Skip to content
2000
image of Nano-Pickering Emulsion using Solid Particles of Typhonium flagelliforme Extract as a Stabilizer: Optimization using Response Surface Methodology and Elucidation of Antioxidant and Antibacterial Activities

Abstract

Background

(TF) is a plant known for its high polyphenol content, making it a good option for stabilizing nano-Pickering emulsion systems. Nano-Pickering emulsions use solid particles for better stability and functional properties than conventional ones.

Objective

This study aimed to develop a nano-Pickering emulsion stabilized by TF particles using the Response Surface Methodology (RSM).

Methods

The RSM was used to determine the best formulation and manufacturing process for TF-based nano-Pickering emulsion (TFNPE). The optimal formula was tested for physical stability, antioxidant activity, and antibacterial activity using the agar diffusion method against several bacteria.

Results

The droplet size and distribution of TFNPE were affected by solid particle content, chitosan concentration, and sonication intensity. The optimal formula had 1.84% solid particles, 0.26% chitosan, and 50% sonication intensity. TFNPE remained stable at 4 ± 2°C for six months and showed increased antioxidant capacity (204.76 ± 3.57 mg AEAC/g) relative to TF extract (176.65 ± 2.86 mg AEAC/g). TFNPE also exhibited antibacterial activity against , , and , with inhibition zones of 12.9 ± 0.5 mm, 14.81 ± 0.1 mm and 16.27 ± 0.3 mm, respectively.

Conclusion

The experimental results were well fitted with the selected statistical model. These findings confirmed TFE's ability to act as a stabilizer for Pickering emulsions and determined its significant anti-acne potential due to its antioxidant and antibacterial properties.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385368118250217051038
2025-05-22
2025-09-01
Loading full text...

Full text loading...

References

  1. Chevalier Y. Bolzinger M.A. Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf. A Physicochem. Eng. Asp. 2013 439 12 23 34 10.1016/j.colsurfa.2013.02.054
    [Google Scholar]
  2. Sarkar A. Dickinson E. Sustainable food-grade Pickering emulsions stabilized by plant-based particles. Curr. Opin. Colloid Interface Sci. 2020 49 10 69 81 10.1016/j.cocis.2020.04.004
    [Google Scholar]
  3. Frelichowska J. Bolzinger M.A. Valour J.P. Mouaziz H. Pelletier J. Chevalier Y. Pickering w/o emulsions: Drug release and topical delivery. Int. J. Pharm. 2009 368 1-2 7 15 10.1016/j.ijpharm.2008.09.057 18992799
    [Google Scholar]
  4. Shah B.R. Li Y. Jin W. An Y. He L. Li Z. Xu W. Li B. Preparation and optimization of Pickering emulsion stabilized by chitosan-tripolyphosphate nanoparticles for curcumin encapsulation. Food Hydrocoll. 2016 52 1 369 377 10.1016/j.foodhyd.2015.07.015
    [Google Scholar]
  5. Xu T. Yang J. Hua S. Hong Y. Gu Z. Cheng L. Li Z. Li C. Characteristics of starch-based Pickering emulsions from the interface perspective. Trends Food Sci. Technol. 2020 105 8 334 346 10.1016/j.tifs.2020.09.026
    [Google Scholar]
  6. Gao J. Bu X. Zhou S. Wang X. Bilal M. Hassan F.U. Hassanzadeh A. Xie G. Chelgani S.C. Pickering emulsion prepared by nano-silica particles – A comparative study for exploring the effect of various mechanical methods. Ultrason. Sonochem. 2022 83 2 105928 10.1016/j.ultsonch.2022.105928 35086021
    [Google Scholar]
  7. Yu L. Li S. Stubbs L.P. Lau H.C. Characterization of clay-stabilized, oil-in-water Pickering emulsion for potential conformance control in high-salinity, high-temperature reservoirs. Appl. Clay Sci. 2021 213 8 106246 10.1016/j.clay.2021.106246
    [Google Scholar]
  8. Demina P.A. Bukreeva T.V. Pickering emulsion stabilized by commercial titanium dioxide nanoparticles in the form of rutile and anatase. Nanotechnol. Russ. 2018 13 7-8 425 429 10.1134/S1995078018040043
    [Google Scholar]
  9. Luo Z. Murray B.S. Yusoff A. Morgan M.R.A. Povey M.J.W. Day A.J. Particle-stabilizing effects of flavonoids at the oil-water interface. J. Agric. Food Chem. 2011 59 6 2636 2645 10.1021/jf1041855 21329397
    [Google Scholar]
  10. Rosdianto R.S. Zakiyah N. Viviani R.N. Saesarria Deisberanda F. Nareswari T.L. Satrialdi N. Fidrianny I. Adhika D.R. Waresindo W.X. Supratman U. Suciati T. Novel insight into Pickering emulsion and colloidal particle network construction of basil extract for enhancing antioxidant and UV-b-induced antiaging activities. ACS Omega 2023 8 18 15932 15950 10.1021/acsomega.2c07657 37179601
    [Google Scholar]
  11. Farida Y. Irpan K. Fithriani L. Antibacterial and antioxidant activity of Keladi Tikus leaves extract (Typhonium flagelliforme) (Lodd.) Blume. Procedia Chem. 2014 13 209 213 10.1016/j.proche.2014.12.029
    [Google Scholar]
  12. Septaningsih D.A. Yunita A. Putra C.A. Suparto I.H. Achmadi S.S. Heryanto R. Rafi M. Phenolics profiling and free radical scavenging activity of Annona muricata, Gynura procumbens, and Typhonium flagelliforme leaves extract. Indonesian Journal of Chemistry 2021 21 5 1140 1147 10.22146/ijc.62124
    [Google Scholar]
  13. Lai C.S. Mas R.H.M.H. Nair N.K. Majid M.I.A. Mansor S.M. Navaratnam V. Typhonium flagelliforme inhibits cancer cell growth in vitro and induces apoptosis: An evaluation by the bioactivity guided approach. J. Ethnopharmacol. 2008 118 1 14 20 10.1016/j.jep.2008.02.034 18436400
    [Google Scholar]
  14. Setiawati A. Immanuel H. Utami M.T. The inhibition of Typhonium flagelliforme Lodd. Blume leaf extract on COX-2 expression of WiDr colon cancer cells. Asian Pac. J. Trop. Biomed. 2016 6 3 251 255 10.1016/j.apjtb.2015.12.012
    [Google Scholar]
  15. Choo C.Y. Chan K.L. Takeya K. Itokawa H. Cytotoxic activity of Typhonium flagelliforme (Araceae). Phytother. Res. 2001 15 3 260 262 10.1002/ptr.717 11351365
    [Google Scholar]
  16. Mohan S. Abdul A.B. Wahab S.I.A. Al-Zubairi A.S. Elhassan M.M. Yousif M. Antibacterial and antioxidant activities of Typhonium flagelliforme (Lodd.) Blume leaves. Am. J. Biochem. Biotechnol. 2008 4 4 402 407 10.3844/ajbbsp.2008.402.407
    [Google Scholar]
  17. Vivek K. Subbarao K.V. Srivastava B. Optimization of postharvest ultrasonic treatment of kiwifruit using RSM. Ultrason. Sonochem. 2016 32 9 328 335 10.1016/j.ultsonch.2016.03.029 27150778
    [Google Scholar]
  18. Venkatachalam M. Shum-Chéong-Sing A. Caro Y. Dufossé L. Fouillaud M. Ovat analysis and response surface methodology based on nutrient sources for optimization of pigment production in the Marine-derived Fungus Talaromyces Albobiverticillius 30548 submerged fermentation. Mar. Drugs 2021 19 5 248 10.3390/md19050248 33925595
    [Google Scholar]
  19. Nour V. Trandafir I. Cosmulescu S. Optimization of ultrasound-assisted hydroalcoholic extraction of phenolic compounds from walnut leaves using response surface methodology. Pharm. Biol. 2016 54 10 2176 2187 10.3109/13880209.2016.1150303 26959811
    [Google Scholar]
  20. Farnsworth N.R. Biological and phytochemical screening of plants. J. Pharm. Sci. 1966 55 3 225 276 10.1002/jps.2600550302 5335471
    [Google Scholar]
  21. Lim M.W. Yow Y.Y. Gew L.T. LC–MS profiling‐based non‐targeted secondary metabolite screening for deciphering cosmeceutical potential of Malaysian algae. J. Cosmet. Dermatol. 2023 22 10 2810 2815 10.1111/jocd.15794 37313630
    [Google Scholar]
  22. Pourmorad F. Hosseinimehr S.J. Shahabimajd N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol. 2006 5 1142 1145
    [Google Scholar]
  23. Chang C.C. Yang M.H. Wen H.M. Chern J.C. Estimation of total flavonoid content in propolis by two complementary Colometric methods. Yao Wu Shi Pin Fen Xi 2002 10 178 182
    [Google Scholar]
  24. Hegazy M.M. Badawi A.A. El-Nabarawi M.A. Eldegwy M.A. Louis D. One Factor at a Time and factorial experimental design for formulation of l-carnitine microcapsules to improve its manufacturability. Heliyon 2024 10 1 e23637 10.1016/j.heliyon.2023.e23637 38332882
    [Google Scholar]
  25. Pongsumpun P. Iwamoto S. Siripatrawan U. Response surface methodology for optimization of cinnamon essential oil nanoemulsion with improved stability and antifungal activity. Ultrason. Sonochem. 2020 60 4 104604 10.1016/j.ultsonch.2019.05.021 31539730
    [Google Scholar]
  26. Singh B.G. Bagora N. Nayak M. Ajish J.K. Gupta N. Kunwar A. The preparation of curcumin-loaded pickering emulsion using gelatin-chitosan colloidal particles as emulsifier for possible application as a bio-inspired cosmetic formulation. Pharmaceutics 2024 16 3 356 10.3390/pharmaceutics16030356 38543250
    [Google Scholar]
  27. Du Le H. Loveday S.M. Singh H. Sarkar A. Pickering emulsions stabilised by hydrophobically modified cellulose nanocrystals: Responsiveness to pH and ionic strength. Food Hydrocoll. 2020 99 7 105344 10.1016/j.foodhyd.2019.105344
    [Google Scholar]
  28. Maha H.L. Sinaga K.R. Sinaga K.R. Masfria M. Masfria M. Formulation and evaluation of Miconazole Nitrate nanoemulsion and cream. Asian J. Pharm. Clin. Res. 2018 11 3 319 10.22159/ajpcr.2018.v11i3.22056
    [Google Scholar]
  29. Harimurti N. Nasikin M. Mulia K. Water-in-oil-in-water nanoemulsions containing Temulawak (Curcuma Xanthorriza Roxb) and Red Dragon fruit (Hylocereus polyrhizus) extracts. Molecules 2021 26 1 196 10.3390/molecules26010196 33401775
    [Google Scholar]
  30. Maha H.L. Formula comparison of nanoemulsion and cream containing Miconazole Nitrate: Penetration test using Franz Diffusion Cells and antifungal activity test on Trichophyton mentagrophytes, Microsporum canis, and Candida albicans. Rasayan J. Chem. 2020 13 1 529 534 10.31788/RJC.2020.1315553
    [Google Scholar]
  31. Sopyan I. Gozali D. Tiassetiana S. Formulation of tomato extracts (Solanum lycopersicum L.) as a sunscreen lotion. Natl. J. Physiol. Pharm. Pharmacol. 2017 8 3 1 10.5455/njppp.2017.7.1039921112017
    [Google Scholar]
  32. Yue M. Huang M. Zhu Z. Huang T. Huang M. Effect of ultrasound assisted emulsification in the production of Pickering emulsion formulated with chitosan self-assembled particles: Stability, macro, and micro rheological properties. Lebensm. Wiss. Technol. 2022 154 10 112595 10.1016/j.lwt.2021.112595
    [Google Scholar]
  33. Celep E. Charehsaz M. Akyüz S. Acar E.T. Yesilada E. Effect of in vitro gastrointestinal digestion on the bioavailability of phenolic components and the antioxidant potentials of some Turkish fruit wines. Food Res. Int. 2015 78 209 215 10.1016/j.foodres.2015.10.009 28433284
    [Google Scholar]
  34. Arsul M.I. Fidrianny I. Insanu M. Parang Romang (Boehmeria Virgata (Frost.) Guill.): Correlation of phytochemistry with antioxidant and xanthine oxidase inhibitory activities. Hayati J. Biosci. 2024 31 3 457 464 10.4308/hjb.31.3.457‑464
    [Google Scholar]
  35. Hartati R. Febiana N.A. Pramastya H. Fidrianny I. Antioxidant activities of stem, leaves and fruits extracts of Pepino (Solanum muricatum Aiton). Pak. J. Biol. Sci. 2024 27 2 69 79 10.3923/pjbs.2024.69.79 38516748
    [Google Scholar]
  36. Balouiri M. Sadiki M. Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal. 2016 6 2 71 79 10.1016/j.jpha.2015.11.005 29403965
    [Google Scholar]
  37. Nitbani F.O. Jumina .  Siswanta D. Solikhah E.N. Isolation and antibacterial activity test of lauric acid from crude coconut oil (Cocos nucifera L.). Procedia Chemistry 2016 18 132 140 10.1016/j.proche.2016.01.021
    [Google Scholar]
  38. Ben-David A. Davidson C.E. Estimation method for serial dilution experiments. J. Microbiol. Methods 2014 107 214 221 10.1016/j.mimet.2014.08.023 25205541
    [Google Scholar]
  39. Waresindo W.X. Luthfianti H.R. Edikresnha D. Suciati T. Noor F.A. Khairurrijal K. A freeze–thaw PVA hydrogel loaded with guava leaf extract: Physical and antibacterial properties. RSC Advances 2021 11 48 30156 30171 10.1039/D1RA04092H 35480264
    [Google Scholar]
  40. Priosoeryanto B.P. Rostantinata R. Harlina E. Nurcholis W. Ridho R. Sutardi L.N. In vitro antiproliferation activity of Typhonium flagelliforme leaves ethanol extract and its combination with canine interferons on several tumor-derived cell lines. Vet. World 2020 13 5 931 939 10.14202/vetworld.2020.931‑939 32636590
    [Google Scholar]
  41. Aliaño-González M.J. Barea-Sepúlveda M. Espada-Bellido E. Ferreiro-González M. López-Castillo J.G. Palma M. Barbero G.F. Carrera C. Ultrasound-assisted extraction of total phenolic compounds and antioxidant activity in mushrooms. Agronomy (Basel) 2022 12 8 1812 10.3390/agronomy12081812
    [Google Scholar]
  42. Garcia-Castello E.M. Rodriguez-Lopez A.D. Mayor L. Ballesteros R. Conidi C. Cassano A. Optimization of conventional and ultrasound assisted extraction of flavonoids from grapefruit (Citrus paradisi L.) solid wastes. Lebensm. Wiss. Technol. 2015 64 2 1114 1122 10.1016/j.lwt.2015.07.024
    [Google Scholar]
  43. Muñiz-Márquez D.B. Martínez-Ávila G.C. Wong-Paz J.E. Belmares-Cerda R. Rodríguez-Herrera R. Aguilar C.N. Ultrasound-assisted extraction of phenolic compounds from Laurus nobilis L. and their antioxidant activity. Ultrason. Sonochem. 2013 20 5 1149 1154 10.1016/j.ultsonch.2013.02.008 23523026
    [Google Scholar]
  44. Tomšik A. Pavlić B. Vladić J. Ramić M. Brindza J. Vidović S. Optimization of ultrasound-assisted extraction of bioactive compounds from wild garlic (Allium ursinum L.). Ultrason. Sonochem. 2016 29 502 511 10.1016/j.ultsonch.2015.11.005 26563916
    [Google Scholar]
  45. Şahin S. Şamlı R. Optimization of olive leaf extract obtained by ultrasound-assisted extraction with response surface methodology. Ultrason. Sonochem. 2013 20 1 595 602 10.1016/j.ultsonch.2012.07.029 22964032
    [Google Scholar]
  46. Sianipar N.F. Assidqi K. Hadisaputri Y.E. Salam S. Tarigan R. Purnamaningsih R. Determination of bioactive compounds of superior mutant rodent tuber (Typhonium flagelliforme) in various fractions using GC-MS. IOP Conf. Ser. Earth Environ. Sci. 2021 794 1 012144 10.1088/1755‑1315/794/1/012144
    [Google Scholar]
  47. Wei Y. Tong Z. Dai L. Ma P. Zhang M. Liu J. Mao L. Yuan F. Gao Y. Novel colloidal particles and natural small molecular surfactants co-stabilized Pickering emulsions with hierarchical interfacial structure: Enhanced stability and controllable lipolysis. J. Colloid Interface Sci. 2020 563 17 291 307 10.1016/j.jcis.2019.12.085 31884251
    [Google Scholar]
  48. Balakumar E. Chandrasekaran B. Abed S.N. Al-Attraqchi O. Kuche K. Tekade R.K. Computer-aided prediction of pharmacokinetic (ADMET) properties. Dosage Form Design Parameters Elsevier 2018 43 731 755 10.1016/B978‑0‑12‑814421‑3.00021‑X
    [Google Scholar]
  49. Gao Y. Gesenberg C. Zheng W. Chapter 17 - Oral formulations for preclinical studies: Principle, design, and development considerations. Developing Solid Oral Dosage Forms 2nd ed Elsevier 2017 44 455 495 10.1016/B978‑0‑12‑802447‑8.00017‑0
    [Google Scholar]
  50. National Center of Biotechnology Information. PubChem Compound Summary for CID 5281377, Genistin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Genistin Retrieved October 4, 2024.
  51. The Encyclopedia of Traditional Chinese Medicine, Viscumneoside II, 2018.
  52. National Center of Biotechnology Information. PubChem Compound Summary for CID 5281616, Galangin. Available from: https://pubchem.ncbi.nlm.nih.gov/compound/Galangin Retrieved October 5, 2024.
  53. Binks B.P. Horozov T.S. Colloidal particles at liquid interfaces. Cambridge, U.K. Cambridge University Press 2006 10.1017/CBO9780511536670
    [Google Scholar]
  54. Calabrese V. Courtenay J.C. Edler K.J. Scott J.L. Pickering emulsions stabilized by naturally derived or biodegradable particles. Curr. Opin. Green Sustain. Chem. 2018 12 8 83 90 10.1016/j.cogsc.2018.07.002
    [Google Scholar]
  55. Bock A. Steinhäuser U. Drusch S. Partitioning behavior and interfacial activity of phenolic acid derivatives and their impact on β-Lactoglobulin at the oil-water interface. Food Biophys. 2021 16 2 191 202 10.1007/s11483‑020‑09663‑7
    [Google Scholar]
  56. Sonavane G. Tomoda K. Sano A. Ohshima H. Terada H. Makino K. In vitro permeation of gold nanoparticles through rat skin and rat intestine: Effect of particle size. Colloids Surf. B Biointerfaces 2008 65 1 1 10 10.1016/j.colsurfb.2008.02.013 18499408
    [Google Scholar]
  57. Su R. Fan W. Yu Q. Dong X. Qi J. Zhu Q. Zhao W. Wu W. Chen Z. Li Y. Lu Y. Size-dependent penetration of nanoemulsions into epidermis and hair follicles: Implications for transdermal delivery and immunization. Oncotarget 2017 8 24 38214 38226 10.18632/oncotarget.17130 28465469
    [Google Scholar]
  58. The European Parliament and the Council The environmental concerns that substances used in cosmetic products may raise are considered through the application of Regulation (EC) No 1907/2006 of the European Parliament and of the Council of 18 December. 2006
    [Google Scholar]
  59. Albert C. Beladjine M. Tsapis N. Fattal E. Agnely F. Huang N. Pickering emulsions: Preparation processes, key parameters governing their properties and potential for pharmaceutical applications. J. Control. Release 2019 309 9 302 332 10.1016/j.jconrel.2019.07.003 31295541
    [Google Scholar]
  60. Wei Y. Niu Z. Wang F. Feng K. Zong M. Wu H. A novel Pickering emulsion system as the carrier of tocopheryl acetate for its application in cosmetics. Mater. Sci. Eng. C 2020 109 11 110503 10.1016/j.msec.2019.110503 32228963
    [Google Scholar]
  61. Wei Z. Huang Q. Development of high internal phase Pickering emulsions stabilised by ovotransferrin–gum arabic particles as curcumin delivery vehicles. Int. J. Food Sci. Technol. 2020 55 5 1891 1899 10.1111/ijfs.14340
    [Google Scholar]
  62. Wang H. Bai Y. Shao D. Study on Pickering emulsions stabilized by tea polyphenols/gelatin/chitosan nanoparticles. J. Phys. Conf. Ser. 2020 1637 1 012106 10.1088/1742‑6596/1637/1/012106
    [Google Scholar]
  63. Xu W. Li Z. Li H. Sun H. Zheng S. Luo D. Li Y. Wang Y. Shah B.R. Stabilization and microstructural network of pickering emulsion using different xanthan gum/lysozyme nanoparticle concentrations. Lebensm. Wiss. Technol. 2022 160 2 113298 10.1016/j.lwt.2022.113298
    [Google Scholar]
  64. Manga M.S. York D.W. Production of concentrated Pickering emulsions with narrow size distributions using stirred cell membrane emulsification. Langmuir 2017 33 36 9050 9056 10.1021/acs.langmuir.7b01812 28806523
    [Google Scholar]
  65. Carriço C. Pinto P. Graça A. Gonçalves L.M. Ribeiro H.M. Marto J. Design and characterization of a new Quercus Suber-based Pickering emulsion for topical application. Pharmaceutics 2019 11 3 131 10.3390/pharmaceutics11030131 30893873
    [Google Scholar]
  66. Pichot R. Spyropoulos F. Norton I.T. Mixed-emulsifier stabilised emulsions: Investigation of the effect of monoolein and hydrophilic silica particle mixtures on the stability against coalescence. J. Colloid Interface Sci. 2009 329 2 284 291 10.1016/j.jcis.2008.09.083 18977494
    [Google Scholar]
  67. Sapei L. Sandy I.G.Y.H. Suputra I.M.K.D. Ray M. The effect of different concentrations of Tween-20 combined with Rice Husk Silica on the stability of o/w emulsion: A kinetic study. IOP Conf. Ser. Mater. Sci. Eng. 2017 10.1088/1757‑899X/245/1/012023
    [Google Scholar]
  68. Binks B.P. Yin D. Pickering emulsions stabilized by hydrophilic nanoparticles: In situ surface modification by oil. Soft Matter 2016 12 32 6858 6867 10.1039/C6SM01214K 27452321
    [Google Scholar]
  69. Nakagawa H. Oyama T. Molecular basis of water activity in glycerol-water mixtures. Front Chem. 2019 7 11 731 10.3389/fchem.2019.00731 31737605
    [Google Scholar]
  70. Dong L. Johnson D. Surface tension of charge-stabilized colloidal suspensions at the water-air interface. Langmuir 2003 19 24 10205 10209 10.1021/la035128j
    [Google Scholar]
  71. Wang W. Wang R. Yao J. Luo S. Wang X. Zhang N. Wang L. Zhu X. Effect of ultrasonic power on the emulsion stability of rice bran protein-chlorogenic acid emulsion. Ultrason. Sonochem. 2022 84 105959 10.1016/j.ultsonch.2022.105959 35247681
    [Google Scholar]
  72. Frelichowska J. Bolzinger M.A. Chevalier Y. Effects of solid particle content on properties of o/w Pickering emulsions. J. Colloid Interface Sci. 2010 351 2 348 356 10.1016/j.jcis.2010.08.019 20800850
    [Google Scholar]
  73. Joglekar A.M. May A.T. Product excellence through the design of experiments. Cereal Foods World 1987 32 857 868
    [Google Scholar]
  74. Costa A.L.R. Gomes A. Cunha R.L. One-step ultrasound producing O/W emulsions stabilized by chitosan particles. Food Res. Int. 2018 107 2 717 725 10.1016/j.foodres.2018.02.057 29580539
    [Google Scholar]
  75. Li J. Wang S. Wang H. Cao W. Lin H. Qin X. Chen Z. Gao J. Wu L. Zheng H. Effect of ultrasonic power on the stability of low-molecular-weight oyster peptides functional-nutrition W1/O/W2 double emulsion. Ultrason. Sonochem. 2023 92 10 106282 10.1016/j.ultsonch.2022.106282 36584561
    [Google Scholar]
  76. Danaei M. Dehghankhold M. Ataei S. Hasanzadeh Davarani F. Javanmard R. Dokhani A. Khorasani S. Mozafari M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics 2018 10 2 57 10.3390/pharmaceutics10020057 29783687
    [Google Scholar]
  77. Cheong A.M. Tan C.P. Nyam K.L. Emulsifying conditions and processing parameters optimisation of kenaf seed oil-in-water nanoemulsions stabilised by ternary emulsifier mixtures. Food Sci. Technol. Int. 2018 24 5 404 413 10.1177/1082013218760882 29466882
    [Google Scholar]
  78. Al-Saad K. Issa A.A. Idoudi S. Shomar B. Al-Ghouti M.A. Al-Hashimi N. El-Azazy M. Smart synthesis of trimethyl ethoxysilane (TMS) functionalized core shell magnetic nanosorbents Fe3O4SiO2: Process optimization and application for extraction of pesticides. Molecules 2020 25 20 4827 10.3390/molecules25204827 33092200
    [Google Scholar]
  79. Iskandar B. Mei H.C. Liu T.W. Lin H.M. Lee C.K. Evaluating the effects of surfactant types on the properties and stability of oil-in-water Rhodiola rosea nanoemulsion. Colloids Surf. B Biointerfaces 2024 234 9 113692 10.1016/j.colsurfb.2023.113692 38104466
    [Google Scholar]
  80. Vasiljevic D. Vuleta G. Primorac M. The characterization of the semi‐solid W/O/W emulsions with low concentrations of the primary polymeric emulsifier. Int. J. Cosmet. Sci. 2005 27 2 81 87 10.1111/j.1467‑2494.2004.00247.x 18492157
    [Google Scholar]
  81. Lachman L. Lieberman H. Translation of Siti Suyatmi. Theory and practice of industrial pharmacy II. 3rd ed Jakarta UI Press 2008 308
    [Google Scholar]
  82. Liu C. Tan Y. Xu Y. McCleiments D.J. Wang D. Formation, characterization, and application of chitosan/pectin-stabilized multilayer emulsions as astaxanthin delivery systems. Int. J. Biol. Macromol. 2019 140 985 997 10.1016/j.ijbiomac.2019.08.071 31401274
    [Google Scholar]
  83. Cheong J.N. Tan C.P. Man Y.B.C. Misran M. α-Tocopherol nanodispersions: Preparation, characterization and stability evaluation. J. Food Eng. 2008 89 2 204 209 10.1016/j.jfoodeng.2008.04.018
    [Google Scholar]
  84. Juntarasakul O. Maneeintr K. Evaluation of stability and viscosity measurement of emulsion from oil from production in northern oilfield in Thailand. IOP Conf. Ser. Earth Environ. Sci. 2018 140 1 012024 10.1088/1755‑1315/140/1/012024
    [Google Scholar]
  85. Shah P. Bhalodia D. Shelat P. Nanoemulsion: A pharmaceutical review. Systematic Reviews in Pharmacy 2010 1 1 24 32 10.4103/0975‑8453.59509
    [Google Scholar]
  86. Eid A.M.M. Elmarzugi N.A. El-Enshasy H.A. Preparation and evaluation of olive oil nanoemulsion using sucrose monoester. Int. J. Pharm. Pharm. Sci. 2013 5 3 434 440
    [Google Scholar]
  87. Kim H.J. Chen F. Wu C. Wang X. Chung H.Y. Jin Z. Evaluation of antioxidant activity of Australian tea tree (Melaleuca alternifolia) oil and its components. J. Agric. Food Chem. 2004 52 10 2849 2854 10.1021/jf035377d 15137824
    [Google Scholar]
  88. Yasin M. Younis A. Javed T. Akram A. Ahsan M. Shabbir R. Ali M.M. Tahir A. El-Ballat E.M. Sheteiwy M.S. Sammour R.H. Hano C. Alhumaydhi F.A. El-Esawi M.A. River tea tree oil: Composition, antimicrobial and antioxidant activities, and potential applications in agriculture. Plants 2021 10 10 2105 10.3390/plants10102105 34685914
    [Google Scholar]
  89. Xuan Du D. Xuan Vuong B. Study on preparation of water-soluble chitosan with varying molecular weights and its antioxidant activity. Adv. Mater. Sci. Eng. 2019 2019 1 1 8 10.1155/2019/8781013
    [Google Scholar]
  90. Salman N. Hadi A. G. Aeed A. Enhanced antioxidant activity of chitosan extracted from fish shells materials. Mater. Today Proc. 2022 49 7 2793 2796 10.1016/j.matpr.2021.09.460
    [Google Scholar]
  91. Luthfiyana N. Bija S. Anwar E. Laksmitawati D.R. Rosalinda G.L. Characteristics and activity of chitosan from Mud Crab Shells on acne bacteria: Staphylococcus aureus, S. epidermidis, and Propionibacterium acnes. Biodiversitas (Surak.) 2022 23 12 6645 6651 10.13057/biodiv/d231263
    [Google Scholar]
  92. El-Ekiaby W. Basil oil nanoemulsion formulation and its antimicrobial activity against fish pathogen and enhance disease resistance against Aeromonas hydrophila in cultured Nile tilapia. Egyptian Journal for Aquaculture 2019 9 4 13 33 10.21608/eja.2019.18567.1007
    [Google Scholar]
  93. Cushnie T.P.T. Lamb A.J. Assessment of the antibacterial activity of galangin against 4-quinolone resistant strains of Staphylococcus aureus. Phytomedicine 2006 13 3 187 191 10.1016/j.phymed.2004.07.003 16428027
    [Google Scholar]
  94. Donsì F. Ferrari G. Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 2016 233 9 106 120 10.1016/j.jbiotec.2016.07.005 27416793
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385368118250217051038
Loading
/content/journals/pnt/10.2174/0122117385368118250217051038
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test