Skip to content
2000
image of Optimization of Levomilnacipran Loaded Nanostructured Lipid Carrier Using Response Surface Methodology

Abstract

Aim

The study employed Response Surface Methodology (RSM) with a Central Composite Rotatable Design (CCRD) model to optimise the formulations of Levomilnacipran nanostructured lipid carriers (LEV-NLC).

Methods

This study utilised a CCRD (Central Composite Rotatable Design) with a three-factor factorial design and three levels. It examined the particle size, zeta potential, and entrapment efficiency of LEV-NLC in relation to three independent variables: the ratio of aqueous to organic phase (X1), the ratio of drug to lipid (X2), and the concentration of surfactant (X3).

Results

The results demonstrated that the most favourable composition could be achieved using Response Surface Methodology (RSM). The most effective composition for LEV-NLC consisted of a 1:1 ratio of aqueous to organic phase (X1), a 1:7 ratio of drug to lipid (X2), and a surfactant concentration (X3) of 0.5%. Under the optimised conditions, the LEV-NLC formulation resulted in a particle size of 148 nm, a zeta potential of 36 mV, and an entrapment efficiency of 88%. The optimised LEV-NLC was examined using Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM), which revealed the presence of spherical particles. The total percentage of Levomilnacipran released from the NLC was 77% at pH 7.4 and 76% at pH 6.0 over 24 hours, exhibiting a sustained release profile that could enhance the therapeutic benefits of the drug.

Conclusion

This study demonstrated the effective application of RSM-CCRD for modelling LEV-NLC.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385396141250801060535
2025-08-28
2025-11-04
Loading full text...

Full text loading...

References

  1. Kircanski K. Lieberman M.D. Craske M.G. Feelings into words: Contributions of language to exposure therapy. Psychol. Sci. 2012 23 10 1086 1091 10.1177/0956797612443830 22902568
    [Google Scholar]
  2. Robert H. Mechanism of action of antidepressants and mood stabilizers. Neuropsychopharmacology: the fifth generation of progress. Philadelphia Lippincott Williams and Wilkins 2010 1139 1163
    [Google Scholar]
  3. Bai Y. Cai Y. Chang D. Li D. Huo X. Zhu T. Immunotherapy for depression: Recent insights and future targets. Pharmacol. Ther. 2024 257 108624 10.1016/j.pharmthera.2024.108624 38442780
    [Google Scholar]
  4. Simon G.E. Moise N. Mohr D.C. Management of depression in adults. JAMA 2024 332 2 141 152 10.1001/jama.2024.5756 38856993
    [Google Scholar]
  5. Cui L. Li S. Wang S. Major depressive disorder: Hypothesis, mechanism, prevention and treatment. Signal Transduct. Target. Ther. 2024 9 1 30 10.1038/s41392‑024‑01738‑y 38331979
    [Google Scholar]
  6. Remes O. Mendes J.F. Templeton P. Biological, psychological, and social determinants of depression: A review of recent literature. Brain Sci. 2021 11 12 1633 10.3390/brainsci11121633 34942936
    [Google Scholar]
  7. Marcus M. Yasamy M.T. Van Ommeren M.V. Chisholm D. Saxena S. Depression: A global public health concern. 2012 Available from: https://psycnet.apa.org/record/517532013-004?doi=1 10.1037/e517532013‑004
    [Google Scholar]
  8. Depressive disorder (depression). 2023 Available from: https://www.who.int/news-room/fact-sheets/detail/depression
  9. Orsolini L. Latini R. Pompili M. Understanding the complex of suicide in depression: From research to clinics. Psychiatry Investig. 2020 17 3 207 221 10.30773/pi.2019.0171 32209966
    [Google Scholar]
  10. Hillhouse T.M. Porter J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol. 2015 23 1 1 21 10.1037/a0038550 25643025
    [Google Scholar]
  11. Nutt D.J. Relationship of neurotransmitters to the symptoms of major depressive disorder. J. Clin. Psychiatry 2008 69 Suppl. E1 4 7 18494537
    [Google Scholar]
  12. Arroll B. Elley C.R. Fishman T. Antidepressants versus placebo for depression in primary care. Cochrane Libr. 2009 2014 4 CD007954 10.1002/14651858.CD007954 19588448
    [Google Scholar]
  13. Parthiban R.M.M. Bhupathyraaj M. An overview of various approaches for brain targeted drug delivery system. Int. J. Nutr. Pharmacol. Neurol. Dis. 2024 14 1 1 8 10.4103/ijnpnd.ijnpnd_72_23
    [Google Scholar]
  14. Kilts C.D. Potential new drug delivery systems for antidepressants: An overview. J. Clin. Psychiatry 2003 64 Suppl. 18 31 33 14700453
    [Google Scholar]
  15. Alvano S.A. Zieher L.M. An updated classification of antidepressants: A proposal to simplify treatment. Pers. Med. Psychiatry 2020 19-20 100042 10.1016/j.pmip.2019.04.002
    [Google Scholar]
  16. Saragoussi D. Touya M. Haro J.M. Factors associated with failure to achieve remission and with relapse after remission in patients with major depressive disorder in the PERFORM study. Neuropsychiatr. Dis. Treat. 2017 13 2151 2165 10.2147/NDT.S136343 28860772
    [Google Scholar]
  17. He H. Wang W. Lyu J. Efficacy and tolerability of different doses of three new antidepressants for treating major depressive disorder: A PRISMA-compliant meta-analysis. J. Psychiatr. Res. 2018 96 247 259 10.1016/j.jpsychires.2017.10.018 29127931
    [Google Scholar]
  18. Jeong S.H. Jang J.H. Lee Y.B. Drug delivery to the brain via the nasal route of administration: Exploration of key targets and major consideration factors. J. Pharm. Investig. 2023 53 1 119 152 10.1007/s40005‑022‑00589‑5 35910081
    [Google Scholar]
  19. Ramalingam P. Dutta G. Mohan M. Sugumaran A. Solid lipid nanoparticle a complete tool for brain targeted drug delivery. Curr. Issues Pharm. Med. Sci. 2025 38 1 11 21 10.12923/cipms‑2025‑0002
    [Google Scholar]
  20. Formica M.L. Real D.A. Picchio M.L. Catlin E. Donnelly R.F. Paredes A.J. On a highway to the brain: A review on nose-to-brain drug delivery using nanoparticles. Appl. Mater. Today 2022 29 101631 10.1016/j.apmt.2022.101631
    [Google Scholar]
  21. Kumar M. Misra A. Babbar A.K. Mishra A.K. Mishra P. Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int. J. Pharm. 2008 358 1-2 285 291 10.1016/j.ijpharm.2008.03.029 18455333
    [Google Scholar]
  22. Al-Ghananeem A.M. Saeed H. Florence R. Yokel R.A. Malkawi A.H. Intranasal drug delivery of didanosine-loaded chitosan nanoparticles for brain targeting; an attractive route against infections caused by aids viruses. J. Drug Target. 2010 18 5 381 388 10.3109/10611860903483396 20001275
    [Google Scholar]
  23. Md S. Khan R.A. Mustafa G. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, Pharmacokinetic and Scintigraphy study in mice model. Eur. J. Pharm. Sci. 2013 48 3 393 405 10.1016/j.ejps.2012.12.007 23266466
    [Google Scholar]
  24. Saraceni M.M. Venci J.V. Gandhi M.A. Levomilnacipran (Fetzima). J. Pharm. Pract. 2014 27 4 389 395 10.1177/0897190013516504 24381243
    [Google Scholar]
  25. Mann J.J. The medical management of depression. N. Engl. J. Med. 2005 353 17 1819 1834 10.1056/NEJMra050730 16251538
    [Google Scholar]
  26. Perry R. Cassagnol M. Desvenlafaxine: A new serotonin-norepinephrine reuptake inhibitor for the treatment of adults with major depressive disorder. Clin. Ther. 2009 31 Pt 1 1374 1404 10.1016/j.clinthera.2009.07.012 19698900
    [Google Scholar]
  27. Pawar D. Goyal A.K. Mangal S. Evaluation of mucoadhesive PLGA microparticles for nasal immunization. AAPS J. 2010 12 2 130 137 10.1208/s12248‑009‑9169‑1 20077052
    [Google Scholar]
  28. Chauhan I. Yasir M. Verma M. Singh A.P. Nanostructured lipid carriers: A groundbreaking approach for transdermal drug delivery. Adv. Pharm. Bull. 2020 10 2 150 165 10.34172/apb.2020.021 32373485
    [Google Scholar]
  29. Elmowafy M. Al-Sanea M.M. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharm. J. 2021 29 9 999 1012 10.1016/j.jsps.2021.07.015 34588846
    [Google Scholar]
  30. Velmurugan R. Selvamuthukumar S. Development and optimization of ifosfamide nanostructured lipid carriers for oral delivery using response surface methodology. Appl. Nanosci. 2016 6 2 159 173 10.1007/s13204‑015‑0434‑6
    [Google Scholar]
  31. Fitriani E.W. Avanti C. Rosana Y. Surini S. Nanostructured lipid carriers: A prospective dermal drug delivery system for natural active ingredients. Pharmacia 2024 71 1 15 10.3897/pharmacia.71.e115849
    [Google Scholar]
  32. Gomaa E. Fathi H.A. Eissa N.G. Elsabahy M. Methods for preparation of nanostructured lipid carriers. Methods 2022 199 3 8 10.1016/j.ymeth.2021.05.003 33992771
    [Google Scholar]
  33. Das S. Chaudhury A. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 2011 12 1 62 76 10.1208/s12249‑010‑9563‑0 21174180
    [Google Scholar]
  34. Yue P.F. Lu X.Y. Zhang Z.Z. The study on the entrapment efficiency and in vitro release of puerarin submicron emulsion. AAPS PharmSciTech 2009 10 2 376 383 10.1208/s12249‑009‑9216‑3 19381837
    [Google Scholar]
  35. Fahmy O.M. Eissa R.A. Mohamed H.H. Eissa N.G. Elsabahy M. Machine learning algorithms for prediction of entrapment efficiency in nanomaterials. Methods 2023 218 133 140 10.1016/j.ymeth.2023.08.008 37595853
    [Google Scholar]
  36. Wang Z.L. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 2003 15 18 1497 1514 10.1002/adma.200300384
    [Google Scholar]
  37. Asadi Asadabad M. Jafari Eskandari M. Transmission electron microscopy as best technique for characterization in nanotechnology. Synth. React. Inorg. Met.-Org. Nano-Met. Chem. 2015 45 3 323 326 10.1080/15533174.2013.831901
    [Google Scholar]
  38. Tang C.Y. Yang Z. Transmission Electron Microscopy (TEM).Membrane Characterization. Elsevier 2017 145 159
    [Google Scholar]
  39. Shekunov B.Y. Chattopadhyay P. Tong H.H.Y. Chow A.H.L. Particle size analysis in pharmaceutics: Principles, methods and applications. Pharm. Res. 2007 24 2 203 227 10.1007/s11095‑006‑9146‑7 17191094
    [Google Scholar]
  40. Khan W.S. Asmatulu E. Asmatulu R. Nanotechnology emerging trends, markets and concerns.Nanotechnology Safety. Second Edition Elsevier 2025 1 21 10.1016/B978‑0‑443‑15904‑6.00017‑4
    [Google Scholar]
  41. Ilangovan R. Subha V. Ravindran R.S.E. Kirubanandan S. Renganathan S. Nanomaterials: Synthesis, physicochemical characterization, and biopharmaceutical applications.Nanoscale Processing. Elsevier 2021 33 70 10.1016/B978‑0‑12‑820569‑3.00002‑5
    [Google Scholar]
  42. Ross Hallett F. Particle size analysis by dynamic light scattering. Food Res. Int. 1994 27 2 195 198 10.1016/0963‑9969(94)90162‑7
    [Google Scholar]
  43. Sharma M. Transdermal and Intravenous Nano Drug Delivery Systems.Applications of Targeted Nano Drugs and Delivery Systems. Elsevier 2019 499 550 10.1016/B978‑0‑12‑814029‑1.00018‑1
    [Google Scholar]
  44. Parupudi A. Mulagapati S.H.R. Subramony J.A. Nanoparticle technologies: Recent state of the art and emerging opportunities.Nanoparticle Therapeutics. Cambridge, Massachusetts Academic Press 2022 3 46 10.1016/B978‑0‑12‑820757‑4.00009‑0
    [Google Scholar]
  45. Selvamani V. Stability Studies on Nanomaterials Used in Drugs.Characterization and Biology of Nanomaterials for Drug Delivery. Elsevier 2019 425 444 10.1016/B978‑0‑12‑814031‑4.00015‑5
    [Google Scholar]
  46. Bhattacharjee S. DLS and zeta potential – What they are and what they are not? J. Control. Release 2016 235 337 351 10.1016/j.jconrel.2016.06.017 27297779
    [Google Scholar]
  47. Eid M.M. Characterization of Nanoparticles by FTIR and FTIR-Microscopy. Handbook of Consumer Nanoproducts. Singapore Springer 2022 645 673 10.1007/978‑981‑16‑8698‑6_89
    [Google Scholar]
  48. Noah N. Green synthesis: Characterization and application of silver and gold nanoparticles.Green Synthesis, Characterization and Applications of Nanoparticles. Elsevier 2019 111 135 10.1016/B978‑0‑08‑102579‑6.00006‑X
    [Google Scholar]
  49. Pasieczna-Patkowska S. Cichy M. Flieger J. Application of fourier transform infrared (FTIR) spectroscopy in characterization of green synthesized nanoparticles. Molecules 2025 30 3 684 10.3390/molecules30030684 39942788
    [Google Scholar]
  50. Akram W. Garud N. Design expert as a statistical tool for optimization of 5-ASA-loaded biopolymer-based nanoparticles using Box Behnken factorial design. Future J Pharm Sci 2021 7 1 146 10.1186/s43094‑021‑00299‑z
    [Google Scholar]
  51. Caldorera-Moore M. Guimard N. Shi L. Roy K. Designer nanoparticles: Incorporating size, shape and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv. 2010 7 4 479 495 10.1517/17425240903579971 20331355
    [Google Scholar]
  52. Hindustan Abdul A. Equator assessment of nanoparticles using the Design-Expert software. Int J Pharm Sci Nanotechnol 2020 13 1 4766 4772
    [Google Scholar]
  53. Huang Y.B. Tsai Y.H. Yang W.C. Chang J.S. Wu P.C. Takayama K. Once-daily propranolol extended-release tablet dosage form: formulation design and in vitro/in vivo investigation. Eur. J. Pharm. Biopharm. 2004 58 3 607 614 10.1016/j.ejpb.2004.03.037 15451535
    [Google Scholar]
  54. Mishra P. Singh U. Pandey C. Mishra P. Pandey G. Application of student’s t-test, analysis of variance, and covariance. Ann. Card. Anaesth. 2019 22 4 407 411 10.4103/aca.ACA_94_19 31621677
    [Google Scholar]
  55. Kim T.K. Understanding one-way ANOVA using conceptual figures. Korean J. Anesthesiol. 2017 70 1 22 26 10.4097/kjae.2017.70.1.22 28184262
    [Google Scholar]
  56. Anders K. Resolution of Students t-tests, ANOVA and analysis of variance components from intermediary data. Biochem. Med. 2017 27 2 253 258 10.11613/BM.2017.026 28740445
    [Google Scholar]
  57. Ahn J.H. Kim Y.P. Lee Y.M. Seo E.M. Lee K.W. Kim H.S. Optimization of microencapsulation of seed oil by response surface methodology. Food Chem. 2008 107 1 98 105 10.1016/j.foodchem.2007.07.067
    [Google Scholar]
  58. Myers R.H. Montgomery D.C. Anderson-Cook C.M. Response surface methodology: process and product optimization using designed experiments. 4th ed Hoboken, New Jersey Wiley 2016
    [Google Scholar]
  59. Zweers M.L.T. Grijpma D.W. Engbers G.H.M. Feijen J. The preparation of monodisperse biodegradable polyester nanoparticles with a controlled size. J. Biomed. Mater. Res. B Appl. Biomater. 2003 66B 2 559 566 10.1002/jbm.b.10046 12861608
    [Google Scholar]
  60. Murakami H. Kawashima Y. Niwa T. Hino T. Takeuchi H. Kobayashi M. Influence of the degrees of hydrolyzation and polymerization of poly(vinylalcohol) on the preparation and properties of poly(dl-lactide-co-glycolide) nanoparticle. Int. J. Pharm. 1997 149 1 43 49 10.1016/S0378‑5173(96)04854‑5
    [Google Scholar]
  61. Woitiski C.B. Veiga F. Ribeiro A. Neufeld R. Design for optimization of nanoparticles integrating biomaterials for orally dosed insulin. Eur. J. Pharm. Biopharm. 2009 73 1 25 33 10.1016/j.ejpb.2009.06.002 19508892
    [Google Scholar]
  62. Tang S.Y. Manickam S. Wei T.K. Nashiru B. Formulation development and optimization of a novel Cremophore EL-based nanoemulsion using ultrasound cavitation. Ultrason. Sonochem. 2012 19 2 330 345 10.1016/j.ultsonch.2011.07.001 21835676
    [Google Scholar]
  63. Krishnamachari Y. Madan P. Lin S. Development of pH- and time-dependent oral microparticles to optimize budesonide delivery to ileum and colon. Int. J. Pharm. 2007 338 1-2 238 247 10.1016/j.ijpharm.2007.02.015 17368982
    [Google Scholar]
  64. Garg T. Bhandari S. Rath G. Goyal A.K. Current strategies for targeted delivery of bio-active drug molecules in the treatment of brain tumor. J. Drug Target. 2015 23 10 865 887 10.3109/1061186X.2015.1029930 25835469
    [Google Scholar]
  65. Sharata E.E. Attya M.E. Khalaf M.M. Rofaeil R.R. Abo-Youssef A.M. Hemeida R.A.M. Levomilnacipran alleviates cyclophosphamide-induced hepatic dysfunction in male Wistar albino rats; emerging role of α-Klotho/TLR4/p38-MAPK/NF-κB p65 and caspase-3-driven apoptosis trajectories. Int. Immunopharmacol. 2025 152 114384 10.1016/j.intimp.2025.114384 40056515
    [Google Scholar]
  66. Khan S. Sharma A. Jain V. An overview of nanostructured lipid carriers and its application in drug delivery through different routes. Adv. Pharm. Bull. 2023 13 3 446 460 10.34172/apb.2023.056 37646052
    [Google Scholar]
  67. Rizvi S. Shaikh S. Khan M. Biswas D. Hameed N. Shakil S. Fetzima (levomilnacipran), a drug for major depressive disorder as a dual inhibitor for human serotonin transporters and beta-site amyloid precursor protein cleaving enzyme-1. CNS Neurol. Disord. Drug Targets 2014 13 8 1427 1431 10.2174/1871527313666141023145703 25345508
    [Google Scholar]
  68. Gaba B. Fazil M. Ali A. Baboota S. Sahni J.K. Ali J. Nanostructured lipid (NLCs) carriers as a bioavailability enhancement tool for oral administration. Drug Deliv. 2015 22 6 691 700 10.3109/10717544.2014.898110 24670099
    [Google Scholar]
  69. Beloqui A. Solinís M.Á. Rodríguez-Gascón A. Almeida A.J. Préat V. Nanostructured lipid carriers: Promising drug delivery systems for future clinics. Nanomedicine 2016 12 1 143 161 10.1016/j.nano.2015.09.004 26410277
    [Google Scholar]
  70. Citrome L. Levomilnacipran for major depressive disorder: A systematic review of the efficacy and safety profile for this newly approved antidepressant - What is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int. J. Clin. Pract. 2013 67 11 1089 1104 10.1111/ijcp.12298 24016209
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385396141250801060535
Loading
/content/journals/pnt/10.2174/0122117385396141250801060535
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test