Skip to content
2000
image of Nano Milling Application of Mutamba (West Indian Elm) Leaves Extract to Enhance its In Vitro Bioactivity

Abstract

Background

or mutamba has been traditionally used for many years as a slimming agent. Various studies reported the antihyperlipidemic activity of mutamba leaves extract due to its flavonoid content.

Objective

This research was conducted to improve the bioactivity of mutamba leaves extract by applying ball-milling technology.

Methods

Unground dried mutamba leaves were extracted in ethanol 40%. The resulting extract (ME) was nano-milled and characterized for its physicochemical parameters. The ball milling process was optimized by performing in various durations, ball and powder ratios, and rotation speed.

Results

The optimized process of ball milling produced nano-extract (NanoME) with a particle size of 492,57±55,96 nm, confirmed with particle size and SEM. Compared with ME, the crystallinity and thermal behavior of NanoME did not change by particle size reduction. The reduction of particle size also did not improve the HMG-CoA reductase inhibitor activity. ME and NanoME showed comparable activity compared to Pravastatin. However, the bioactivities of NanoME, including DPPH antioxidant activities, improved 8-fold compared to ME.

Conclusion

The improvement of these activities was attributed to the increase in their flavonoid content. This study emphasizes the role of particle size reduction or nano-extract preparation in increasing the biological activity of plant extracts.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385338502250417020845
2025-04-29
2025-09-26
Loading full text...

Full text loading...

References

  1. National Riskesdas Report 2018. Jakarta: Health Research and Development Agency Publishing Institute 2019
    [Google Scholar]
  2. Ference B.A. Ginsberg H.N. Graham I. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement from the European atherosclerosis society consensus panel. Eur. Heart J. 2017 38 32 2459 2472 10.1093/eurheartj/ehx144 28444290
    [Google Scholar]
  3. McLaren J.E. Michael D.R. Ashlin T.G. Ramji D.P. Cytokines, macrophage lipid metabolism and foam cells: Implications for cardiovascular disease therapy. Prog. Lipid Res. 2011 50 4 331 347 10.1016/j.plipres.2011.04.002 21601592
    [Google Scholar]
  4. Alloubani A. Nimer R. Samara R. Relationship between hyperlipidemia, cardiovascular disease and stroke: A systematic review. Curr. Cardiol. Rev. 2021 17 6 e051121189015 10.2174/1573403X16999201210200342 33305711
    [Google Scholar]
  5. Xiao J.B. Högger P. Dietary polyphenols and type 2 diabetes: Current insights and future perspectives. Curr. Med. Chem. 2014 22 1 23 38 10.2174/0929867321666140706130807 25005188
    [Google Scholar]
  6. Wang S. Moustaid-Moussa N. Chen L. Novel insights of dietary polyphenols and obesity. J. Nutr. Biochem. 2014 25 1 1 18 10.1016/j.jnutbio.2013.09.001 24314860
    [Google Scholar]
  7. Shen C.L. Smith B.J. Lo D.F. Dietary polyphenols and mechanisms of osteoarthritis. J. Nutr. Biochem. 2012 23 11 1367 1377 10.1016/j.jnutbio.2012.04.001 22832078
    [Google Scholar]
  8. Chen G. Wang H. Zhang X. Yang S.T. Nutraceuticals and functional foods in the management of hyperlipidemia. Crit. Rev. Food Sci. Nutr. 2014 54 9 1180 1201 10.1080/10408398.2011.629354 24499150
    [Google Scholar]
  9. Nekohashi M. Ogawa M. Ogihara T. Luteolin and quercetin affect the cholesterol absorption mediated by epithelial cholesterol transporter niemann-pick c1-like 1 in caco-2 cells and rats. PLoS One 2014 9 5 e97901 10.1371/journal.pone.0097901 24859282
    [Google Scholar]
  10. Zeka K. Ruparelia K. Arroo R. Budriesi R. Micucci M. Flavonoids and their metabolites: Prevention in cardiovascular diseases and diabetes. Diseases 2017 5 3 19 10.3390/diseases5030019 32962323
    [Google Scholar]
  11. Li S. Cao H. Shen D. Effect of quercetin on atherosclerosis based on expressions of ABCA1, LXR-α and PCSK9 in ApoE-/- mice. Chin. J. Integr. Med. 2020 26 2 114 121 10.1007/s11655‑019‑2942‑9 31144159
    [Google Scholar]
  12. Mbikay M. Mayne J. Sirois F. Mice fed a high‐cholesterol diet supplemented with quercetin‐3‐glucoside show attenuated hyperlipidemia and hyperinsulinemia associated with differential regulation of PCSK9 and LDLR in their liver and pancreas. Mol. Nutr. Food Res. 2018 62 9 1700729 10.1002/mnfr.201700729 29396908
    [Google Scholar]
  13. García-Carrasco B. Fernandez-Dacosta R. Dávalos A. Ordovás J. Rodriguez-Casado A. In vitro hypolipidemic and antioxidant effects of leaf and root extracts of Taraxacum Officinale. Med. Sci. 2015 3 2 38 54 10.3390/medsci3020038 29083390
    [Google Scholar]
  14. González-Castejón M. Rodriguez-Casado A. Dietary phytochemicals and their potential effects on obesity: A review. Pharmacol. Res. 2011 64 5 438 455 10.1016/j.phrs.2011.07.004 21798349
    [Google Scholar]
  15. Kasahara S. Hemmi S. Medicnal Herb Index in Indonesia. Indonesia P.T. Eisai Indonesia 1995
    [Google Scholar]
  16. Sukandar E.Y. Nurdewi N. Elfahmi E. Antihypercholesterolemic effect of combination of Guazuma ulmifolia Lamk. Leaves and Curcuma xanthorrhiza Roxb. Rhizomes extract in wistar rats. Int. J. Pharmacol. 2012 8 4 277 282 10.3923/ijp.2012.277.282
    [Google Scholar]
  17. Prasad Yadav T. Manohar Yadav R. Pratap Singh D. Mechanical milling: A top down approach for the synthesis of nanomaterials and nanocomposites. Nanoscience Nanotechnol 2012 2 3 22 48 10.5923/j.nn.20120203.01
    [Google Scholar]
  18. Huang Z.Q. Xie X. Chen Y. Lu J. Tong Z.F. Ball-milling treatment effect on physicochemical properties and features for cassava and maize starches. C. R. Chim. 2007 11 1-2 73 79 10.1016/j.crci.2007.04.008
    [Google Scholar]
  19. He S. Qin Y. Walid E. Li L. Cui J. Ma Y. Effect of ball-milling on the physicochemical properties of maize starch. Biotechnol. Rep. 2014 3 54 59 10.1016/j.btre.2014.06.004 28626649
    [Google Scholar]
  20. Zhang M. Wang F. Liu R. Tang X. Zhang Q. Zhang Z. Effects of superfine grinding on physicochemical and antioxidant properties of Lycium barbarum polysaccharides. Lebensm. Wiss. Technol. 2014 58 2 594 601 10.1016/j.lwt.2014.04.020
    [Google Scholar]
  21. Chitrakar B. Zhang M. Zhang X. Devahastin S. Bioactive dietary Fiber powder from asparagus leaf by-product: Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics. Powder Technol. 2020 366 275 282 10.1016/j.powtec.2020.02.068
    [Google Scholar]
  22. Kr. Aman A. Effect of superfine grinding on structural, morphological and antioxidant properties of ginger (Zingiberofficinale) nano crystalline food powder. Mater. Today Proc. 2021 43 3397 3403 10.1016/j.matpr.2020.09.028
    [Google Scholar]
  23. Jiang L. Xu Q.X. Qiao M. Ma F.F. Thakur K. Wei Z.J. Effect of superfine grinding on properties of Vaccinium bracteatum Thunb leaves powder. Food Sci. Biotechnol. 2017 26 6 1571 1578 10.1007/s10068‑017‑0126‑y 30263694
    [Google Scholar]
  24. Zhao X. Du F. Zhu Q. Qiu D. Yin W. Ao Q. Effect of superfine pulverization on properties of Astragalus membranaceus powder. Powder Technol. 2010 203 3 620 625 10.1016/j.powtec.2010.06.029
    [Google Scholar]
  25. Zaiter A. Becker L. Karam M.C. Dicko A. Effect of particle size on antioxidant activity and catechin content of green tea powders. J. Food Sci. Technol. 2016 53 4 2025 2032 10.1007/s13197‑016‑2201‑4 27413230
    [Google Scholar]
  26. El-Eskandarany M.S. Al-Hazza A. Al-Hajji L.A. Mechanical milling: A superior nanotechnological tool for fabrication of nanocrystalline and nanocomposite materials. Nanomaterials 2021 11 10 2484 10.3390/nano11102484 34684925
    [Google Scholar]
  27. Borhan M.Z. Ahmad R. Rusop M. Abdullah S. Optimization of ball milling parameters to produce Centella asiatica herbal nanopowders. J. Nanostructure Chem. 2013 3 1 79 10.1186/2193‑8865‑3‑79
    [Google Scholar]
  28. Roisnel T. Rodríquez-Carvajal J. WinPLOTR: A windows tool for powder diffraction pattern analysis. Mater. Sci. Forum 2001 378-381 118 123 10.4028/www.scientific.net/MSF.378‑381.118
    [Google Scholar]
  29. Gulcin İ. Alwasel S.H. DPPH radical scavenging assay. Processes 2023 11 8 2248 10.3390/pr11082248
    [Google Scholar]
  30. Cunha E.L. Barros S.S.O. Perim M.C. Santos K.M. Martins M.L. Nascimento G.N.L. Biological activity of guazuma ulmifolia lamark.- Systematic review. CHALLENGES Interdiscip J Fed Univ Tocantins 2019 6 3 54 65 10.20873/uftv6‑6006
    [Google Scholar]
  31. Nuri Prajogo B Nugraha AS Sukardiman Anti-Adipogenic compound from Guazuma ulmifolia Leaf. Res J Pharm Tech 2020 13 1 411 10.5958/0974‑360X.2020.00080.3
    [Google Scholar]
  32. Nagatomo A. Kohno M. Kawakami H. Manse Y. Morikawa T. Inhibitory effect of trans-tiliroside on very low-density lipoprotein secretion in HepG2 cells and mouse liver. J. Nat. Med. 2024 78 1 180 190 10.1007/s11418‑023‑01756‑0 37973705
    [Google Scholar]
  33. Wei L. Abd Rahim S. Al Bakri Abdullah M. Producing metal powder from machining chips using ball milling process: A review. Materials 2023 16 13 4635 10.3390/ma16134635 37444950
    [Google Scholar]
  34. Santhanam P.R. Dreizin E.L. Predicting conditions for scaled-up manufacturing of materials prepared by ball milling. Powder Technol. 2012 221 403 411 10.1016/j.powtec.2012.01.037
    [Google Scholar]
  35. Oliveira P.F.M. Willart J.F. Siepmann J. Siepmann F. Descamps M. Using milling to explore physical states: The amorphous and polymorphic forms of dexamethasone. Cryst. Growth Des. 2018 18 3 1748 1757 10.1021/acs.cgd.7b01664
    [Google Scholar]
  36. Martínez L.M. Cruz-Angeles J. Vázquez-Dávila M. Mechanical activation by ball milling as a strategy to prepare highly soluble pharmaceutical formulations in the form of co-amorphous, co-crystals, or polymorphs. Pharmaceutics 2022 14 10 2003 10.3390/pharmaceutics14102003 36297439
    [Google Scholar]
  37. Pereira G.A. Peixoto Araujo N.M. Arruda H.S. Farias D.P. Molina G. Pastore G.M. Phytochemicals and biological activities of mutamba (Guazuma ulmifolia Lam.): A review. Food Res. Int. 2019 126108713 10.1016/j.foodres.2019.108713 31732089
    [Google Scholar]
  38. Prasedya E.S. Frediansyah A. Martyasari N.W.R. Effect of particle size on phytochemical composition and antioxidant properties of Sargassum cristaefolium ethanol extract. Sci. Rep. 2021 11 1 17876 10.1038/s41598‑021‑95769‑y 34504117
    [Google Scholar]
  39. Weng D. Zha S.H. Zhu Y. Effect of particle size on the physicochemical and antioxidant properties of Forsythia suspensa (Thunb.)Vahl leaf powders. Powder Technol. 2022 410117866 10.1016/j.powtec.2022.117866
    [Google Scholar]
  40. Holdgate G.A. Ward W.H.J. McTaggart F. Molecular mechanism for inhibition of 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase by rosuvastatin. Biochem. Soc. Trans. 2003 31 3 528 531 10.1042/bst0310528 12773150
    [Google Scholar]
  41. Istvan E.S. Palnitkar M. Buchanan S.K. Deisenhofer J. Crystal structure of the catalytic portion of human HMG-CoA reductase: Insights into regulation of activity and catalysis. EMBO J. 2000 19 5 819 830 10.1093/emboj/19.5.819 10698924
    [Google Scholar]
  42. Rahmania S. Sulistiyani S. Lelono A.A. Identification of active compounds from medicinal forest plants as HMG-CoA reductase inhibitors. J. Kefarmasian Indones 2017 95 104 10.22435/jki.v7i2.3495
    [Google Scholar]
  43. Sulistiyani Falah S. Wahyuni WT Nrf2-inducing and HMG-CoA reductase inhibitory activities of a polyphenol-rich fraction of Guazuma ulmifolia leaves. Asian Pac. J. Trop. Biomed. 2019 9 9 389 10.4103/2221‑1691.267659
    [Google Scholar]
  44. Trapani L. Segatto M. Incerpi S. Pallottini V. 3-Hydroxy-3-methylglutaryl coenzyme A reductase regulation by antioxidant compounds: New therapeutic tools for hypercholesterolemia? Curr. Mol. Med. 2011 11 9 790 797 10.2174/156652411798062403 21999146
    [Google Scholar]
  45. Chen Z.Y. Jiao R. Ma K.Y. Cholesterol-lowering nutraceuticals and functional foods. J. Agric. Food Chem. 2008 56 19 8761 8773 10.1021/jf801566r 18778072
    [Google Scholar]
  46. Ojha S. Islam B. Charu C. Adem A. Aburawi E. Insight into the mechanism of polyphenols on the activity of HMGR by molecular docking. Drug Des. Devel. Ther. 2015 9 4943 4951 10.2147/DDDT.S86705 26357462
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385338502250417020845
Loading
/content/journals/pnt/10.2174/0122117385338502250417020845
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: extract ; nanoparticle ; milling ; mutamba ; antioxidant activity ; Guazuma ulmifolia
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test