Skip to content
2000
image of Calcium Nanoliposome Improves Glycemic Control in a Mouse Diabetes Mellitus Model

Abstract

Introduction

Intracellular calcium in pancreatic beta cells plays a crucial role in insulin synthesis and secretion. Diabetes impairs this calcium-mediated action, necessitating an effective delivery system such as liposomes to facilitate calcium uptake.

Methods

Calcium lactate nanoliposomes (6.25 mg/mL) were prepared the thin-film hydration method using lecithin and cholesterol as bilayer lipids. Their glucose-lowering efficacy was tested in hyperglycemic mice induced by oral glucose (1 g/kg) and intraperitoneal streptozotocin (45 mg/kg). Pancreatic calcium levels were measured using X-ray fluorescence to verify calcium delivery to beta cells.

Results

The nanoliposomes exhibited a diameter of 172.1 nm, zeta potential of -53.45 mV, polydispersity index of 0.203, and pH 7.2. Entrapment efficiency was 93.42%, with stable pH and particle size over six cycles. Treatment with calcium nanoliposomes significantly reduced blood glucose levels in both diabetic and glucose-loaded mice. Pancreatic calcium concentrations were higher in animals receiving calcium nanoliposomes compared to controls.

Discussion

Calcium nanoliposomes induced a significant glucose reduction relative to controls (empty liposomes, distilled water, and calcium in distilled water). Encapsulation within liposomal vesicles enhanced calcium delivery to pancreatic beta cells, increasing intracellular calcium and stimulating insulin production and release. This was corroborated by elevated pancreatic calcium levels observed X-ray fluorescence in treated animals.

Conclusion

Calcium nanoliposomes effectively improve glycemic control in diabetic and glucose-challenged animal models by enhancing calcium delivery to pancreatic beta cells.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385407218250621220813
2025-07-03
2025-09-01
Loading full text...

Full text loading...

References

  1. Li S. Yang D. Zhou X. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci. Ther. 2024 30 4 14497 10.1111/cns.14497 37927197
    [Google Scholar]
  2. Mansoori A. A novel index for diagnosis of type 2 diabetes mellitus: Cholesterol, High density lipoprotein, and Glucose (CHG) index. J. Diabetes Investig. 2024 15 2 315 323 10.1111/jdi.14343 39569998
    [Google Scholar]
  3. Mitri J. Dawson-Hughes B. Hu F.B. Pittas A.G. Effects of vitamin D and calcium supplementation on pancreatic cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: The Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. Am. J. Clin. Nutr. 2011 94 2 486 494 10.3945/ajcn.111.011684 21715514
    [Google Scholar]
  4. Tomastu E. Ninomiya E. Ando M. Nutritional status of calcium and other bone-related nutrients in Japanese type 2 diabetes patients. Osteoporos. Sarcopenia 2016 2 2 94 98 10.1016/j.afos.2016.03.002 30775473
    [Google Scholar]
  5. Scholte A.J.H.A. Bax J.J. Wackers F.J.T. Screening of asymptomatic patients with type 2 diabetes mellitus for silent coronary artery disease: Combined use of stress myocardial perfusion imaging and coronary calcium scoring. J. Nucl. Cardiol. 2006 13 1 11 18 10.1016/j.nuclcard.2005.11.002 16464712
    [Google Scholar]
  6. Carnevale V. Inglese M. Annese M.A. Vitamin D and parameters of calcium homeostasis in inpatients with and without Type 2 diabetes mellitus. J. Endocrinol. Invest. 2012 35 9 853 858 10.3275/8236 22293170
    [Google Scholar]
  7. Raina J. Firdous A. Singh G. Kumar R. Kaur C. Role of polyphenols in the management of diabetic complications. Phytomedicine 2024 122 155155 10.1016/j.phymed.2023.155155 37922790
    [Google Scholar]
  8. Pan Q. Chen H. Fei S. Medications and medical expenditures for diabetic patients with osteoporosis in Beijing, China: A retrospective study. Diabetes Res. Clin. Pract. 2023 206 110980 10.1016/j.diabres.2023.110980 37890699
    [Google Scholar]
  9. Vu V.N. Nguyen Thi Binh M. Dinh Thi My D. Risk factors related to diabetic retinopathy in Vietnamese patients with type 2 diabetes mellitus. Endocr. Metab. Sci. 2023 13 100145 10.1016/j.endmts.2023.100145
    [Google Scholar]
  10. Zhuang R. Zhou Y. Wang Z. Rab26 restricts insulin secretion via sequestering Synaptotagmin-1. PLoS Biol. 2023 21 6 3002142 10.1371/journal.pbio.3002142 37289842
    [Google Scholar]
  11. Fletcher P.A. Thompson B. Liu C. Bertram R. Satin L.S. Sherman A.S. Ca 2+ release or Ca 2+ entry, that is the question: what governs Ca 2+ oscillations in pancreatic cells? Am. J. Physiol. Endocrinol. Metab. 2023 324 6 E477 E487 10.1152/ajpendo.00030.2023 37074988
    [Google Scholar]
  12. Mu-u-min RBA Diane A, Allouch A, Al-Siddiqi HH. Ca2+-Mediated signaling pathways: A promising target for the successful generation of mature and functional stem cell-derived pancreatic beta cells in vitro. Biomedicines 2023 11 6 1577 10.3390/biomedicines11061577 37371672
    [Google Scholar]
  13. Diaz-Juarez J. Suarez J.A. Dillmann W.H. Suarez J. Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochim. Biophys. Acta Mol. Basis Dis. 2021 1867 1 165984 10.1016/j.bbadis.2020.165984 33002576
    [Google Scholar]
  14. Cárdenas-Pérez R.E. Camacho A. Roles of calcium and Mitochondria-Associated Membranes in the development of obesity and diabetes. Med. Univ. 2016 18 70 23 33 10.1016/j.rmu.2015.10.004
    [Google Scholar]
  15. Grundy S.M. Vega G.L. Wong N.D. Is there a role for coronary calcium in patients with diabetes? Am. J. Cardiol. 2023 190 98 101 10.1016/j.amjcard.2022.12.003 36608437
    [Google Scholar]
  16. Akter S. Eguchi M. Kochi T. Kabe I. Nanri A. Mizoue T. Association of serum calcium and phosphate concentrations with glucose metabolism markers: The furukawa nutrition and health study. Nutrients 2020 12 8 2344 10.3390/nu12082344 32764504
    [Google Scholar]
  17. Ahn C. Kang J.H. Jeung E.B. Calcium homeostasis in diabetes mellitus. J. Vet. Sci. 2017 18 3 261 266 10.4142/jvs.2017.18.3.261 28927245
    [Google Scholar]
  18. Wongmanee N. Rojanaverawong W. Boonsong T. Hanchang W. Antihyperglycemic effect of extra virgin sacha inchi oil in type 2 diabetic rats: Mechanisms involved in pancreatic β-cell function and apoptosis. J. Tradit. Complement. Med. 2024 14 2 148 161 10.1016/j.jtcme.2023.08.005 38481551
    [Google Scholar]
  19. Trexler A.J. Taraska J.W. Regulation of insulin exocytosis by calcium-dependent protein kinase C in beta cells. Cell Calcium 2017 67 1 10 10.1016/j.ceca.2017.07.008 29029784
    [Google Scholar]
  20. D’Angelo D. Al Saidi A. Ghirardo G. Impact of PARL-mediated mitochondrial protease activity on calcium regulation. Cell Res. 2025 1872 119998 10.1016/j.bbamcr.2025.119998 40484322
    [Google Scholar]
  21. Mehta S. Nain P. Agrawal B.K. Singh R.P. Vitamin D with calcium supplementation managing glycemic control with HbA1c and improve quality of life in patients with diabetes. Turk. J. Pharm. Sci. 2022 19 2 161 167 10.4274/tjps.galenos.2021.62357 35509447
    [Google Scholar]
  22. Kostyuk E. Voitenko N. Kruglikov I. Diabetes-induced changes in calcium homeostasis and the effects of calcium channel blockers in rat and mice nociceptive neurons. Diabetologia 2001 44 10 1302 1309 10.1007/s001250100642 11692179
    [Google Scholar]
  23. Yang F. Liposome based delivery systems in pancreatic cancer treatment: From bench to bedside. Cancer Treat. Rev. 2012 38 6 654 663 10.1016/j.ctrv.2011.01.006 22655679
    [Google Scholar]
  24. Wang X. Wang M. Cai M. Shao R. Xia G. Zhao W. Miriplatin-loaded liposome, as a novel mitophagy inducer, suppresses pancreatic cancer proliferation through blocking POLG and TFAM-mediated mtDNA replication. Acta Pharm. Sin. B 2024 14 1 280 294 10.1016/j.apsb.2023.07.009 37969736
    [Google Scholar]
  25. Wen X. Xu S. Liu H. Neurotoxicity induced by bupivacaine via T-type calcium channels in SH-SY5Y cells. PLoS One 2013 8 5 62942 10.1371/journal.pone.0062942 23658789
    [Google Scholar]
  26. Marengo A. Forciniti S. Dando I. Pancreatic cancer stem cell proliferation is strongly inhibited by diethyldithiocarbamate-copper complex loaded into hyaluronic acid decorated liposomes. Biochim. Biophys. Acta, Gen. Subj. 2019 1863 1 61 72 10.1016/j.bbagen.2018.09.018 30267751
    [Google Scholar]
  27. Yang W. Hu Q. Xu Y. Liu H. Zhong L. Antibody fragment-conjugated gemcitabine and paclitaxel-based liposome for effective therapeutic efficacy in pancreatic cancer. Mater. Sci. Eng. C 2018 89 328 335 10.1016/j.msec.2018.04.011 29752104
    [Google Scholar]
  28. Dalla Pozza E. Lerda C. Costanzo C. Targeting gemcitabine containing liposomes to CD44 expressing pancreatic adenocarcinoma cells causes an increase in the antitumoral activity. Biochim. Biophys. Acta Biomembr. 2013 1828 5 1396 1404 10.1016/j.bbamem.2013.01.020 23384419
    [Google Scholar]
  29. Motomura M. Ichihara H. Matsumoto Y. Nano-chemotherapy using cationic liposome that strategically targets the cell membrane potential of pancreatic cancer cells with negative charge. Bioorg. Med. Chem. Lett. 2018 28 7 1161 1165 10.1016/j.bmcl.2018.03.013 29534927
    [Google Scholar]
  30. Raza F. Evans L. Motallebi M. Liposome-based diagnostic and therapeutic applications for pancreatic cancer. Acta Biomater. 2023 157 1 23 10.1016/j.actbio.2022.12.013 36521673
    [Google Scholar]
  31. Giordani S. Marassi V. Zattoni A. Roda B. Reschiglian P. Liposomes characterization for market approval as pharmaceutical products: Analytical methods, guidelines and standardized protocols. J. Pharm. Biomed. Anal. 2023 236 115751 10.1016/j.jpba.2023.115751 37778202
    [Google Scholar]
  32. Kabedev A. Tønning M.H. Teleki A. Bauer-Brandl A. Jacobsen A.C. Understanding the transport of drugs across biomimetic barriers of various phospholipid compositions using a combined experimental and computational approach. Colloids Surf. B Biointerfaces 2025 253 114706 10.1016/j.colsurfb.2025.114706 40311453
    [Google Scholar]
  33. Ichihara H. Motomura M. Matsumoto Y. Therapeutic effects and anti-metastasis effects of cationic liposomes against pancreatic cancer metastasis in vitro and in vivo. Biochem. Biophys. Res. Commun. 2019 511 3 504 509 10.1016/j.bbrc.2019.02.116 30803757
    [Google Scholar]
  34. Li R. Pu C. Sun Y. Sun Q. Tang W. Interaction between soybean oleosome-associated proteins and phospholipid bilayer and its influence on environmental stability of luteolin-loaded liposomes. Food Hydrocoll. 2022 130 107721 10.1016/j.foodhyd.2022.107721
    [Google Scholar]
  35. Samuelsson E. Shen H. Blanco E. Ferrari M. Wolfram J. Contribution of Kupffer cells to liposome accumulation in the liver. Colloids Surf. B Biointerfaces 2017 158 356 362 10.1016/j.colsurfb.2017.07.014 28719856
    [Google Scholar]
  36. Al-Hakim N.A. Fidrianny I. Anggadiredja K. Mauludin R. Effect of Banana (Musa sp.) peels extract in nanoemulsion dosage forms for the improvement of memory: In vitro & in vivo Studies. Pharm. Nanotechnol. 2022 10 4 299 309 10.2174/2211738510666220422135519 35466890
    [Google Scholar]
  37. Vasileva L. Gaynanova G. Valeeva F. Mitochondria-targeted delivery strategy of dual-loaded liposomes for Alzheimer’s disease therapy. Int. J. Mol. Sci. 2023 24 13 10494 10.3390/ijms241310494 37445673
    [Google Scholar]
  38. Ferraz M.P. Advanced nanotechnological approaches for biofilm prevention and control. Appl. Sci. 2024 14 18 8137 10.3390/app14188137
    [Google Scholar]
  39. Moretti E. Bonechi C. Signorini C. In vitro effects of charged and zwitterionic liposomes on human spermatozoa and supplementation with liposomes and chlorogenic acid during sperm freezing. Cells 2024 13 6 542 10.3390/cells13060542 38534386
    [Google Scholar]
  40. Duong V.A. Nguyen T.T.L. Maeng H.J. Recent advances in intranasal liposomes for drug, gene, and vaccine delivery. Pharmaceutics 2023 15 1 207 10.3390/pharmaceutics15010207 36678838
    [Google Scholar]
  41. Nunes D. Loureiro J.A. Pereira M.C. Drug delivery systems as a strategy to improve the efficacy of FDA-approved Alzheimer’s drugs. Pharmaceutics 2022 14 11 2296 10.3390/pharmaceutics14112296 36365114
    [Google Scholar]
  42. Vargas-Almendra A. Ruiz-Medrano R. Núñez-Muñoz L.A. Ramírez-Pool J.A. Calderón-Pérez B. Xoconostle-Cázares B. Advances in soybean genetic improvement. Plants 2024 13 21 3073 10.3390/plants13213073 39519991
    [Google Scholar]
  43. Patharapankal E.J. Ajiboye A.L. Mattern C. Trivedi V. Nose-to-brain (N2B) delivery: An alternative route for the delivery of biologics in the management and treatment of central nervous system disorders. Pharmaceutics 2023 16 1 66 10.3390/pharmaceutics16010066 38258077
    [Google Scholar]
  44. Mahor A.K. Singh P.P. Gupta R. Nanostructured lipid carriers for improved delivery of therapeutics via the oral route. J. Nanotechnol. 2023 2023 1 35 10.1155/2023/4687959
    [Google Scholar]
  45. Nie C. Zhao Y. Wang X. Structure, biological functions, separation, properties, and potential applications of milk fat globule membrane (MFGM): A review. Nutrients 2024 16 5 587 10.3390/nu16050587 38474716
    [Google Scholar]
  46. Jaradat E. Weaver E. Meziane A. Lamprou D.A. Microfluidics technology for the design and formulation of nanomedicines. Nanomaterials 2021 11 12 3440 10.3390/nano11123440 34947789
    [Google Scholar]
  47. Pisani S. Di Martino D. Cerri S. Investigation and comparison of active and passive encapsulation methods for loading proteins into liposomes. Int. J. Mol. Sci. 2023 24 17 13542 10.3390/ijms241713542 37686348
    [Google Scholar]
  48. Zheng H. Tao H. Wan J. Lee K.Y. Zheng Z. Leung S.S.Y. Preparation of drug-loaded liposomes with multi-inlet vortex mixers. Pharmaceutics 2022 14 6 1223 10.3390/pharmaceutics14061223 35745796
    [Google Scholar]
  49. Chen H.W. Chen S.D. Wu H.T. Cheng C.H. Chiou C.S. Chen W.T. Improvement in curcumin’s stability and release by formulation in flexible nano-liposomes. Nanomaterials 2024 14 22 1836 10.3390/nano14221836 39591076
    [Google Scholar]
  50. Hu Y. Zhang L. Wen Q. Prebiotic saccharides polymerization improves the encapsulation efficiency, stability, bioaccessibility and gut microbiota modulation of urolithin A liposomes. Int. J. Biol. Macromol. 2024 273 Pt 2 133045 10.1016/j.ijbiomac.2024.133045 38942666
    [Google Scholar]
  51. Woll K.A. Van Petegem F. Calcium-release channels: Structure and function of IP3 receptors and ryanodine receptors. Physiol. Rev. 2023 103 1 1 48 10.1152/physrev.00033.2020 36049113
    [Google Scholar]
  52. Delgado Lagos F. Elgheznawy A. Kyselova A. Secreted modular calcium-binding protein 1 binds and activates thrombin to account for platelet hyperreactivity in diabetes. Blood 2021 137 12 1641 1651 10.1182/blood.2020009405 33529332
    [Google Scholar]
  53. Le-Deygen I.M. Rokosovina V.V. Skuredina A.A. Yakimov I.D. Kudryashova E.V. The charge and phase state of liposomes dramatically affects the binding of mannosylated chitosan. Future Pharmacol. 2022 2 3 330 346 10.3390/futurepharmacol2030023
    [Google Scholar]
  54. Rezaei N. Mehrnejad F. Vaezi Z. Sedghi M. Asghari S.M. Naderi-Manesh H. Encapsulation of an endostatin peptide in liposomes: Stability, release, and cytotoxicity study. Colloids Surf. B Biointerfaces 2020 185 110552 10.1016/j.colsurfb.2019.110552 31648117
    [Google Scholar]
  55. Kumar M. Goswami P. Jha A. Formulation and evaluation of cetuximab functionalized phospholipid modified nanocrystals of paclitaxel for non-small cell lung cancer therapy. Sci. Rep. 2024 14 1 29114 10.1038/s41598‑024‑80283‑8 39582089
    [Google Scholar]
  56. Ghosh A. Advances in posterity of visualization in paradigm of nano-level ultra-structures for nano–bio interaction studies. Visions 2024 2 20240042 10.1002/VIW.20240042
    [Google Scholar]
  57. Julien-Schraermeyer S. Penetration, distribution, and elimination of remofuscin/soraprazan in Stargardt mouse eyes following a single intravitreal injection using pharmacokinetics and transmission electron microscopic autoradiography: Implication for the local treatment of Stargardt’s disease and dry age-related macular degeneration. Acta Ophthalmologica 2021 99 1 48 60 10.1111/j.1755‑3768.2020.01579.x
    [Google Scholar]
  58. Elghoul M. Kandyle R. Morsy K. Abumandour M.M.A. Transmission electron microscopic investigation of the dark and light pancreatic acinar beta-cells of young-domesticated pig (Sus Suidae, Erxleben 1777). Folia Morphol. 2022 81 4 956 962 10.5603/FM.a2021.0104 34642928
    [Google Scholar]
  59. Aizik G. Ostertag-Hill C.A. Chakraborty P. Injectable hydrogel based on liposome self-assembly for controlled release of small hydrophilic molecules. Acta Biomater. 2024 183 101 110 10.1016/j.actbio.2024.05.044 38834149
    [Google Scholar]
  60. Pham T. Zhang P. Ambati S. Meagher R.B. Lin X. Small but mighty: Targeted antifungal liposomes of a smaller size are superior in treating cryptococcal meningitis. MBio 2024 15 12 e02507 e02524 10.1128/mbio.02507‑24 39555913
    [Google Scholar]
  61. Sennato S. Sarra A. Capria C.P.L. Quantification of particle number concentration in liposomal suspensions by Laser Transmission Spectroscopy (LTS). Colloids Surf. B Biointerfaces 2023 222 113137 10.1016/j.colsurfb.2023.113137 36640540
    [Google Scholar]
  62. Hu Y. Zhang L. Wei L. Liposomes encapsulation by pH driven improves the stability, bioaccessibility and bioavailability of urolithin A: A comparative study. Int. J. Biol. Macromol. 2023 253 Pt 7 127554 10.1016/j.ijbiomac.2023.127554 37865359
    [Google Scholar]
  63. Li Y. Su J. Liu S. Improved stability and biocompatibility of lycopene liposomes with sodium caseinate and PEG coating. Int. J. Biol. Macromol. 2025 311 Pt 2 143685 10.1016/j.ijbiomac.2025.143685 40316080
    [Google Scholar]
  64. Diedrichsen RG Vetri V Prévost S Foderà V Nielsen HM Carrier peptide interactions with liposome membranes induce reversible clustering by surface adsorption and shape deformation. J Colloid Interface Sci 2023 650 Pt B 1821 1832> 10.1016/j.jcis.2023.07.078 37515972
    [Google Scholar]
  65. Melchior S. Codrich M. Gorassini A. Design and advanced characterization of quercetin-loaded nano-liposomes prepared by high-pressure homogenization. Food Chem. 2023 428 136680 10.1016/j.foodchem.2023.136680 37418880
    [Google Scholar]
  66. Serrano-Lotina A. Portela R. Baeza P. Alcolea-Rodriguez V. Villarroel M. Ávila P. Zeta potential as a tool for functional materials development. Catal. Today 2023 423 113862 10.1016/j.cattod.2022.08.004
    [Google Scholar]
  67. Gonzalez Gomez A. Syed S. Marshall K. Hosseinidoust Z. Liposomal nanovesicles for efficient encapsulation of staphylococcal antibiotics. ACS Omega 2019 4 6 10866 10876 10.1021/acsomega.9b00825 31460184
    [Google Scholar]
  68. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon 2022 8 5 09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  69. Lombardo D. Kiselev M.A. Methods of liposomes preparation: Formation and control factors of versatile nanocarriers for biomedical and nanomedicine application. Pharmaceutics 2022 14 3 543 10.3390/pharmaceutics14030543 35335920
    [Google Scholar]
  70. Singh P. Bodycomb J. Travers B. Particle size analyses of polydisperse liposome formulations with a novel multispectral advanced nanoparticle tracking technology. Int. J. Pharm. 2019 566 680 686 10.1016/j.ijpharm.2019.06.013 31176851
    [Google Scholar]
  71. Hoseini B. Jaafari M.R. Golabpour A. Momtazi-Borojeni A.A. Karimi M. Eslami S. Application of ensemble machine learning approach to assess the factors affecting size and polydispersity index of liposomal nanoparticles. Sci. Rep. 2023 13 1 18012 10.1038/s41598‑023‑43689‑4 37865639
    [Google Scholar]
  72. Liu X Yu S Lu X Optimization of preparation conditions for quercetin nanoliposomes using response surface methodology and evaluation of their stability. ACS Omega 2024 8 47 acsomega.3c09892 10.1021/acsomega.3c09892 38645336
    [Google Scholar]
  73. Large D.E. Abdelmessih R.G. Fink E.A. Auguste D.T. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Adv. Drug Deliv. Rev. 2021 176 113851 10.1016/j.addr.2021.113851 34224787
    [Google Scholar]
  74. Badiger P. Mannur V.S. Koli R. Dual drug-loaded cubosome nanoparticles for hepatocellular carcinoma: A design of experiment approach for optimization and in vitro evaluation. Future J. Pharm. Sci. 2024 10 1 38 10.1186/s43094‑024‑00607‑3
    [Google Scholar]
  75. Mohsen S. Bakr M.M. ElDegwy M.A. Abouhussein D.M.N. Fares A.R. ElMeshad A.N. Pomegranate extract-loaded surfactant-free zein nanoparticles as a promising green approach for hepatic cancer: optimization and in vitro cytotoxicity. Future J. Pharm. Sci. 2024 10 1 73 10.1186/s43094‑024‑00647‑9
    [Google Scholar]
  76. Weerapol Y. Manmuan S. Chaothanaphat N. New approach for preparing solid lipid nanoparticles with volatile oil-loaded quercetin using the phase-inversion temperature method. Pharmaceutics 2022 14 10 1984 10.3390/pharmaceutics14101984 36297420
    [Google Scholar]
  77. Dangkoub F. Bemani Naeini M. Akar S. Preparation of atorvastatin calcium-loaded liposomes using thin-film hydration and coaxial micromixing methods: A comparative study. Int. J. Pharm. X 2024 8 100309 10.1016/j.ijpx.2024.100309 39697814
    [Google Scholar]
  78. Furman B.L. Streptozotocin-induced diabetic models in mice and rats. Curr. Protoc. 2021 1 4 78 10.1002/cpz1.78 33905609
    [Google Scholar]
  79. Wszola M. Klak M. Kosowska A. Streptozotocin-induced diabetes in a mouse model (Balb/c) is not an effective model for research on transplantation procedures in the treatment of type 1 diabetes. Biomedicines 2021 9 12 1790 10.3390/biomedicines9121790 34944607
    [Google Scholar]
  80. Park S. Kang S. Kim D.S. Calcium deficiency exacerbates obesity and insulin resistance in ovariectomized rats fed a high-fat diet. Nutr. Res. 2020 73 48 57 10.1016/j.nutres.2019.09.008 31841747
    [Google Scholar]
  81. Hajhashemy Z. Rouhani P. Saneei P. Dietary calcium intake in relation to type-2 diabetes and hyperglycemia in adults: A systematic review and dose–response meta-analysis of epidemiologic studies. Sci. Rep. 2022 12 1 1050 10.1038/s41598‑022‑05144‑8 35058558
    [Google Scholar]
  82. Abdul M.A. Ayele A.G. Teka F. Gemchu W. Shibeshi W. Evaluations of the in vitro and in vivo antidiabetic activity of 70% ethanolic fruit extracts of Rosa abyssinica. Metab. Open 2024 23 100317 10.1016/j.metop.2024.100317 39310665
    [Google Scholar]
  83. Leal J. Wellman S.S. Jiranek W.A. Seyler T.M. Bolognesi M.P. Ryan S.P. Continuation of oral antidiabetic medications was associated with better early postoperative blood glucose control compared to sliding scale insulin after total knee arthroplasty. J. Arthroplasty 2024 39 8 2047 2054.e1 10.1016/j.arth.2024.02.069 38428690
    [Google Scholar]
  84. Sadeghi E. Rahmanipour E. Valsecchi N. Kapoor S. Cicinelli M.V. Chhablani J. An update on ocular effects of antidiabetic medications. Surv. Ophthalmol. 2025 70 4 704 712 10.1016/j.survophthal.2025.01.010 39855606
    [Google Scholar]
  85. Liu H. Jiang Y. Cong L. Intranasal insulin administration affecting perioperative neurocognitive dysfunction by regulating calcium transport protein complex IP3R/GRP75/VDAC1 on MAMs. Free Radic. Biol. Med. 2025 228 240 250 10.1016/j.freeradbiomed.2025.01.006 39761768
    [Google Scholar]
  86. Germanos M. Yau B. Taper M. Cab45G trafficking through the insulin secretory pathway is altered in human type 2 diabetes. iScience 2025 28 2 111719 10.1016/j.isci.2024.111719 39898024
    [Google Scholar]
  87. Munirah M. Hardianto D. Martius E. Nasution U.J. Safarrida A. Insulin production in Pichia pastoris: Mini-review of biotechnological advancements and process optimization. Process Biochem. 2025 149 277 287 10.1016/j.procbio.2024.12.013
    [Google Scholar]
  88. Comes J. Islamovic E. Lizandara-Pueyo C. Seto J. Improvements in the utilization of calcium carbonate in promoting sustainability and environmental health. Front Chem. 2024 12 1472284 10.3389/fchem.2024.1472284 39421606
    [Google Scholar]
  89. Wang Z. Li W. Jiang Y. Cholesterol-modified sphingomyelin chimeric lipid bilayer for improved therapeutic delivery. Nat. Commun. 2024 15 1 2073 10.1038/s41467‑024‑46331‑7 38453918
    [Google Scholar]
  90. Papadopoulou P. Arias-Alpizar G. Weeda P. Structure–function relationship of phase-separated liposomes containing diacylglycerol analogues. Biomater. Sci. 2024 12 19 5023 5035 10.1039/D4BM00799A 39177657
    [Google Scholar]
  91. Thillaiappan N.B. Chakraborty P. Hasan G. Taylor C.W. IP3 receptors and Ca2+ entry. Biochim. Biophys. Acta Mol. Cell Res. 2019 1866 7 1092 1100 10.1016/j.bbamcr.2018.11.007 30448464
    [Google Scholar]
  92. Müller M. Walkling J. Seemann N. Rustenbeck I. The dynamics of calcium signaling in beta cells—A discussion on the comparison of experimental and modelling data. Int. J. Mol. Sci. 2023 24 4 3206 10.3390/ijms24043206 36834618
    [Google Scholar]
  93. Oyedotun T.D.T. X-ray fluorescence (XRF) in the investigation of the composition of earth materials: A review and an overview. Geology, Ecology, and Landscapes 2018 2 2 148 154 10.1080/24749508.2018.1452459
    [Google Scholar]
  94. Pringle J.K. Stimpson I.G. Jeffery A.J. Extended reality (XR) virtual practical and educational eGaming to provide effective immersive environments for learning and teaching in forensic science. Sci. Justice 2022 62 6 696 707 10.1016/j.scijus.2022.04.004 36400491
    [Google Scholar]
  95. Zhang Y. Yuan J. Xu T. Quantitative analysis of strategic metals in polymetallic minerals using an in-house developed total reflection X-ray fluorescence system. Measurement 2025 251 117257 10.1016/j.measurement.2025.117257
    [Google Scholar]
  96. Idevall-Hagren O. Tengholm A. Metabolic regulation of calcium signaling in beta cells. Semin. Cell Dev. Biol. 2020 103 20 30 10.1016/j.semcdb.2020.01.008 32085965
    [Google Scholar]
  97. Kirii K. Mizoue T. Iso H. Calcium, vitamin D and dairy intake in relation to type 2 diabetes risk in a Japanese cohort. Diabetologia 2009 52 12 2542 2550 10.1007/s00125‑009‑1554‑x 19823801
    [Google Scholar]
  98. Santos R.K.F. Rocha V.S. Oliveira J.S. Relationship among dietary intake of vitamin D, magnesium, and calcium, 25-hydroxyvitamin D levels, and glycemic control markers in individuals with type 2 diabetes. Hum. Nutr. Metab. 2023 34 200218 10.1016/j.hnm.2023.200218
    [Google Scholar]
  99. Gu X. Minko T. Targeted nanoparticle-based diagnostic and treatment options for pancreatic cancer. Cancers 2024 16 8 1589 10.3390/cancers16081589 38672671
    [Google Scholar]
  100. Bettaieb L. Brulé M. Chomy A. Ca2+ signaling and its potential targeting in pancreatic ductal carcinoma. Cancers 2021 13 12 3085 10.3390/cancers13123085 34205590
    [Google Scholar]
  101. Roacho-Pérez J.A. Garza-Treviño E.N. Delgado-Gonzalez P. Target nanoparticles against pancreatic cancer: Fewer side effects in therapy. Life 2021 11 11 1187 10.3390/life11111187 34833063
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385407218250621220813
Loading
/content/journals/pnt/10.2174/0122117385407218250621220813
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Liposome ; Model ; Nanotechnology ; Mice ; Diabetes mellitus ; Calcium
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test