Skip to content
2000
image of Advanced Preparation Techniques for Polymeric Nanoparticles and their Application in Drug Delivery

Abstract

Nanotechnology has advanced significantly in recent decades, with the production and design of nanomaterials becoming a focal point of research. Nanomedicine, a key component of this field, involves the development of nanoscale materials for applications in imaging and drug delivery. Current research predominantly focuses on the synthesis of precisely characterized nanomaterials, particularly in terms of their size and morphology, as these parameters play a critical role in determining the behavior of nanomaterials . This paper reviews various methods for the preparation of polymeric nanoparticles, including solvent evaporation, nanoprecipitation, emulsification/solvent diffusion, salting out, dialysis, supercritical fluid technology (SCF), and monomer polymerization techniques. Additionally, it discusses approaches such as emulsion, mini-emulsion, microemulsion, interfacial polymerization, controlled/living radical polymerization, and ionic gelation/coacervation. Each preparation method is described in terms of its characteristics, advantages, limitations, and potential applications. The paper also explores pharmaceutical considerations and challenges associated with novel drug delivery systems. Recent literature examples are presented to highlight the impact of preparation techniques on the physicochemical properties of nanoparticles.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385366838250314110525
2025-04-15
2025-09-25
Loading full text...

Full text loading...

References

  1. Crucho C.I.C. Barros M.T. Polymeric nanoparticles: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017 80 771 784 10.1016/j.msec.2017.06.004 28866227
    [Google Scholar]
  2. Mondal D.B. Velayudhan J.M. Lekshman A. Mandal R.S. Raja R. Kumar N. Polymeric nanoencapsulation for ameliorative application in rodent hepatic regeneration. In: Natural Biomaterials for Tissue Engineering. Academic Press 2025 387 426 10.1016/B978‑0‑443‑26470‑2.00014‑4
    [Google Scholar]
  3. Beach M.A. Nayanathara U. Gao Y. Zhang C. Xiong Y. Wang Y. Such G.K. Polymeric nanoparticles for drug delivery. Chem. Rev. 2024 124 9 5505 5616 10.1021/acs.chemrev.3c00705 38626459
    [Google Scholar]
  4. Slavkova M. Lazov C. Spassova I. Kovacheva D. Tibi I.P.E. Stefanova D. Tzankova V. Petrov P.D. Yoncheva K. Formulation of budesonide-loaded polymeric nanoparticles into hydrogels for local therapy of atopic dermatitis. Gels 2024 10 1 79 10.3390/gels10010079 38275852
    [Google Scholar]
  5. Fawaz W. Hanano A. Murad H. Yousfan A. Alghoraibi I. Hasian J. Polymeric nanoparticles loaded with vincristine and carbon dots for hepatocellular carcinoma therapy and imaging. Sci. Rep. 2024 14 1 24520 10.1038/s41598‑024‑75332‑1 39424827
    [Google Scholar]
  6. Pourmadadi M. Dehaghi H.M. Ghaemi A. Maleki H. Yazdian F. Rahdar A. Pandey S. Polymeric nanoparticles as delivery vehicles for targeted delivery of chemotherapy drug fludarabine to treat hematological cancers. Inorg. Chem. Commun. 2024 167 112819 10.1016/j.inoche.2024.112819
    [Google Scholar]
  7. Noreen S. Pervaiz F. Ijaz M. Hanif M.F. Hamza J.R. Mahmood H. Shoukat H. Maqbool I. Ashraf M.A. pH-sensitive docetaxel-loaded chitosan/thiolated hyaluronic acid polymeric nanoparticles for colorectal cancer. Nanomedicine 2024 19 9 755 777 10.2217/nnm‑2023‑0318 38334078
    [Google Scholar]
  8. Theivendren P. Kunjiappan S. Pavadai P. Ravi K. Murugavel A. Dayalan A. Santhana Krishna Kumar A. Revolutionizing cancer immunotherapy: Emerging nanotechnology-driven drug delivery systems for enhanced therapeutic efficacy. ACS Meas. Sci. Au 2024 acsmeasuresciau.4c00062 10.1021/acsmeasuresciau.4c00062
    [Google Scholar]
  9. Muraleedharan A. Acharya S. Kumar R. Recent updates on diverse nanoparticles and nanostructures in therapeutic and diagnostic applications with special focus on smart protein nanoparticles: A review. ACS Omega 2024 9 42 42613 42629 10.1021/acsomega.4c05037 39464472
    [Google Scholar]
  10. Walsh A. Synthesis and analysis of poly (methacrylic acid-co-benzyl methacrylate) copolymers for stable aqueous pigment dispersions. 2014 Available from: https://etheses.whiterose.ac.uk/6457/7/AW%20final%20thesis.pdf
  11. Son G.H. Lee B.J. Cho C.W. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J. Pharm. Investig. 2017 47 4 287 296 10.1007/s40005‑017‑0320‑1
    [Google Scholar]
  12. Reis C.P. Neufeld R.J. Ribeiro A.J. Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded PNPs. Nanomedicine 2006 2 8 21 10.1016/j.nano.2005.12.003 17292111
    [Google Scholar]
  13. Singh A. Parikh S. Sethi N. Patel S. Modi N. Patel K. Nanoparticle formulations: A sustainable approach to biodegradable and non‐biodegradable products. Nanocarrier Vaccines: Biopharmaceutics-Based Fast Track Development Wiley 2024 95 151
    [Google Scholar]
  14. Nasir A. Kausar A. Younus A. A review on preparation, properties, and applications of polymeric nanoparticle-based materials. Polym. Plast. Technol. Eng. 2015 54 4 325 341 10.1080/03602559.2014.958780
    [Google Scholar]
  15. Wang Y. Li P. Truong-Dinh Tran T. Zhang J. Kong L. Manufacturing techniques and surface engineering of polymer-based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016 6 2 26 10.3390/nano6020026 28344283
    [Google Scholar]
  16. Edens M.W. Applications of polyoxyalkylene block copolymer surfactants. In: Nonion. Surfactants. CRC Press 2017 185 210 10.1201/9780203745656‑5
    [Google Scholar]
  17. Elmowafy E.M. Tiboni M. Soliman M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019 49 4 347 380 10.1007/s40005‑019‑00439‑x
    [Google Scholar]
  18. Patel H.J. Interaction of recombinant human growth hormone with surface-modified biodegradable poly (lactic-co-glycolic acid)(PLGA) nanoparticles. DOCTOR OF PHILOSOPHY 2022
    [Google Scholar]
  19. Ekinci M. Yeğen G. Aksu B. İlem-Özdemir D. Preparation and evaluation of poly (lactic acid)/poly (vinyl alcohol) nanoparticles using the quality by design approach. ACS Omega 2022 7 38 33793 33807 10.1021/acsomega.2c02141 36188287
    [Google Scholar]
  20. Kustiawan P.M. Syaifie P.H. Siregar K.A.A.K. Ibadillah D. Mardliyati E. New insights of propolis nanoformulation and its therapeutic potential in human diseases. ADMET DMPK 2024 12 1 1 26 10.5599/admet.2128 38560717
    [Google Scholar]
  21. Bhardwaj H. Khute S. Sahu R.K. Jangde R.K. Emerging trends in hybrid nanoparticles: Revolutionary advances and promising biomedical applications. Curr. Drug Metab. 2024 25 4 248 265 10.2174/0113892002291778240610073122 38918986
    [Google Scholar]
  22. Akl M.A. Kartal-Hodzic A. Suutari T. Oksanen T. Montagner I.M. Rosato A. Ismael H.R. Afouna M.I. Caliceti P. Yliperttula M. Samy A.M. Mastrotto F. Salmaso S. Viitala T. Real-time label-free targeting assessment and in vitro characterization of curcumin-loaded poly-lactic-co-glycolic acid nanoparticles for oral colon targeting. ACS Omega 2019 4 16 16878 16890 10.1021/acsomega.9b02086 31646234
    [Google Scholar]
  23. Chen Y. Zhang P. Liu S. Pahovnik D. Žagar E. Zhao J. Zhang G. Noncovalent protection for direct synthesis of α-amino-ω-hydroxyl poly(ethylene oxide). ACS Macro Lett. 2021 10 6 737 743 10.1021/acsmacrolett.1c00316 35549103
    [Google Scholar]
  24. Yuan T. Li Y. Song D.P. Interfacial self‐assembly of amphiphilic core‐shell bottlebrush block copolymers toward responsive photonic balls bearing ionic channels. Macromol. Rapid Commun. 2022 43 17 2200188 10.1002/marc.202200188 35436806
    [Google Scholar]
  25. Kadam M.S. Nemade L.S. Pithalekar S.R. Mahadik M.V. Burunkar V. Exploring nanoparticles: Types, advantages, challenges, and applications in drug delivery and technology. Biosci. Biotechnol. Res. Asia 2024 21 3 1197 1209 10.13005/bbra/3297
    [Google Scholar]
  26. Ansari M.J. Alshahrani S.M. Nano-encapsulation and characterization of baricitinib using poly-lactic-glycolic acid co-polymer. Saudi Pharm. J. 2019 27 4 491 501 10.1016/j.jsps.2019.01.012 31061617
    [Google Scholar]
  27. Jamkhande P.G. Ghule N.W. Bamer A.H. Kalaskar M.G. Metal nanoparticles synthesis: An overview on methods of preparation, advantages and disadvantages, and applications. J. Drug Deliv. Sci. Technol. 2019 53 101174 10.1016/j.jddst.2019.101174
    [Google Scholar]
  28. Crucho C.I.C. Barros M.T. PNPs: A study on the preparation variables and characterization methods. Mater. Sci. Eng. C 2017 80 771 784 10.1016/j.msec.2017.06.004 28866227
    [Google Scholar]
  29. Tóth T. Kiss É. A method for the prediction of drug content of poly(lactic-co-glycolic)acid drug carrier nanoparticles obtained by nanoprecipitation. J. Drug Deliv. Sci. Technol. 2019 50 42 47 10.1016/j.jddst.2019.01.010
    [Google Scholar]
  30. Parameshwar K. Sahoo S.K. A review of merely PNPs in recent drug delivery system. Asian J. Pharm. Clin. Res. 2022 15 4 12 10.22159/ajpcr.2022.v15i4.43239
    [Google Scholar]
  31. Gericke M. Schulze P. Heinze T. Nanoparticles based on hydrophobic polysaccharide derivatives—formation principles, characterization techniques, and biomedical applications. Macromol. Biosci. 2020 20 4 1900415 10.1002/mabi.201900415 32090505
    [Google Scholar]
  32. Pulingam T. Foroozandeh P. Chuah J-A. Sudesh K. Exploring various techniques for the chemical and biological synthesis of PNPs. Nanomaterials 2022 12 576 10.3390/nano12030576 35159921
    [Google Scholar]
  33. Yan X. Bernard J. Ganachaud F. Nanoprecipitation as a simple and straightforward process to create complex polymeric colloidal morphologies. Adv. Colloid Interface Sci. 2021 294 102474 10.1016/j.cis.2021.102474 34311157
    [Google Scholar]
  34. Kandilli B. Ugur Kaplan A.B. Cetin M. Taspinar N. Ertugrul M.S. Aydin I.C. Hacimuftuoglu A. Carbamazepine and levetiracetam-loaded PLGA nanoparticles prepared by nanoprecipitation method: in vitro and in vivo studies. Drug Dev. Ind. Pharm. 2020 46 7 1063 1072 10.1080/03639045.2020.1769127 32406290
    [Google Scholar]
  35. Sokołowska M. Marchwiana M. El Fray M. Vitamin E-loaded PNPs from biocompatible adipate-based copolymer obtained using the nanoprecipitation method. Polimery 2022 67 543 551 10.14314/polimery.2022.11.1
    [Google Scholar]
  36. Huang W. Zhang C. Tuning the size of poly(lactic-co-glycolic acid) (PLGA) nanoparticles fabricated by nanoprecipitation. Biotechnol. J. 2018 13 1 1700203 10.1002/biot.201700203 28941234
    [Google Scholar]
  37. Badri W. Miladi K. Nazari Q.A. Fessi H. Elaissari A. Effect of process and formulation parameters on polycaprolactone nanoparticles prepared by solvent displacement. Colloids Surf. A Physicochem. Eng. Asp. 2017 516 238 244 10.1016/j.colsurfa.2016.12.029
    [Google Scholar]
  38. Basinska T. Gadzinowski M. Mickiewicz D. Slomkowski S. Functionalized particles designed for targeted delivery. Polymers 2021 13 12 2022 10.3390/polym13122022 34205672
    [Google Scholar]
  39. Almoustafa H.A. Alshawsh M.A. Chik Z. Technical aspects of preparing PEG-PLGA nanoparticles as carrier for agents by nanoprecipitation method. Int. J. Pharm. 2017 533 1 275 284 10.1016/j.ijpharm.2017.09.054 28943210
    [Google Scholar]
  40. Tazhbayev Y.M. Burkeyev M.Z. Zhaparova L.Z. Zhumagalieva T.S. Arystanova Z.T. Nanoparticles on the basis of polylactic acid and polylactic-co-glycolic acids loaded with drugs. Bulletin of the Karaganda University. “Chemistry” series 2018 90 2 31 39 10.31489/2018Ch2/31‑39
    [Google Scholar]
  41. Lepeltier E. Bourgaux C. Couvreur P. Nanoprecipitation and the “Ouzo effect”: Application to drug delivery devices. Adv. Drug Deliv. Rev. 2014 71 86 97 10.1016/j.addr.2013.12.009 24384372
    [Google Scholar]
  42. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. PNPs: Production, characterization, toxicology, and ecotoxicology. Molecules 2020 25 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  43. Bagade O. Sampathi S. Restoration and sustenance of nano drug delivery systems: Potential, challenges, and limitations. In: Biosystems, Biomedical & Drug Delivery Systems: Characterization, Restoration and Optimization Springer Nature Singapore Singapore 2024
    [Google Scholar]
  44. Mallik A.K. Chisty A.H. Khan M.N. Shahruzzaman M. Haque P. Rahman M.M. Poly(lactic acid) (PLA)-based nanosystems in biomedical applications. Nanoeng. Biomater. 2022 63 63 89 10.1002/9783527832095.ch20
    [Google Scholar]
  45. Mohanta I. Sahu N. Guchhait C. Kaur L. Mandal D. Adhikari B. Ag+-induced supramolecular polymers of folic acid: Reinforced by external kosmotropic anions exhibiting salting out. Biomacromolecules 2024 25 9 6203 6215 10.1021/acs.biomac.4c01063 39153217
    [Google Scholar]
  46. Sarthi S. Bhardwaj H. Kumar Jangde R. Advances in nucleic acid delivery strategies for diabetic wound therapy. J. Clin. Transl. Endocrinol. 2024 37 100366 10.1016/j.jcte.2024.100366 39286540
    [Google Scholar]
  47. De Marco I. Supercritical fluids and nanoparticles in cancer therapy. Micromachines 2022 13 9 1449 10.3390/mi13091449 36144072
    [Google Scholar]
  48. Blasi P. Poly(lactic acid)/poly(lactic-co-glycolic acid)-based microparticles: An overview. J. Pharm. Investig. 2019 49 4 337 346 10.1007/s40005‑019‑00453‑z
    [Google Scholar]
  49. Burke J. Donno R. d’Arcy R. Cartmell S. Tirelli N. The effect of branching (star architecture) on poly(D,L-lactide) (PDLLA) degradation and drug delivery. Biomacromolecules 2017 18 3 728 739 10.1021/acs.biomac.6b01524 27930884
    [Google Scholar]
  50. Singh A.K.S. Renewable resource lactide-derived materials: Scaled-up synthesis, characterization, and applications. Doctor of Philosophy (PhD) 2008
    [Google Scholar]
  51. Patel J.U. Formulation and evaluation of ranolazine sustained release tablets by hot melt coating technique. 2010
    [Google Scholar]
  52. Irikura K. Ekapakul N. Choochottiros C. Chanthaset N. Yoshida H. Ajiro H. Fabrication of flexible blend films using a chitosan derivative and poly(trimethylene carbonate). Polym. J. 2021 53 7 823 833 10.1038/s41428‑021‑00470‑6
    [Google Scholar]
  53. Avula K.K. Gujjula S. Aluru S. Dandu S.S. Mohammed S. Nagi Reddy R.R. Preparation, characterization, and photodynamic treatment of toluidine blue PLGA-loaded nanoparticles in Porphyromonas gingivalis. Czas. Stomatol. 2020 73 4 159 169 10.5114/jos.2020.98311
    [Google Scholar]
  54. Gupta A.K. Combined salt concentration and degree-of-ionization effect on the structure of poly(methacrylic acid) in aqueous solutions as revealed by molecular dynamics simulations. Ind. Eng. Chem. Res. 2021 60 13 4806 4819 10.1021/acs.iecr.1c00492
    [Google Scholar]
  55. Wang X. Liang Q. Luo Y. Ye J. Yu Y. Chen F. Engineering the next generation of theranostic biomaterials with synthetic biology. Bioact. Mater. 2024 32 514 529 10.1016/j.bioactmat.2023.10.018 38026437
    [Google Scholar]
  56. Ebrahimi A. Hamishehkar H. Nokhodchi A. Supercritical fluid technology as a tool for improved drug delivery to the lungs. Pulmonary Drug Delivery Systems: Materials, Technologies, and Advances. Springer 2023 71 90 10.1007/978‑981‑99‑1923‑9_3
    [Google Scholar]
  57. Rao J.P. Geckeler K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011 36 7 887 913 10.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  58. Hoang N.H. Le Thanh T. Sangpueak R. Treekoon J. Saengchan C. Thepbandit W. Papathoti N.K. Kamkaew A. Buensanteai N. Chitosan nanoparticles-based ionic gelation method: A promising candidate for plant disease management. Polymers 2022 14 4 662 10.3390/polym14040662 35215574
    [Google Scholar]
  59. Ferraro C. Dattilo M. Patitucci F. Prete S. Scopelliti G. Parisi O. Puoci F. Exploring protein-based carriers in drug delivery: A review. Pharmaceutics 2024 16 9 1172 10.3390/pharmaceutics16091172 39339208
    [Google Scholar]
  60. Di Martino A. Polymer nanoparticles for encapsulation and controlled release of bioactive substances. Theses – University qualification theses 2013
    [Google Scholar]
  61. Alamoudi J.A. Recent advancements toward the incremsent of drug solubility using environmentally-friendly supercritical CO2: A machine learning perspective. Front. Med. 2024 11 1467289 10.3389/fmed.2024.1467289 39286644
    [Google Scholar]
  62. Alemrayat B. Elhissi A. Younes H.M. Preparation and characterization of letrozole-loaded poly(d,l-lactide) nanoparticles for drug delivery in breast cancer therapy. Pharm. Dev. Technol. 2019 24 2 235 242 10.1080/10837450.2018.1455698 29561210
    [Google Scholar]
  63. Acharya B. Behera A. Behera S. Moharana S. Recent advances in nanotechnology-based drug delivery systems for the diagnosis and treatment of reproductive disorders. ACS Appl. Bio Mater. 2024 7 3 1336 1361 10.1021/acsabm.3c01064 38412066
    [Google Scholar]
  64. Skoulas D. Christakopoulos P. Stavroulaki D. Santorinaios K. Athanasiou V. Iatrou H. Micelles formed by polypeptide-containing polymers synthesized via N-carboxyanhydrides and their application for cancer treatment. Polymers 2017 9 6 208 10.3390/polym9060208 30970886
    [Google Scholar]
  65. Liu H. Liang X. Peng Y. Liu G. Cheng H. Supercritical fluids: An innovative strategy for drug development. Bioengineering 2024 11 8 788 10.3390/bioengineering11080788 39199746
    [Google Scholar]
  66. Abdullahi A. Muhammad R.G. Mohammed J.N. Mohammed A. Muhammad I.L. Diversity of ochratoxin A in ready-to-eat foods in Nigeria. Jewel J. Sci. Res. 2022 7 1 124 140
    [Google Scholar]
  67. Li Y. Liu F. Demirci S. Dey U.K. Rawah T. Chaudary A. Ortega R. Yang Z. Pirhadi E. Huang B. Yong X. Two sides of the coin: Synthesis and applications of Janus particles. Nanoscale 2025 39564617
    [Google Scholar]
  68. Dinari M. Haghighi A. Ultrasound-assisted synthesis of nanocomposites based on aromatic polyamide and modified ZnO nanoparticle for removal of toxic Cr(VI) from water. Ultrason. Sonochem. 2018 41 75 84 10.1016/j.ultsonch.2017.09.023 29137801
    [Google Scholar]
  69. Ranjan A. Adhikari P. Verma R.K. Parthiban A. Singh M. Kumar A. Advances in pharmaceutical coatings and coating materials. Functional Coatings for Biomedical. Energy, and Environmental Applications 2024 145 162 10.1002/9781394263172.ch7
    [Google Scholar]
  70. Craparo E.F. Musumeci T. Bonaccorso A. Pellitteri R. Romeo A. Naletova I. Cucci L.M. Cavallaro G. Satriano C. MPEG-PLGA nanoparticles labeled with loaded or conjugated rhodamine-B for potential nose-to-brain delivery. Pharmaceutics 2021 13 9 1508 10.3390/pharmaceutics13091508 34575584
    [Google Scholar]
  71. Xu Q. Nie Y. Wu D. Li J. Zeng J. Wang Z.F. Jiang Y. Anisotropic magnetic polymeric particles with a controllable structure via seeded emulsion polymerization. Langmuir 2024 40 acs.langmuir.3c03379 10.1021/acs.langmuir.3c03379 38343282
    [Google Scholar]
  72. Kumar Jangde R. Khan T. Bhardwaj H. Development and characterization of nanostructured lipid carrier for topical delivery of naringenin. . J. Pharm. Technol. 2023 16 2572 2576 10.52711/0974‑360X.2023.00422
    [Google Scholar]
  73. Morgenthaler E.C. Ribbe A.E. Bradley L.C. Emrick T. Alkyne-rich patchy polymer colloids prepared by surfactant-free emulsion polymerization. J. Colloid Interface Sci. 2025 679 Pt B 276 283 10.1016/j.jcis.2024.10.040 39454259
    [Google Scholar]
  74. Rahmani D. Torbat N.A. Boddohi S. Synthesis and characterization of pH-responsive PCL-PVA polymersome for dual delivery to breast cancer cells. Eur. Polym. J. 2023 191 112032 10.1016/j.eurpolymj.2023.112032
    [Google Scholar]
  75. Song Y. Tang C. Yin C. Combination antitumor immunotherapy with VEGF and PIGF siRNA via systemic delivery of multi-functionalized nanoparticles to tumor-associated macrophages and breast cancer cells. Biomaterials 2018 185 117 132 10.1016/j.biomaterials.2018.09.017 30241030
    [Google Scholar]
  76. Moeinzadeh S. Jabbari E. Nanoparticles and their applications. Springer Handbook of Nanotechnology 2017 10.1007/978‑3‑662‑54357‑3_11
    [Google Scholar]
  77. Pachiyappan S. Shanmuganatham Selvanantham D. Kuppa S.S. Chandrasekaran S. Samrot A.V. Surfactant‐mediated synthesis of polyhydroxybutyrate (PHB) nanoparticles for sustained drug delivery. IET Nanobiotechnol. 2019 13 4 416 427 10.1049/iet‑nbt.2018.5053 31171747
    [Google Scholar]
  78. van Leeuwen T. Kuchel R.P. Knothe Tate M.L. Zetterlund P.B. Paclitaxel release from hollow PMMA nanoparticles: Factors affecting release rate as quantified via dialysis and membrane centrifugation. Colloids Surf. A Physicochem. Eng. Asp. 2023 675 131992 10.1016/j.colsurfa.2023.131992
    [Google Scholar]
  79. Li K. Xu Z. A review of current progress of supercritical fluid technologies for e-waste treatment. J. Clean. Prod. 2019 227 794 809 10.1016/j.jclepro.2019.04.104
    [Google Scholar]
  80. Kumar R. Thakur A.K. Banerjee N. Chaudhari P. A critical review on the particle generation and other applications of rapid expansion of supercritical solution. Int. J. Pharm. 2021 608 121089 10.1016/j.ijpharm.2021.121089 34530097
    [Google Scholar]
  81. Bagheri H. Hashemipour H. Mirzaie M. Investigation on hydrodynamic and formation of nano particle by RESS process: The numerical study. J. Mol. Liq. 2019 281 490 505 10.1016/j.molliq.2019.02.108
    [Google Scholar]
  82. Belghait A. Si-Moussa C. Laidi M. Hanini S. Semi-empirical correlation of solid solute solubility in supercritical carbon dioxide: Comparative study and proposition of a novel density-based model. C. R. Chim. 2018 21 5 494 513 10.1016/j.crci.2018.02.006
    [Google Scholar]
  83. Lovell P.A. Schork F.J. Fundamentals of emulsion polymerization. Biomacromolecules 2020 21 11 4396 4441 10.1021/acs.biomac.0c00769 32543173
    [Google Scholar]
  84. Jenjob R. Phakkeeree T. Seidi F. Theerasilp M. Crespy D. Emulsion techniques for the production of pharmacological nanoparticles. Macromol. Biosci. 2019 19 6 1900063 10.1002/mabi.201900063 31016873
    [Google Scholar]
  85. Silva R.D. Chaparro T.C. Monteiro I.S. Dugas P.Y. D’Agosto F. Lansalot M. Martins dos Santos A. ’Bourgeat-Lami E. Tailoring the morphology of polymer/montmorillonite hybrid latexes by surfactant-free emulsion polymerization mediated by amphipathic MacroRAFT agents. Macromolecules 2019 52 13 4979 4988 10.1021/acs.macromol.9b00741
    [Google Scholar]
  86. Gharieh A. Khoee S. Mahdavian A.R. Emulsion and miniemulsion techniques in preparation of polymer nanoparticles with versatile characteristics. Adv. Colloid Interface Sci. 2019 269 152 186 10.1016/j.cis.2019.04.010 31082544
    [Google Scholar]
  87. Sahoo S. Gopalan A. Ramesh S. Nirmala P. Ramkumar G. Agnes Shifani S. Subbiah R. Isaac JoshuaRamesh Lalvani J. Preparation of polymeric nanomaterials using emulsion polymerization. Adv. Mater. Sci. Eng. 2021 2021 1 1539230 10.1155/2021/1539230
    [Google Scholar]
  88. Choudhury S. Ray S.K. Synthesis of polymer nanoparticles based highly selective membranes by mini-emulsion polymerization for dehydration of 1,4 dioxane and recovery of ethanol from water by pervaporation. J. Membr. Sci. 2021 617 118646 10.1016/j.memsci.2020.118646
    [Google Scholar]
  89. Booth J.R. Davies J.D. Bon S.A.F. ω-Unsaturated methacrylate macromonomers as reactive polymeric stabilizers in mini-emulsion polymerization. Polym. Chem. 2022 13 10 1335 1349 10.1039/D1PY01664D
    [Google Scholar]
  90. Temelkaya Bilgin E. Synthesis and characterization of water-based acrylic polymers for pressure-sensitive adhesive applications via mini-emulsion polymerization. Polym. Adv. Technol. 2024
    [Google Scholar]
  91. Bhardwaj H. Sahu R.K. Jangde R.K. Optimization and Preparation of Doxycycline-Loaded Chitosan Nanoparticles Using Box-Behnken Design for Better Diabetic Wound Healing. J. Pharm. Sci. 2024 S0022-3549(24)00540-9. 10.1016/j.xphs.2024.11.014
    [Google Scholar]
  92. Jiang J. Wang W.J. Li B.G. Zhu S. 110th anniversary: Model-guided preparation of copolymer sequence distributions through programmed semi-batch RAFT mini-emulsion styrene/butyl acrylate copolymerization. Ind. Eng. Chem. Res. 2019 58 41 18997 19008 10.1021/acs.iecr.9b03414
    [Google Scholar]
  93. Chanra J. Budianto E. Soegijono B. The role of SDS surfactant in the synthesis of polymer hybrid latex Poly-(St-co-BA-co-MMA) with OMMT as filler via mini-emulsion polymerization. IOP Conf. Ser. Mater. Sci. Eng. 2019 10.1088/1757‑899X/515/1/012059
    [Google Scholar]
  94. Li X. Wang W.J. Weng F. Li B.G. Zhu S. Targeting copolymer composition distribution via model-based monomer feeding policy in semi-batch RAFT mini-emulsion copolymerization of styrene and butyl acrylate. Ind. Eng. Chem. Res. 2014 53 18 7321 7332 10.1021/ie402799u
    [Google Scholar]
  95. Parkinson S. Continuous Flow Platforms for the Synthesis and Optimisation of Polymeric Materials via RAFT Polymerisation. Polymer Science and Engineering 2020
    [Google Scholar]
  96. Sobh R.A. Magar H.S. Fahim A.M. Hashem M.S. Construction, molecular docking simulation and evaluation of electrochemical properties of polymeric nanospheres comprising novel synthesized monomer via green microemulsion polymerization. Polym. Adv. Technol. 2024 35 1 e6248 10.1002/pat.6248
    [Google Scholar]
  97. Judge N. Development of ring opening mini-emulsion polymerisation of n-carboxyanhydride monomers for the formation of polypeptide nanoparticles. Polymers 2023
    [Google Scholar]
  98. Iyisan B. Landfester K. Modular approach for the design of smart polymeric nanocapsules. Macromol. Rapid Commun. 2019 40 1 1800577 10.1002/marc.201800577 30507023
    [Google Scholar]
  99. Thangadurai T.D. Nandhakumar M. Thomas S. Nzihou A. Polymer nanocomposites for energy applications. Polymers 2022 36015690
    [Google Scholar]
  100. Asgari S. Saberi A.H. McClements D.J. Lin M. Microemulsions as nanoreactors for synthesis of biopolymer nanoparticles. Trends Food Sci. Technol. 2019 86 118 130 10.1016/j.tifs.2019.02.008
    [Google Scholar]
  101. Corten C. Hövelmann C. Krakehl J. Leute M. Warnon J.V.E. Mestach D. Biemans T. 3 Polymer dispersions and emulsions. Mater. Sci. Eng. 2021 ••• 41 170 10.1515/9783748605249‑004
    [Google Scholar]
  102. Gan L.M. Chew C.H. Polymerization of methyl methacrylate and styrene in ternary emulsions and microemulsions. Surfactants and Solutions. CRC Press 2020 169 178 10.1201/9781003067580‑12
    [Google Scholar]
  103. Xue Y. Gao C. Liang L. Wang X. Chen G. Nanostructure controlled construction of high-performance thermoelectric materials of polymers and their composites. J. Mater. Chem. A Mater. Energy Sustain. 2018 6 45 22381 22390 10.1039/C8TA09656B
    [Google Scholar]
  104. Cummings S. The incorporation of vinyl modified regenerated starch nanoparticles in emulsion polymerizations. Research in Progress 2017 10.20381/ruor‑20374
    [Google Scholar]
  105. Kumar N. Investigation on the effect of various cross-linking agents in acrylic emulsion polymer & its application performance. Ph.D. Dissertation, DTU 2017
    [Google Scholar]
  106. Shakirova J.R. Shevchenko N.N. Baigildin V.A. Chelushkin P.S. Khlebnikov A.F. Tomashenko O.A. Solomatina A.I. Starova G.L. Tunik S.P. Eu-based phosphorescence lifetime polymer nanothermometer: A nanoemulsion polymerization approach to eliminate quenching of Eu emission in aqueous media. ACS Appl. Polym. Mater. 2020 2 2 537 547 10.1021/acsapm.9b00952
    [Google Scholar]
  107. Mulla M.A. High volume fraction polymer nanoparticles as inkjet ink model suspensions: From synthesis to rheological and printing characterisation. Ph.D. Thesis, University of White Rose 2018
    [Google Scholar]
  108. Ding J. Li X. Wang X. Zhang J. Yu D. Qiu B. Fabrication of vertical array CNTs/polyaniline composite membranes by microwave-assisted in situ polymerization. Nanoscale Res. Lett. 2015 10 1 493 10.1186/s11671‑015‑1201‑z 26704709
    [Google Scholar]
  109. Bushra L. pH-sensitive and magnetically responsive superabsorbent nanocomposite hydrogel. J. Mater. Sci. 2018
    [Google Scholar]
  110. Saito N. Itoyama S. Takahashi R. Takahashi Y. Kondo Y. Synthesis and surface activity of photoresponsive hybrid surfactants containing both fluorocarbon and hydrocarbon chains. J. Colloid Interface Sci. 2021 582 Pt B 638 646 10.1016/j.jcis.2020.08.054 32911411
    [Google Scholar]
  111. Jeevanandam J. Chan Y.S. Danquah M.K. Nano-formulations of drugs: Recent developments, impact and challenges. Biochimie 2016 128-129 99 112 10.1016/j.biochi.2016.07.008 27436182
    [Google Scholar]
  112. Liu C. Yang J. Guo B.B. Agarwal S. Greiner A. Xu Z.K. Interfacial polymerization at the alkane/ionic liquid interface. Angew. Chem. Int. Ed. 2021 60 26 14636 14643 10.1002/anie.202103555 34010463
    [Google Scholar]
  113. Zhang F. Fan J. Wang S. Interfacial polymerization: From chemistry to functional materials. Angew. Chem. Int. Ed. 2020 59 49 21840 21856 10.1002/anie.201916473 32091148
    [Google Scholar]
  114. Corrigan N. Jung K. Moad G. Hawker C.J. Matyjaszewski K. Boyer C. Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog. Polym. Sci. 2020 111 101311 10.1016/j.progpolymsci.2020.101311
    [Google Scholar]
  115. Zhou L. Shi H. Li Z. He C. Recent advances in complex coacervation design from macromolecular assemblies and emerging applications. Macromol. Rapid Commun. 2020 41 21 2000149 10.1002/marc.202000149 32431012
    [Google Scholar]
  116. Prajapati R.N. Bhushan B. Singh K. Chopra H. Kumar S. Agrawal M. Pathak D. Chanchal D.K. Laxmikant Recent advances in pharmaceutical design: Unleashing the potential of novel therapeutics. Curr. Pharm. Biotechnol. 2024 25 16 2060 2077 10.2174/0113892010275850240102105033 38288793
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385366838250314110525
Loading
/content/journals/pnt/10.2174/0122117385366838250314110525
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test