Skip to content
2000
image of Functionalized Nanofibers: Revolutionizing Drug Delivery Systems and Biomedical Applications

Abstract

This review article examines functionalized nanofibers and their potential to revolutionize drug delivery systems and enhance their biomedical applications. By leveraging the high surface-area-to-volume ratio and tunable physicochemical properties of nanofibers, the limitations of conventional drug delivery methods can be addressed. These nanofibers can be engineered for the controlled and sustained release of drugs, growth factors, and bioactive agents to improve treatment efficacy and mitigate side effects. Furthermore, the versatility of functionalized nanofibers in various biomedical fields has been investigated. In tissue engineering, nanofibers serve as scaffolds that emulate the extracellular matrix and facilitate cell adhesion, proliferation, and differentiation, thus demonstrating the potential for regenerating tissues and organs, including bone, cartilage, and nerve repair. This review also explores their application in wound healing, where nanofiber dressings incorporating antimicrobial agents and growth factors can expedite healing, prevent infections, and minimize scarring, benefiting patients with chronic wounds, burns, and other complex skin injuries. Additionally, this article discusses the potential of functionalized nanofibers for developing innovative medical devices with therapeutic and diagnostic functions. The integration of sensing elements and drug-releasing components into nanofiber platforms has resulted in multifunctional devices capable of monitoring physiological parameters, detecting biomarkers, and delivering targeted therapies based on biological cues. The versatility of these nanofibers may enable the development of combination products that can incorporate multiple therapeutic modalities into a single platform, potentially enhancing the management of complex diseases and improving patient outcomes. The article aims to provide a comprehensive overview of the current state and future trajectory of electrospinning technology.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385372124250623054646
2025-07-03
2025-09-25
Loading full text...

Full text loading...

References

  1. Luraghi A. Peri F. Moroni L. Electrospinning for drug delivery applications: A review. J. Control. Release 2021 334 463 484 10.1016/j.jconrel.2021.03.033 33781809
    [Google Scholar]
  2. Salas C. Solution electrospinning of nanofibers. In:Electrospun Nanofibers. Elsevier 2017 73 108 10.1016/B978‑0‑08‑100907‑9.00004‑0
    [Google Scholar]
  3. Srinivasan G. Reneker D.H. Structure and morphology of small diameter electrospun aramid fibers. Polym. Int. 1995 36 2 195 201 10.1002/pi.1995.210360210
    [Google Scholar]
  4. Diep E. Schiffman J.D. Electrospinning living bacteria: A review of applications from agriculture to health care. ACS Appl. Bio Mater. 2023 6 3 951 964 10.1021/acsabm.2c01055 36791266
    [Google Scholar]
  5. Zahmatkeshan M. Polymer based nanofibers: Preparation, fabrication, and applications. In:Handbook of Nanofibers. Cham Springer International Publishing 2018 1 47 10.1007/978‑3‑319‑42789‑8_29‑2
    [Google Scholar]
  6. Al-Abduljabbar A. Farooq I. Electrospun polymer nanofibers: Processing, properties, and applications. Polymers 2022 15 1 65 10.3390/polym15010065 36616414
    [Google Scholar]
  7. Kenry, Lim CT. Nanofiber technology: Current status and emerging developments. Prog. Polym. Sci. 2017 70 1 17 10.1016/j.progpolymsci.2017.03.002
    [Google Scholar]
  8. Liu L. Xu W. Ding Y. Agarwal S. Greiner A. Duan G. A review of smart electrospun fibers toward textiles. Composites Communications 2020 22 100506 10.1016/j.coco.2020.100506
    [Google Scholar]
  9. Anusiya G. Jaiganesh R. A review on fabrication methods of nanofibers and a special focus on application of cellulose nanofibers. Carbohydr Polym Technol Appl 2022 4 100262 10.1016/j.carpta.2022.100262
    [Google Scholar]
  10. Kulkarni D. Musale S. Panzade P. Surface functionalization of nanofibers: The multifaceted approach for advanced biomedical applications. Nanomaterials 2022 12 21 3899 10.3390/nano12213899 36364675
    [Google Scholar]
  11. Lou L. Osemwegie O. Ramkumar S.S. Functional nanofibers and their applications. Ind. Eng. Chem. Res. 2020 59 13 5439 5455 10.1021/acs.iecr.9b07066
    [Google Scholar]
  12. Ibrahim N.A. Fouda M.M.G. Eid B.M. Functional nanofibers: Fabrication, functionalization, and potential applications. Handbook of Functionalized Nanomaterials for Industrial Applications. Elsevier 2020 581 609 10.1016/B978‑0‑12‑816787‑8.00020‑X
    [Google Scholar]
  13. dos Santos D.M. Correa D.S. Medeiros E.S. Oliveira J.E. Mattoso L.H.C. Advances in functional polymer nanofibers: From spinning fabrication techniques to recent biomedical applications. ACS Appl. Mater. Interfaces 2020 12 41 45673 45701 10.1021/acsami.0c12410 32937068
    [Google Scholar]
  14. Zhang F. Zhang Z. Zhou T. Liu Y. Leng J. Shape memory polymer nanofibers and their composites: Electrospinning, structure, performance, and applications. Front. Mater. 2015 2 10.3389/fmats.2015.00062
    [Google Scholar]
  15. Salaris V. Leonés A. Lopez D. Kenny J.M. Peponi L. Shape-memory materials via electrospinning: A review. Polymers 2022 14 5 995 10.3390/polym14050995 35267818
    [Google Scholar]
  16. Ejiohuo O. A perspective on the synergistic use of 3D printing and electrospinning to improve nanomaterials for biomedical applications. Nano Trends 2023 4 100025 10.1016/j.nwnano.2023.100025
    [Google Scholar]
  17. Sultan S. Siqueira G. Zimmermann T. Mathew A.P. 3D printing of nano-cellulosic biomaterials for medical applications. Curr. Opin. Biomed. Eng. 2017 2 29 34 10.1016/j.cobme.2017.06.002
    [Google Scholar]
  18. Berdimurodov E. Dagdag O. Berdimuradov K. Green electrospun nanofibers for biomedicine and biotechnology. Technologies 2023 11 5 150 10.3390/technologies11050150
    [Google Scholar]
  19. Xue J. Wu T. Dai Y. Xia Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chem. Rev. 2019 119 8 5298 5415 10.1021/acs.chemrev.8b00593 30916938
    [Google Scholar]
  20. Khalid M.Y. Arif Z.U. Al Rashid A. Bukhari S.M.Z.S. Hossain M. Koç M. Shape-memory and self-healing properties of sustainable cellulosic nanofibers-based hybrid materials for novel applications. Giant 2024 19 100299 10.1016/j.giant.2024.100299
    [Google Scholar]
  21. Haider A. Haider S. Kang I.K. A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology. Arab. J. Chem. 2018 11 8 1165 1188 10.1016/j.arabjc.2015.11.015
    [Google Scholar]
  22. Amariei N. Manea L.R. Bertea A.P. Bertea A. Popa A. The influence of polymer solution on the properties of electrospun 3D nanostructures. IOP Conf Ser Mater Sci Eng 2017 209 012092 10.1088/1757‑899X/209/1/012092
    [Google Scholar]
  23. Alharbi N. Daraei A. Lee H. Guthold M. The effect of molecular weight and fiber diameter on the mechanical properties of single, electrospun PCL nanofibers. Mater. Today Commun. 2023 35 105773 10.1016/j.mtcomm.2023.105773
    [Google Scholar]
  24. Promnil S. Numpaisal P. Ruksakulpiwat Y. Effect of molecular weight on mechanical properties of electrospun poly (lactic acid) fibers for meniscus tissue engineering scaffold. Mater. Today Proc. 2021 47 3496 3499 10.1016/j.matpr.2021.03.504
    [Google Scholar]
  25. Zong X. Kim K. Fang D. Ran S. Hsiao B.S. Chu B. Structure and process relationship of electrospun bioabsorbable nanofiber membranes. Polymer 2002 43 16 4403 4412 10.1016/S0032‑3861(02)00275‑6
    [Google Scholar]
  26. Huang C. Soenen S.J. Rejman J. Stimuli-responsive electrospun fibers and their applications. Chem. Soc. Rev. 2011 40 5 2417 2434 10.1039/c0cs00181c 21390366
    [Google Scholar]
  27. Tijing L.D. Woo Y.C. Yao M. Ren J. Shon H.K. 1.16 electrospinning for membrane fabrication: Strategies and applications. In:Comprehensive Membrane Science and Engineering. Elsevier 2017 418 444 10.1016/B978‑0‑12‑409547‑2.12262‑0
    [Google Scholar]
  28. Pelipenko J. Kocbek P. Kristl J. Critical attributes of nanofibers: Preparation, drug loading, and tissue regeneration. Int. J. Pharm. 2015 484 1-2 57 74 10.1016/j.ijpharm.2015.02.043 25701683
    [Google Scholar]
  29. Chen X. Cao H. He Y. Advanced functional nanofibers: Strategies to improve performance and expand functions. Front Optoelectron. 2022 15 1 50 10.1007/s12200‑022‑00051‑2 36567731
    [Google Scholar]
  30. Chen K. Li Y. Li Y. Stimuli-responsive electrospun nanofibers for drug delivery, cancer therapy, wound dressing, and tissue engineering. J. Nanobiotechnology 2023 21 1 237 10.1186/s12951‑023‑01987‑z 37488582
    [Google Scholar]
  31. Wang H.S. Fu G.D. Li X.S. Functional polymeric nanofibers from electrospinning. Recent Pat. Nanotechnol. 2009 3 1 21 31 10.2174/187221009787003285 19149752
    [Google Scholar]
  32. Singh B. Shukla N. Kim J. Kim K. Park M.H. Stimuli-responsive nanofibers containing gold nanorods for on-demand drug delivery platforms. Pharmaceutics 2021 13 8 1319 10.3390/pharmaceutics13081319 34452280
    [Google Scholar]
  33. He H. Shi X. Chen W. Chen R. Zhao C. Wang S. Temperature/pH smart nanofibers with excellent biocompatibility and their dual interactions stimulus-responsive mechanism. J. Agric. Food Chem. 2020 68 28 7425 7433 10.1021/acs.jafc.0c01493 32559369
    [Google Scholar]
  34. Silva P.M. Torres-Giner S. Vicente A.A. Cerqueira M.A. Management of operational parameters and novel spinneret configurations for the electrohydrodynamic processing of functional polymers. Macromol. Mater. Eng. 2022 307 5 2100858 10.1002/mame.202100858
    [Google Scholar]
  35. Xing J. Zhang M. Liu X. Wang C. Xu N. Xing D. Multi-material electrospinning: From methods to biomedical applications. Mater. Today Bio 2023 21 100710 10.1016/j.mtbio.2023.100710 37545561
    [Google Scholar]
  36. Muerza-Cascante M.L. Haylock D. Hutmacher D.W. Dalton P.D. Melt electrospinning and its technologization in tissue engineering. Tissue Eng. Part B Rev. 2015 21 2 187 202 10.1089/ten.teb.2014.0347 25341031
    [Google Scholar]
  37. Daghrery A. de Souza Araújo I.J. Castilho M. Malda J. Bottino M.C. Unveiling the potential of melt electrowriting in regenerative dental medicine. Acta Biomater. 2023 156 88 109 10.1016/j.actbio.2022.01.010 35026478
    [Google Scholar]
  38. Fischer N.G. de Souza Araújo I.J. Daghrery A. Guidance on biomaterials for periodontal tissue regeneration: Fabrication methods, materials and biological considerations. Dent. Mater. 2025 41 3 283 305 10.1016/j.dental.2024.12.019 39794220
    [Google Scholar]
  39. Willerth S.M. Melt electrospinning in tissue engineering. In:Electrospun Materials for Tissue Engineering and Biomedical Applications. Elsevier 2017 87 100 10.1016/B978‑0‑08‑101022‑8.00009‑0
    [Google Scholar]
  40. Zhang K. Zhao W. Liu Q. Yu M. A new magnetic melt spinning device for patterned nanofiber. Sci. Rep. 2021 11 1 8895 10.1038/s41598‑021‑88520‑0 33903691
    [Google Scholar]
  41. Qin X. Coaxial electrospinning of nanofibers. In:Electrospun Nanofibers. Elsevier 2017 41 71 10.1016/B978‑0‑08‑100907‑9.00003‑9
    [Google Scholar]
  42. Reise M. Kranz S. Guellmar A. Coaxial electrospun nanofibers as drug delivery system for local treatment of periodontitis. Dent. Mater. 2023 39 1 132 139 10.1016/j.dental.2022.12.008 36604256
    [Google Scholar]
  43. Mitxelena-Iribarren O. Riera-Pons M. Pereira S. Drug-loaded PCL electrospun nanofibers as anti-pancreatic cancer drug delivery systems. Polym. Bull. 2023 80 7 7763 7778 10.1007/s00289‑022‑04425‑6
    [Google Scholar]
  44. Gao C. Zhang L. Wang J. Coaxial structured drug loaded dressing combined with induced stem cell differentiation for enhanced wound healing. Biomaterials Advances 2022 134 112542 10.1016/j.msec.2021.112542 35525764
    [Google Scholar]
  45. Xu C. Ma J. Liu Z. Preparation of shell-core fiber-encapsulated Lactobacillus rhamnosus 1.0320 using coaxial electrospinning. Food Chem. 2023 402 134253 10.1016/j.foodchem.2022.134253 36162172
    [Google Scholar]
  46. Ghosal K. Augustine R. Zaszczynska A. Novel drug delivery systems based on triaxial electrospinning based nanofibers. React. Funct. Polym. 2021 163 104895 10.1016/j.reactfunctpolym.2021.104895
    [Google Scholar]
  47. Xu H. Xu X. Li S. Song W.L. Yu D.G. Annie Bligh S.W. The effect of drug heterogeneous distributions within core-sheath nanostructures on its sustained release profiles. Biomolecules 2021 11 9 1330 10.3390/biom11091330 34572545
    [Google Scholar]
  48. Han D. Steckl A.J. Triaxial electrospun nanofiber membranes for controlled dual release of functional molecules. ACS Appl. Mater. Interfaces 2013 5 16 8241 8245 10.1021/am402376c 23924226
    [Google Scholar]
  49. Yang C. Yu D.G. Pan D. Electrospun pH-sensitive core–shell polymer nanocomposites fabricated using a tri-axial process. Acta Biomater. 2016 35 77 86 10.1016/j.actbio.2016.02.029 26902432
    [Google Scholar]
  50. Nagiah N. Murdock C.J. Bhattacharjee M. Nair L. Laurencin C.T. Development of tripolymeric triaxial electrospun fibrous matrices for dual drug delivery applications. Sci. Rep. 2020 10 1 609 10.1038/s41598‑020‑57412‑0 31953439
    [Google Scholar]
  51. Wang P. Li Y. Zhang C. Feng F. Zhang H. Sequential electrospinning of multilayer ethylcellulose/gelatin/ethylcellulose nanofibrous film for sustained release of curcumin. Food Chem. 2020 308 125599 10.1016/j.foodchem.2019.125599 31648098
    [Google Scholar]
  52. Chen Y. Shafiq M. Liu M. Morsi Y. Mo X. Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds. Bioact. Mater. 2020 5 4 963 979 10.1016/j.bioactmat.2020.06.023 32671291
    [Google Scholar]
  53. Wu S. Dong T. Li Y. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. Appl. Mater. Today 2022 27 101473 10.1016/j.apmt.2022.101473 35434263
    [Google Scholar]
  54. Dong S. Maciejewska B.M. Schofield R.M. Hawkins N. Siviour C.R. Grobert N. Electrospinning nonspinnable sols to ceramic fibers and springs. ACS Nano 2024 18 21 13538 13550 10.1021/acsnano.3c12659 38717374
    [Google Scholar]
  55. Shi S. Xu C. Wang X. Electrospinning fabrication of flexible Fe3O4 fibers by sol-gel method with high saturation magnetization for heavy metal adsorption. Mater. Des. 2020 186 108298 10.1016/j.matdes.2019.108298
    [Google Scholar]
  56. George G. Senthil T. Luo Z. Anandhan S. Sol-gel electrospinning of diverse ceramic nanofibers and their potential applications. In:Electrospun Polymers and Composites. Elsevier 2021 689 764 10.1016/B978‑0‑12‑819611‑3.00022‑4
    [Google Scholar]
  57. Zare M. Davoodi P. Ramakrishna S. Electrospun shape memory polymer micro-/nanofibers and tailoring their roles for biomedical applications. Nanomaterials 2021 11 4 933 10.3390/nano11040933 33917478
    [Google Scholar]
  58. Le L.T. Nguyen H.T. Bui H.T.T. Tran H.Q. Nguyen T.T.T. Drug release system based on a composite polycaprolactone nanofiber membrane with dual functionality of shape memory effect and antibacterial ability. RSC Advances 2024 14 37 26884 26895 10.1039/D4RA05618C 39193296
    [Google Scholar]
  59. Wang L. Ma J. Guo T. Control of surface wrinkles on shape memory PLA/PPDO micro-nanofibers and their applications in drug release and anti-scarring. Advanced Fiber Materials 2023 5 2 632 649 10.1007/s42765‑022‑00249‑1 36466134
    [Google Scholar]
  60. Qavamnia S.S. Rad L.R. Irani M. Incorporation of hydroxyapatite/doxorubicin into the chitosan/polyvinyl alcohol/polyurethane nanofibers for controlled release of doxurubicin and its anticancer property. Fibers Polym. 2020 21 8 1634 1642 10.1007/s12221‑020‑9809‑8
    [Google Scholar]
  61. Bao M. Lou X. Zhou Q. Dong W. Yuan H. Zhang Y. Electrospun biomimetic fibrous scaffold from shape memory polymer of PDLLA-co-TMC for bone tissue engineering. ACS Appl. Mater. Interfaces 2014 6 4 2611 2621 10.1021/am405101k 24476093
    [Google Scholar]
  62. Kai D. Prabhakaran M.P. Yu Chan B.Q. Elastic poly(ε -caprolactone)-polydimethylsiloxane copolymer fibers with shape memory effect for bone tissue engineering. Biomed. Mater. 2016 11 1 015007 10.1088/1748‑6041/11/1/015007 26836757
    [Google Scholar]
  63. Yang D.L. Faraz F. Wang J.X. Radacsi N. Combination of 3D printing and electrospinning techniques for biofabrication. Adv. Mater. Technol. 2022 7 7 2101309 10.1002/admt.202101309
    [Google Scholar]
  64. Ghosh A. Orasugh J.T. Ray S.S. Chattopadhyay D. Integration of 3D printing–coelectrospinning: Concept shifting in biomedical applications. ACS Omega 2023 8 31 28002 28025 10.1021/acsomega.3c03920 37576662
    [Google Scholar]
  65. He H. Molnár K. Fabrication of 3D printed nanocomposites with electrospun nanofiber interleaves. Addit. Manuf. 2021 46 102030 10.1016/j.addma.2021.102030
    [Google Scholar]
  66. Romero-Araya P. Pino V. Nenen A. Combining materials obtained by 3D-printing and electrospinning from commercial polylactide filament to produce biocompatible composites. Polymers 2021 13 21 3806 10.3390/polym13213806 34771361
    [Google Scholar]
  67. Darwesh A.Y. Helmy A.M. Abdelhakk H.M. Giri B. Maniruzzaman M. 3D-printed short nanofibers/hydrogel-based vaginal films as a novel system for the delivery of anti-HIV microbicide drugs. J. Drug Deliv. Sci. Technol. 2024 97 105775 10.1016/j.jddst.2024.105775
    [Google Scholar]
  68. Hsu Y.H. Chou Y.C. Chen C.L. Yu Y.H. Lu C.J. Liu S.J. Development of novel hybrid 3D-printed degradable artificial joints incorporating electrospun pharmaceutical- and growth factor-loaded nanofibers for small joint reconstruction. Biomaterials Advances 2024 159 213821 10.1016/j.bioadv.2024.213821 38428121
    [Google Scholar]
  69. Kamdem Tamo A. Doench I. Walter L. Development of bioinspired functional chitosan/cellulose nanofiber 3D hydrogel constructs by 3D printing for application in the engineering of mechanically demanding tissues. Polymers 2021 13 10 1663 10.3390/polym13101663 34065272
    [Google Scholar]
  70. Mi H.Y. Jing X. Napiwocki B.N. Li Z.T. Turng L.S. Huang H.X. Fabrication of fibrous silica sponges by self-assembly electrospinning and their application in tissue engineering for three-dimensional tissue regeneration. Chem. Eng. J. 2018 331 652 662 10.1016/j.cej.2017.09.020
    [Google Scholar]
  71. Elshabrawy H.A. Abo Dena A.S. El-Sherbiny I.M. Triple-layered platform utilizing electrospun nanofibers and 3D-printed sodium alginate-based hydrogel for effective topical treatment of rheumatoid arthritis. Int. J. Biol. Macromol. 2024 259 Pt 2 129195 10.1016/j.ijbiomac.2023.129195 38184049
    [Google Scholar]
  72. Jeong Y.J. Jeong S. Kim S. 3D-printed cardiovascular polymer scaffold reinforced by functional nanofiber additives for tunable mechanical strength and controlled drug release. Chem. Eng. J. 2023 454 140118 10.1016/j.cej.2022.140118
    [Google Scholar]
  73. Olmos-Juste R. Alonso-Lerma B. Pérez-Jiménez R. Gabilondo N. Eceiza A. 3D printed alginate-cellulose nanofibers based patches for local curcumin administration. Carbohydr. Polym. 2021 264 118026 10.1016/j.carbpol.2021.118026 33910718
    [Google Scholar]
  74. Chu B. He J. Wang Z. Proangiogenic peptide nanofiber hydrogel/3D printed scaffold for dermal regeneration. Chem. Eng. J. 2021 424 128146 10.1016/j.cej.2020.128146
    [Google Scholar]
  75. Bhullar S.K. Living nanofiber-enabled cardiac patches for myocardial injury. JACC Basic Transl. Sci. 2024 (Sep) 10.1016/j.jacbts.2024.06.010
    [Google Scholar]
  76. Ping P. Guan S. Ning C. Fabrication of blended nanofibrous cardiac patch transplanted with TGF-β3 and human umbilical cord MSCs-derived exosomes for potential cardiac regeneration after acute myocardial infarction. Nanomedicine 2023 54 102708 10.1016/j.nano.2023.102708 37788793
    [Google Scholar]
  77. Ou Y. Cao S. Zhang Y. Bioprinting microporous functional living materials from protein-based core-shell microgels. Nat. Commun. 2023 14 1 322 10.1038/s41467‑022‑35140‑5 36658120
    [Google Scholar]
  78. Diep E. Schiffman J.D. Targeted release of live probiotics from alginate-based nanofibers in a simulated gastrointestinal tract. RSC Applied Polymers 2024 2 4 719 725 10.1039/D4LP00023D
    [Google Scholar]
  79. Chaudhary K. Kandasubramanian B. Self-healing nanofibers for engineering applications. Ind. Eng. Chem. Res. 2022 61 11 3789 3816 10.1021/acs.iecr.1c04602
    [Google Scholar]
  80. Yu H. Li Y. Pan Y. Multifunctional porous poly (L-lactic acid) nanofiber membranes with enhanced anti-inflammation, angiogenesis and antibacterial properties for diabetic wound healing. J. Nanobiotechnology 2023 21 1 110 10.1186/s12951‑023‑01847‑w 36973737
    [Google Scholar]
  81. Jin L. Ma Y. Wang R. Nanofibers and hydrogel hybrid system with synergistic effect of anti-inflammatory and vascularization for wound healing. Materials Today Advances 2022 14 100224 10.1016/j.mtadv.2022.100224
    [Google Scholar]
  82. Qiu W. Han H. Li M. Nanofibers reinforced injectable hydrogel with self-healing, antibacterial, and hemostatic properties for chronic wound healing. J. Colloid Interface Sci. 2021 596 312 323 10.1016/j.jcis.2021.02.107 33839356
    [Google Scholar]
  83. Jin S. Mia R. Newton M.A.A. Nanofiber-reinforced self-healing polysaccharide-based hydrogel dressings for pH discoloration monitoring and treatment of infected wounds. Carbohydr. Polym. 2024 339 122209 10.1016/j.carbpol.2024.122209 38823899
    [Google Scholar]
  84. ] Importing medical devices. 2024 Available from: https://www.fda.gov/industry/importing-fda-regulated-products/importing-medical-devices#What%20is%20a%20medical%20device
  85. Jiang Q. Liu X. Liang G. Sun X. Self-assembly of peptide nanofibers for imaging applications. Nanoscale 2021 13 36 15142 15150 10.1039/D1NR04992E 34494635
    [Google Scholar]
  86. Hisamatsu Y. Cheng F. Yamamoto K. Takase H. Umezawa N. Higuchi T. Control of the stepwise self-assembly process of a pH-responsive amphiphilic 4-aminoquinoline-tetraphenylethene conjugate. Nanoscale 2023 15 7 3177 3187 10.1039/D2NR05756E 36655765
    [Google Scholar]
  87. Kasoju N. Ye H. Cui Z. Ramakrishna S. Electrospinning and electrospraying in biomedical engineering. In:Biomedical Applications of Electrospinning and Electrospraying. Elsevier 2021 375 393 10.1016/B978‑0‑12‑822476‑2.00015‑7
    [Google Scholar]
  88. Kersani D. Mougin J. Lopez M. Stent coating by electrospinning with chitosan/poly-cyclodextrin based nanofibers loaded with simvastatin for restenosis prevention. Eur. J. Pharm. Biopharm. 2020 150 156 167 10.1016/j.ejpb.2019.12.017 32179100
    [Google Scholar]
  89. Chausse V. Casanova-Batlle E. Canal C. Ginebra M.P. Ciurana J. Pegueroles M. Solvent-cast direct-writing and electrospinning as a dual fabrication strategy for drug-eluting polymeric bioresorbable stents. Addit. Manuf. 2023 71 103568 10.1016/j.addma.2023.103568
    [Google Scholar]
  90. Zhang J. Zhao Y-T. Hu P-Y. Laparoscopic electrospinning for in situ hemostasis in minimally invasive operation. Chem. Eng. J. 2020 395 125089 10.1016/j.cej.2020.125089
    [Google Scholar]
  91. Wang M. Zhao Q. Electrospinning and electrospray for biomedical applications. In:Encyclopedia of Biomedical Engineering. Elsevier 2019 330 344 10.1016/B978‑0‑12‑801238‑3.11028‑1
    [Google Scholar]
  92. Zhao X. Campbell S. Wallace G.Q. Claing A. Bazuin C.G. Masson J.F. Branched Au nanoparticles on nanofibers for surface-enhanced raman scattering sensing of intracellular pH and extracellular pH gradients. ACS Sens. 2020 5 7 2155 2167 10.1021/acssensors.0c00784 32515184
    [Google Scholar]
  93. Shastri SS Varma P Kandasubramanian B Enhancing drug delivery with electrospun biopolymer nanofibers. 2024 10.1007/s44174‑024‑00218‑9
    [Google Scholar]
  94. Aldahish A. Shanmugasundaram N. Vasudevan R. Silk fibroin nanofibers: Advancements in bioactive dressings through electrospinning technology for diabetic wound healing. Pharmaceuticals 2024 17 10 1305 10.3390/ph17101305 39458946
    [Google Scholar]
  95. Dharmaraj D. Chavan N. Likhitha U. Nayak U.Y. Electrospun nanofibers for dermatological delivery. J. Drug Deliv. Sci. Technol. 2024 99 105981 10.1016/j.jddst.2024.105981
    [Google Scholar]
  96. Jiang J. Xie J. Ma B. Bartlett D.E. Xu A. Wang C.H. Mussel-inspired protein-mediated surface functionalization of electrospun nanofibers for pH-responsive drug delivery. Acta Biomater. 2014 10 3 1324 1332 10.1016/j.actbio.2013.11.012 24287161
    [Google Scholar]
  97. Thakkar S. Misra M. Electrospun polymeric nanofibers: New horizons in drug delivery. Eur. J. Pharm. Sci. 2017 107 148 167 10.1016/j.ejps.2017.07.001 28690099
    [Google Scholar]
  98. Xue J. Xie J. Liu W. Xia Y. Electrospun nanofibers: New concepts, materials, and applications. Acc. Chem. Res. 2017 50 8 1976 1987 10.1021/acs.accounts.7b00218 28777535
    [Google Scholar]
  99. Mouth-to-mouth ventilation efficiency through breathable self-sterilizing respirator during BLS in COVID-19 pandemic (MOVE) Patent NCT04870736 2021
    [Google Scholar]
  100. Self-assembling matrix forming gel to prevent stricture formation Patent NCT05581173 2025
    [Google Scholar]
  101. Combination of Taliderm® and vacuum-assisted closure (VAC) for treatment of pressure ulcers Patent NCT02237287 2015
    [Google Scholar]
  102. Clinical trial for the treatment of diabetic foot ulcers using a nitric oxide releasing patch: PATHON Patent NCT00428727 2012
    [Google Scholar]
  103. Controlled Nitric Oxide Releasing Patch Versus Meglumine Antimoniate in the Treatment of Cutaneous Leishmaniasis Patent NCT00317629 2010
    [Google Scholar]
  104. Antimicrobial effect of modified antibiotic nanofibers for regenerative endodontics procedures Patent NCT03690960 2018
    [Google Scholar]
  105. EktoTherixTM regenerative tissue scaffold for repair of surgical excision wounds 2017 Available from: https://clinicaltrials.gov/study/NCT02409628#collaborators-and-investigators
  106. Rotator cuff healing using a nanofiber scaffold in patients greater than 55 years Patent NCT04325789 2025
    [Google Scholar]
  107. Evaluation of marginal integrity of hydroxyapatite nano-fiber reinforced flowable composite versus conventional resin-based flowable composite in initially demineralized pits and fissure: A one-year, randomized clinical trial Patent NCT03242291 2017
    [Google Scholar]
  108. Evaluation of the spinner device for the application of wound dressing: Treatment of split skin graft donor sites (SPINNER01) Patent NCT02680106 2022
    [Google Scholar]
  109. Retention rate of hydroxyapatite nano-fiber reinforced flowable composite versus conventional Patent NCT03264105 2017
    [Google Scholar]
  110. Clinical and radiographical evaluation of two types of composite materials strip crown in primary molars Patent NCT05908136 2023
    [Google Scholar]
  111. Experimental study of the vascular prosthesis manufactured by electrospinning Patent NCT02255188 2017
    [Google Scholar]
  112. AFYX Therapeuticals 2024 Available from: https://afyxtx.com/#rivelin
  113. Fast acting orally disintegrating film Patent US11304933B2 2022
    [Google Scholar]
  114. Omer S. Forgách L. Zelkó R. Sebe I. Scale-up of electrospinning: Market overview of products and devices for pharmaceutical and biomedical purposes. Pharmaceutics 2021 13 2 286 10.3390/pharmaceutics13020286 33671624
    [Google Scholar]
  115. Nicast’s AVflo(TM) for hemodialysis patients receives CE mark; Company commences market launch of AVflo in europe and $10 million financing round. 2008 Available from:https://www.biospace.com/nicast-s-avflo-tm-for-hemodialysis-patients-receives-ce-mark-company-commences-market-launch-of-avflo-in-europe-and-10-million-financing-round
  116. Osteoinductive bone regeneration material and production method of the same Patent TW202207951A 2022
  117. Nepola J.C. Petersen E.B. DeVries-Watson N. Grosland N. Fredericks D.C. Electrospun PLGA and β-TCP (Rebossis-85) in a lapine posterolateral fusion model. Iowa Orthop. J. 2019 39 2 9 19 [PMID: 32577102
    [Google Scholar]
  118. Hirschl R.A. Biedrzycki A.H. Sidhu H.S. Static magnetic fields within spinal interbody cages for the promotion of spinal arthrodesis: A pilot study. World Neurosurg. 2020 144 e500 e506 10.1016/j.wneu.2020.08.217 32891835
    [Google Scholar]
  119. Morsi R.Z. Thind S. Chahine A. The use of PK papyrus covered coronary stent for carotid reconstruction: An initial institutional experience. J. Neurointerv. Surg. 2024 16 12 1244 1249 10.1136/jnis‑2023‑021226 38171608
    [Google Scholar]
  120. Patel G.C. Yadav B.K. Polymeric nanofibers for controlled drug delivery applications. In:Organic Materials as Smart Nanocarriers for Drug Delivery. Elsevier 2018 147 175 10.1016/B978‑0‑12‑813663‑8.00004‑X
    [Google Scholar]
  121. Zenga F. Pacca P. Garzaro M. Garbossa D. Ducati A. Tardivo V. Nanofibrous synthetic dural patch for skull base defects: Preliminary experience for reconstruction after extended endonasal approaches. J. Neurol. Surg. Rep. 2016 77 1 e50 e55 10.1055/s‑0035‑1570388 26937335
    [Google Scholar]
  122. Biomaterial products. 2024 Available from: https://www.zeusinc.com/products/biomaterials/
  123. Matschegewski C. Kohse S. Markhoff J. Accelerated endothelialization of nanofibrous scaffolds for biomimetic cardiovascular implants. Materials 2022 15 6 2014 10.3390/ma15062014 35329466
    [Google Scholar]
  124. ReDura Brochure 2024 Available from: https://pdf.medicalexpo.com/pdf/medprin-biotech/redura-brochure/76788-185418.html
  125. Zhang X. Jiang T. Chen D. Wang Q. Zhang L.W. Three-dimensional liver models: State of the art and their application for hepatotoxicity evaluation. Crit. Rev. Toxicol. 2020 50 4 279 309 10.1080/10408444.2020.1756219 32419588
    [Google Scholar]
  126. Products - 3D Insert-PCL. 2024 Available from: https://3dbiotek.com/prod_3dpcl.aspx
  127. Balain B. Safety and efficacy of a novel fibrin dressing on bleeding cancellous bone. J Clin Exp Orthop 2018 4 1 50 10.4172/2471‑8416.100050
    [Google Scholar]
  128. Minden-Birkenmaier B.A. Selders G.S. Fetz A.E. Gehrmann C.J. Bowlin G.L. Electrospun systems for drug delivery. In:Electrospun Materials for Tissue Engineering and Biomedical Applications. Elsevier 2017 117 145 10.1016/B978‑0‑08‑101022‑8.00011‑9
    [Google Scholar]
  129. RenovoDerm 2024 Available from: https://www.paragentechnologies.com/renovoderm
  130. 2018FDA’s approach to regulation of nanotechnology products. 2018. Available from: https://www.fda.gov/science-research/nanotechnology-programs-fda/fdas-approach-regulation-nanotechnology-products
  131. Nielsen M.B. Skjolding L. Baun A. Hansen S.F. European nanomaterial legislation in the past 20 years – Closing the final gaps. NanoImpact 2023 32 100487 10.1016/j.impact.2023.100487 37821007
    [Google Scholar]
  132. Rauscher H. Rasmussen K. Sokull-Klüttgen B. Regulatory aspects of nanomaterials in the EU. Chemieingenieurtechnik (Weinh.) 2017 89 3 224 231 10.1002/cite.201600076
    [Google Scholar]
  133. Uhljar L.É. Ambrus R. Electrospinning of potential medical devices (wound dressings, tissue engineering scaffolds, face masks) and their regulatory approach. Pharmaceutics 2023 15 2 417 10.3390/pharmaceutics15020417 36839739
    [Google Scholar]
  134. Standard guide for characterizing fiber-based constructs for tissue engineered medical products. 2021 Available from: https://store.astm.org/f3510-21.html
  135. Standard guide for characterization and assessment of tissue engineered medical products (TEMPs) for knee meniscus surgical repair and/or reconstruction. 2017 Available from: https://store.astm.org/f3223-17.html
  136. Standard test method for evaluating growth of engineered cartilage tissue using magnetic resonance imaging. 2018 Available from: https://store.astm.org/f3224-17.html
  137. Standard guide for cell potency assays for cell therapy and tissue engineered products. 2019 Available from: https://store.astm.org/f3368-19.html
  138. Standard guide for pre-clinical in vivo evaluation of spinal fusion. 2022 Available from: https://store.astm.org/f2884-21.html
  139. Standard guide for characterization and assessment of vascular graft tissue engineered medical products (TEMPs). 2022 Available from: https://store.astm.org/f3225-17.html
  140. Vass P. Szabó E. Domokos A. Scale‐up of electrospinning technology: Applications in the pharmaceutical industry. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020 12 4 e1611 10.1002/wnan.1611 31863572
    [Google Scholar]
  141. Beaudoin É.J. Kubaski M.M. Samara M. Zednik R.J. Demarquette N.R. Scaled-up multi-needle electrospinning process using parallel plate auxiliary electrodes. Nanomaterials 2022 12 8 1356 10.3390/nano12081356 35458064
    [Google Scholar]
  142. Molnar K. Nagy Z.K. Corona-electrospinning: Needleless method for high-throughput continuous nanofiber production. Eur. Polym. J. 2016 74 279 286 10.1016/j.eurpolymj.2015.11.028
    [Google Scholar]
  143. Chen K. Nikam S.P. Zander Z.K. Continuous fabrication of antimicrobial nanofiber mats using post-electrospinning functionalization for roll-to-roll scale-up. ACS Appl. Polym. Mater. 2020 2 2 304 316 10.1021/acsapm.9b00798
    [Google Scholar]
  144. EQUIPMENT - Bioinicia 2024 Available from: https://www.bioinicia.com/electrospinning-electrospraying-lab-equipment/
  145. Elmarco to Host International Nanotechnology Conference at Czech National Pavilion during EXPO 2025. 2024 Available from: https://www.elmarco.com/blog/elmarco-conference-at-expo2025
  146. MECC Nanofiber 2024 Available from: https://www.mecc-nano.com/
  147. Malara A. Environmental concerns on the use of the electrospinning technique for the production of polymeric micro/nanofibers. Sci. Rep. 2024 14 1 8293 10.1038/s41598‑024‑58936‑5 38594337
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385372124250623054646
Loading
/content/journals/pnt/10.2174/0122117385372124250623054646
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: 3D printing ; Functional nanofibers ; scaffolds ; wound healing ; tissue regeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test