heliyon.2020.e03975 32455174
    [Google Scholar]
  12. Pignatello R. Corsaro R. Bonaccorso A. Zingale E. Carbone C. Musumeci T. Soluplus® polymeric nanomicelles improve solubility of BCS-class II drugs. Drug Deliv. Transl. Res. 2022 12 8 1991 2006 10.1007/s13346‑022‑01182‑x 35604634
    [Google Scholar]
  13. Hardainiyan S. Kumar K. Nandy B.C. Saxena R. Design, formulation and in vitro drug release from transdermal patches containing imipramine hydrochloride as model drug. Int. J. Pharm. Pharm. Sci. 2017 9 6 220 10.22159/ijpps.2017v9i6.16851
    [Google Scholar]
  14. Nayak B. Pattanayak D. Ellaiah P. Das S. Formulation design preparation and in vitro characterization of nebivolol transdermal patches. Asian J. Pharm. 2011 5 3 175 182 10.4103/0973‑8398.91994
    [Google Scholar]
  15. Wagh M.P. Dalvi H. Bagal M. Formulation and evaluation of transdermal drug delivery system for simvastatin. Indian Drugs 2009 46 3 221 225
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385362916250630053000
Loading
/content/journals/pnt/10.2174/0122117385362916250630053000
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: film forming polymer ; transdermal patch ; Nanomicelles ; cilostazol ; poloxamer 188 ; soluplus
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test