Skip to content
2000
image of Advancements in Nanoparticle-based Targeted Drug Delivery Systems for Breast Cancer

Abstract

Cancer is a leading cause of death and life-threatening disease globally. It is connected to persistent tissue damage and unregulated cellular proliferation. In females, breast cancer plays a crucial role in death rates. Chemotherapy, alongside surgery, radiation, and hormone therapy, is a first-line treatment, but its non-specific action harms both cancerous and healthy cells, causing severe side effects. The treatment options for breast cancer are based on the disease stage, which spans from stages 0 to IV. To mitigate this issue, novel strategies focusing on specific targets have been introduced in recent times. Advanced nanocarriers are focused on tumor-specific drug delivery using active targeting based on ligand-receptor identification, this approach has the potential to demonstrate enhanced efficacy compared to passive targeting strategies in the context of therapy for human breast cancer. Surface alteration can assist overcome this issue. This overview focuses on modified nano-sized carriers, including liposomes, micelles, polymeric nanocarriers, carbon dots, and gold nanoparticles. It has been studied to improve therapeutics efficacy, bioavailability, and pharmacokinetics features mechanisms. The primary aim is no longer confined to merely enveloping cancer medications in novel formulations for diverse delivery pathways; instead, the emphasis lies on precise cancer targeting. This review focuses on the stages of breast cancer, obstacles, types of breast cancer therapies, techniques, and various nanocarriers using ligand-mediated drug delivery systems and their mechanisms.

Loading

Article metrics loading...

/content/journals/pnt/10.2174/0122117385339882241206095441
2025-03-11
2025-09-26
Loading full text...

Full text loading...

References

  1. Siegel R.L. Miller K.D. Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018 68 1 7 30 10.3322/caac.21442 29313949
    [Google Scholar]
  2. Jurczyk M. Jelonek K. Musiał-Kulik M. Beberok A. Wrześniok D. Kasperczyk J. Single-versus dual-targeted nanoparticles with folic acid and biotin for anticancer drug delivery. Pharmaceutics 2021 13 3 326 10.3390/pharmaceutics13030326 33802531
    [Google Scholar]
  3. Das M. Mohanty C. Sahoo S.K. Ligand-based targeted therapy for cancer tissue. Expert Opin. Drug Deliv. 2009 6 3 285 304 10.1517/17425240902780166 19327045
    [Google Scholar]
  4. Liyanage P.Y. Hettiarachchi S.D. Zhou Y. Ouhtit A. Seven E.S. Oztan C.Y. Celik E. Leblanc R.M. Nanoparticle-mediated targeted drug delivery for breast cancer treatment. Biochim. Biophys. Acta Rev. Cancer 2019 1871 2 419 433 10.1016/j.bbcan.2019.04.006 31034927
    [Google Scholar]
  5. Sharma A. Jain N. Sareen R. Nanocarriers for diagnosis and targeting of breast cancer. BioMed Res. Int. 2013 2013 1 1 10 10.1155/2013/960821 23865076
    [Google Scholar]
  6. Giaquinto A.N. Sung H. Miller K.D. Kramer J.L. Newman L.A. Minihan A. Jemal A. Siegel R.L. Breast cancer statistics, 2022. CA Cancer J. Clin. 2022 72 6 524 541 10.3322/caac.21754 36190501
    [Google Scholar]
  7. Donegan W.L. Redlich P.N. Breast cancer in men. Surg. Clin. North Am. 1996 76 2 343 363 10.1016/S0039‑6109(05)70443‑6 8610268
    [Google Scholar]
  8. Cé R. Couto G.K. Pacheco B.Z. Dallemole D.R. Paschoal J.D. Pacheco B.S. Guterres S.S. Seixas F. Collares T. Pohlmann A.R. Folic acid-doxorubicin polymeric nanocapsules: A promising formulation for the treatment of triple-negative breast cancer. Eur. J. Pharm. Sci. 2021 165 105943 10.1016/j.ejps.2021.105943 34260893
    [Google Scholar]
  9. Ortega M.A. Fraile-Martínez O. Asúnsolo Á. Buján J. García-Honduvilla N. Coca S. Signal transduction pathways in breast cancer: the important role of PI3K/Akt/mTOR. J. Oncol. 2020 2020 1 1 11 10.1155/2020/9258396 32211045
    [Google Scholar]
  10. Talluri S.V. Kuppusamy G. Karri V.V.S.R. Tummala S. Madhunapantula S.V. Lipid-based nanocarriers for breast cancer treatment – comprehensive review. Drug Deliv. 2016 23 4 1291 1305 10.3109/10717544.2015.1092183 26430913
    [Google Scholar]
  11. Matsumoto A. Jinno H. Ando T. Fujii T. Nakamura T. Saito J. Takahashi M. Hayashida T. Kitagawa Y. Biological markers of invasive breast cancer. Jpn. J. Clin. Oncol. 2016 46 2 99 105 26486826
    [Google Scholar]
  12. Sharma G. Dave R. Sanadya J. Sharma P. Sharma K.K. Various types and management of breast cancer: An overview. J. Adv. Pharm. Technol. Res. 2010 1 2 109 126 10.4103/2231‑4040.72251 22247839
    [Google Scholar]
  13. Smith H.S. Lu Y. Deng G. Martinez O. Krams S. Ljung B.M. Thor A. Lagios M. Molecular aspects of early stages of breast cancer progression. J. Cellul. Biochem. 1993 53 144 152 10.1002/jcb.240531128
    [Google Scholar]
  14. Morrow M. Van Zee K.J. Solin L.J. Houssami N. Chavez-MacGregor M. Harris J.R. Horton J. Hwang S. Johnson P.L. Marinovich M.L. Schnitt S.J. Wapnir I. Moran M.S. Society of Surgical Oncology–American Society for Radiation Oncology–American Society of Clinical Oncology consensus guideline on margins for breast-conserving surgery with whole-breast irradiation in ductal carcinoma in situ. Ann. Surg. Oncol. 2016 23 12 3801 3810 10.1245/s10434‑016‑5449‑z 27527714
    [Google Scholar]
  15. Cowell C.F. Weigelt B. Sakr R.A. Ng C.K.Y. Hicks J. King T.A. Reis-Filho J.S. Progression from ductal carcinoma in situ to invasive breast cancer: Revisited. Mol. Oncol. 2013 7 5 859 869 10.1016/j.molonc.2013.07.005 23890733
    [Google Scholar]
  16. Dupont E. Tsangaris T. Garcia-Cantu C. Howard-McNatt M. Chiba A. Berger A.C. Levine E.A. Gass J.S. Gallagher K. Lum S.S. Martinez R.D. Willis A.I. Pandya S.V. Brown E.A. Fenton A. Mendiola A. Murray M. Solomon N.L. Senthil M. Ollila D.W. Edmonson D. Lazar M. Namm J.P. Li F. Butler M. McGowan N.E. Herrera M.E. Avitan Y.P. Yoder B. Walters L.L. McPartland T. Chagpar A.B. Resection of cavity shave margins in stage 0–III breast cancer patients undergoing breast conserving surgery: A prospective multicentre randomized controlled trial. Ann. Surg. 2021 273 5 876 881 10.1097/SLA.0000000000003449 31290763
    [Google Scholar]
  17. Sadeh-Tassa D. Drory M. Ginzburg K. Stadler J. Stages of breast cancer: An Israeli psychosocial intervention model. J. Psychosoc. Oncol. 1999 17 3-4 63 83 10.1300/J077v17n03_04
    [Google Scholar]
  18. Parsons H.A. Rhoades J. Reed S.C. Gydush G. Ram P. Exman P. Xiong K. Lo C.C. Li T. Fleharty M. Kirkner G.J. Rotem D. Cohen O. Yu F. Fitarelli-Kiehl M. Leong K.W. Hughes M.E. Rosenberg S.M. Collins L.C. Miller K.D. Blumenstiel B. Trippa L. Cibulskis C. Neuberg D.S. DeFelice M. Freeman S.S. Lennon N.J. Wagle N. Ha G. Stover D.G. Choudhury A.D. Getz G. Winer E.P. Meyerson M. Lin N.U. Krop I. Love J.C. Makrigiorgos G.M. Partridge A.H. Mayer E.L. Golub T.R. Adalsteinsson V.A. Sensitive detection of minimal residual disease in patients treated for early-stage breast cancer. Clin. Cancer Res. 2020 26 11 2556 2564 10.1158/1078‑0432.CCR‑19‑3005 32170028
    [Google Scholar]
  19. Polgár C. Kahán Z. Ivanov O. Chorváth M. Ligačová A. Csejtei A. Gábor G. Landherr L. Mangel L. Mayer Á. Fodor J. Radiotherapy of breast cancer—professional guideline 1st Central-Eastern European professional consensus statement on breast cancer. Pathol. Oncol. Res. 2022 28 1610378 10.3389/pore.2022.1610378 35832115
    [Google Scholar]
  20. Grewal I.K. Singh S. Arora S. Sharma N. Polymeric nanoparticles for breast cancer therapy: A comprehensive review. Biointerface Res. Appl. Chem. 2021 11 4 11151
    [Google Scholar]
  21. Yu B. Tai H.C. Xue W. Lee L.J. Lee R.J. Receptor-targeted nanocarriers for therapeutic delivery to cancer. Mol. Membr. Biol. 2010 27 7 286 298 10.3109/09687688.2010.521200 21028937
    [Google Scholar]
  22. Burguin A. Diorio C. Durocher F. Breast cancer treatments: updates and new challenges. J. Pers. Med. 2021 11 8 808 10.3390/jpm11080808 34442452
    [Google Scholar]
  23. Zielińska A. Carreiró F. Oliveira A.M. Neves A. Pires B. Venkatesh D.N. Durazzo A. Lucarini M. Eder P. Silva A.M. Santini A. Souto E.B. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules 2020 25 16 3731 10.3390/molecules25163731 32824172
    [Google Scholar]
  24. Barrios C.H. Global challenges in breast cancer detection and treatment. Breast 2022 62 Suppl 1 Suppl. 1 S3 S6 10.1016/j.breast.2022.02.003 35219542
    [Google Scholar]
  25. Khanna R. Shah E. Robotics in Screening, diagnosis and treatment of breast Cancer: a perspective view. Clin. Breast Cancer 2024 24 1 17 26 10.1016/j.clbc.2023.09.016 37867115
    [Google Scholar]
  26. Wang L. Early diagnosis of breast cancer. Sensors (Basel) 2017 17 7 1572 10.3390/s17071572 28678153
    [Google Scholar]
  27. Beňačka R. Szabóová D. Guľašová Z. Hertelyová Z. Radoňák J. Classic and new markers in diagnostics and classification of breast cancer. Cancers (Basel) 2022 14 21 5444 10.3390/cancers14215444 36358862
    [Google Scholar]
  28. Gupta D. Roy P. Sharma R. Kasana R. Rathore P. Gupta T.K. Recent nanotheranostic approaches in cancer research. Clin. Exp. Med. 2024 24 1 8 10.1007/s10238‑023‑01262‑3 38240834
    [Google Scholar]
  29. Kunjiappan S. Pavadai P. Vellaichamy S. Ram Kumar Pandian S. Ravishankar V. Palanisamy P. Govindaraj S. Srinivasan G. Premanand A. Sankaranarayanan M. Theivendren P. Surface receptor‐mediated targeted drug delivery systems for enhanced cancer treatment: A state‐of‐the‐art review. Drug Dev. Res. 2021 82 3 309 340 10.1002/ddr.21758 33170541
    [Google Scholar]
  30. Neha Desai Momin M. Khan T. Gharat S. Ningthoujam R.S. Omri A. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opin. Drug Deliv. 2021 18 9 1261 1290 10.1080/17425247.2021.1912008 33793359
    [Google Scholar]
  31. Rajendran S. Ravi S.N. Nair V.M. Sree R.P. Packirisamy A.S.B. Palanivelu J. Recent Development and Future Aspects: Nano-Based Drug Delivery System in Cancer Therapy. Top. Catal. 2024 67 1-4 203 217 10.1007/s11244‑023‑01893‑6
    [Google Scholar]
  32. Schnitt S.J. Moran M.S. Giuliano A.E. Lumpectomy margins for invasive breast cancer and ductal carcinoma in situ: current guideline recommendations, their implications, and impact. J. Clin. Oncol. 2020 38 20 2240 2245 10.1200/JCO.19.03213 32442067
    [Google Scholar]
  33. Jobsen J.J. Van der Palen J. Brinkhuis M. Ong F. Struikmans H. Sequence of radiotherapy and chemotherapy in breast cancer after breast-conserving surgery. Int. J. Radiat. Oncol. Biol. Phys. 2012 82 5 e811 e817 10.1016/j.ijrobp.2011.11.020
    [Google Scholar]
  34. Zhao C.Y. Cheng R. Yang Z. Tian Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules 2018 23 4 826 10.3390/molecules23040826 29617302
    [Google Scholar]
  35. Bartelink H. Maingon P. Poortmans P. Weltens C. Fourquet A. Jager J. Schinagl D. Oei B. Rodenhuis C. Horiot J.C. Struikmans H. Van Limbergen E. Kirova Y. Elkhuizen P. Bongartz R. Miralbell R. Morgan D. Dubois J.B. Remouchamps V. Mirimanoff R.O. Collette S. Collette L. Whole-breast irradiation with or without a boost for patients treated with breast-conserving surgery for early breast cancer: 20-year follow-up of a randomised phase 3 trial. Lancet Oncol. 2015 16 1 47 56 10.1016/S1470‑2045(14)71156‑8 25500422
    [Google Scholar]
  36. Kim J. Tchernyshyov I. Semenza G.L. Dang C.V. HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 2006 3 3 177 185 10.1016/j.cmet.2006.02.002 16517405
    [Google Scholar]
  37. Sabale V. Jiwankar M. Nanostructured lipid carriers in chemotherapeutics: an overview. Indian Journal of Pharmaceutical Education and Research 2023 57 2 310 319 10.5530/ijper.57.2.40
    [Google Scholar]
  38. Moghimi S.M. Hunter A.C. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol. 2000 18 10 412 420 10.1016/S0167‑7799(00)01485‑2 10998507
    [Google Scholar]
  39. Alavi M. Hamidi M. Passive and active targeting in cancer therapy by liposomes and lipid nanoparticles. Drug Metab. Pers. Ther. 2019 34 1 20180032 10.1515/dmpt‑2018‑0032 30707682
    [Google Scholar]
  40. Shahbazi M.A. Herranz B. Santos H.A. Nanostructured porous Si-based nanoparticles for targeted drug delivery. Biomatter 2012 2 4 296 312 10.4161/biom.22347 23507894
    [Google Scholar]
  41. Yang X. Li Y. Li M. Zhang L. Feng L. Zhang N. Hyaluronic acid-coated nanostructured lipid carriers for targeting paclitaxel to cancer. Cancer Lett. 2013 334 2 338 345 10.1016/j.canlet.2012.07.002 22776563
    [Google Scholar]
  42. Byrne J.D. Betancourt T. Brannon-Peppas L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 2008 60 15 1615 1626 10.1016/j.addr.2008.08.005 18840489
    [Google Scholar]
  43. Tang Y. Soroush F. Tong Z. Kiani M. Wang B. Targeted multidrug delivery system to overcome chemoresistance in breast cancer. Int. J. Nanomedicine 2017 12 671 681 10.2147/IJN.S124770 28176940
    [Google Scholar]
  44. Danhier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 2016 244 Pt A 108 121 10.1016/j.jconrel.2016.11.015 27871992
    [Google Scholar]
  45. Kirpotin D.B. Drummond D.C. Shao Y. Shalaby M.R. Hong K. Nielsen U.B. Marks J.D. Benz C.C. Park J.W. Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 2006 66 13 6732 6740 10.1158/0008‑5472.CAN‑05‑4199 16818648
    [Google Scholar]
  46. Hatakeyama H. Akita H. Ishida E. Hashimoto K. Kobayashi H. Aoki T. Yasuda J. Obata K. Kikuchi H. Ishida T. Kiwada H. Harashima H. Tumor targeting of doxorubicin by anti-MT1-MMP antibody-modified PEG liposomes. Int. J. Pharm. 2007 342 1-2 194 200 10.1016/j.ijpharm.2007.04.037 17583453
    [Google Scholar]
  47. Khan I. Steeg P.S. Endocytosis: a pivotal pathway for regulating metastasis. Br. J. Cancer 2021 124 1 66 75 10.1038/s41416‑020‑01179‑8 33262521
    [Google Scholar]
  48. Bharti R. Dey G. Banerjee I. Dey K.K. Parida S. Kumar B.N.P. Das C.K. Pal I. Mukherjee M. Misra M. Pradhan A.K. Emdad L. Das S.K. Fisher P.B. Mandal M. Somatostatin receptor targeted liposomes with Diacerein inhibit IL-6 for breast cancer therapy. Cancer Lett. 2017 388 292 302 10.1016/j.canlet.2016.12.021 28025102
    [Google Scholar]
  49. Perrier T. Saulnier P. Benoît J.P. Methods for the functionalisation of nanoparticles: new insights and perspectives. Chemistry 2010 16 38 11516 11529 10.1002/chem.201000808 20803579
    [Google Scholar]
  50. He Z. Chen Z. Tan M. Elingarami S. Liu Y. Li T. Deng Y. He N. Li S. Fu J. Li W. A review on methods for diagnosis of breast cancer cells and tissues. Cell Prolif. 2020 53 7 e12822 10.1111/cpr.12822 32530560
    [Google Scholar]
  51. Yap T.A. Omlin A. de Bono J.S. Development of therapeutic combinations targeting major cancer signaling pathways. J. Clin. Oncol. 2013 31 12 1592 1605 10.1200/JCO.2011.37.6418 23509311
    [Google Scholar]
  52. Kuchenbaecker K.B. Hopper J.L. Barnes D.R. Phillips K.A. Mooij T.M. Roos-Blom M.J. Jervis S. van Leeuwen F.E. Milne R.L. Andrieu N. Goldgar D.E. Terry M.B. Rookus M.A. Easton D.F. Antoniou A.C. McGuffog L. Evans D.G. Barrowdale D. Frost D. Adlard J. Ong K. Izatt L. Tischkowitz M. Eeles R. Davidson R. Hodgson S. Ellis S. Nogues C. Lasset C. Stoppa-Lyonnet D. Fricker J.P. Faivre L. Berthet P. Hooning M.J. van der Kolk L.E. Kets C.M. Adank M.A. John E.M. Chung W.K. Andrulis I.L. Southey M. Daly M.B. Buys S.S. Osorio A. Engel C. Kast K. Schmutzler R.K. Caldes T. Jakubowska A. Simard J. Friedlander M.L. McLachlan S.A. Machackova E. Foretova L. Tan Y.Y. Singer C.F. Olah E. Gerdes A.M. Arver B. Olsson H. BRCA1 and BRCA2 Cohort Consortium Risks of breast, ovarian, and contralateral breast cancer for BRCA1 and BRCA2 mutation carriers. JAMA 2017 317 23 2402 2416 10.1001/jama.2017.7112 28632866
    [Google Scholar]
  53. Goutsouliak K. Veeraraghavan J. Sethunath V. De Angelis C. Osborne C.K. Rimawi M.F. Schiff R. Towards personalized treatment for early stage HER2-positive breast cancer. Nat. Rev. Clin. Oncol. 2020 17 4 233 250 10.1038/s41571‑019‑0299‑9 31836877
    [Google Scholar]
  54. Sun S. Wang Y. Gao X. Wang H. Zhang L. Wang N. Li C. Xiong S. Current perspectives and trends in nanoparticle drug delivery systems in breast cancer: bibliometric analysis and review. Front. Bioeng. Biotechnol. 2023 11 1253048 10.3389/fbioe.2023.1253048 37771575
    [Google Scholar]
  55. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  56. Oehler J.B. Rajapaksha W. Albrecht H. Emerging Applications of Nanoparticles in the Diagnosis and Treatment of Breast Cancer. J. Pers. Med. 2024 14 7 723 10.3390/jpm14070723 39063977
    [Google Scholar]
  57. Wang X. Yang L. Chen Z. Shin D.M. Application of nanotechnology in cancer therapy and imaging. CA Cancer J. Clin. 2008 58 2 97 110 10.3322/CA.2007.0003 18227410
    [Google Scholar]
  58. Bassiouni Y. Faddah L. Nanocarrier-based drugs: the future promise for treatment of breast cancer. J. Appl. Pharmaceut. Sci. 2012 2012 225 232 10.7324/JAPS.2012.2530
    [Google Scholar]
  59. Veiseh O. Gunn J.W. Zhang M. Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging. Adv. Drug Deliv. Rev. 2010 62 3 284 304 10.1016/j.addr.2009.11.002 19909778
    [Google Scholar]
  60. Shah A. Aftab S. Nisar J. Ashiq M.N. Iftikhar F.J. Nanocarriers for targeted drug delivery. J. Drug Deliv. Sci. Technol. 2021 62 102426 10.1016/j.jddst.2021.102426
    [Google Scholar]
  61. Edis Z. Wang J. Waqas M.K. Ijaz M. Ijaz M. Nanocarriers-mediated drug delivery systems for anticancer agents: an overview and perspectives. Int. J. Nanomedicine 2021 16 1313 1330 10.2147/IJN.S289443 33628022
    [Google Scholar]
  62. Yaghmur A. Glatter O. Characterization and potential applications of nanostructured aqueous dispersions. Adv. Colloid Interface Sci. 2009 147-148 333 342 10.1016/j.cis.2008.07.007 18804754
    [Google Scholar]
  63. Kumari P. Ghosh B. Biswas S. Nanocarriers for cancer-targeted drug delivery. J. Drug Target. 2016 24 3 179 191 10.3109/1061186X.2015.1051049 26061298
    [Google Scholar]
  64. Nsairat H. Khater D. Sayed U. Odeh F. Al Bawab A. Alshaer W. Liposomes: structure, composition, types, and clinical applications. Heliyon 2022 8 5 e09394 10.1016/j.heliyon.2022.e09394 35600452
    [Google Scholar]
  65. Urbinati G. Marsaud V. Plassat V. Fattal E. Lesieur S. Renoir J.M. Liposomes loaded with histone deacetylase inhibitors for breast cancer therapy. Int. J. Pharm. 2010 397 1-2 184 193 10.1016/j.ijpharm.2010.06.046 20603204
    [Google Scholar]
  66. Tiwari H. Rai N. Singh S. Gupta P. Verma A. Singh A.K. Kajal Salvi P. Singh S.K. Gautam V. Kajal, Salvi P, Singh SK, Gautam V. Recent advances in nanomaterials-based targeted drug delivery for preclinical cancer diagnosis and therapeutics. Bioengineering (Basel) 2023 10 7 760 10.3390/bioengineering10070760 37508788
    [Google Scholar]
  67. Hofheinz R.D. Gnad-Vogt S.U. Beyer U. Hochhaus A. Liposomal encapsulated anti-cancer drugs. Anticancer Drugs 2005 16 7 691 707 10.1097/01.cad.0000167902.53039.5a 16027517
    [Google Scholar]
  68. Jahan S. Karim M.E. Chowdhury E.H. Nanoparticles targeting receptors on breast cancer for efficient delivery of chemotherapeutics. Biomedicines 2021 9 2 114 10.3390/biomedicines9020114 33530291
    [Google Scholar]
  69. Paliwal S.R. Paliwal R. Agrawal G.P. Vyas S.P. Liposomal nanomedicine for breast cancer therapy. Nanomedicine (Lond.) 2011 6 6 1085 1100 10.2217/nnm.11.72 21955078
    [Google Scholar]
  70. Lee R.J. Wang S. Low P.S. Measurement of endosome pH following folate receptor-mediated endocytosis. Biochim. Biophys. Acta Mol. Cell Res. 1996 1312 3 237 242 10.1016/0167‑4889(96)00041‑9 8703993
    [Google Scholar]
  71. Antony A.C. Kane M.A. Portillo R.M. Elwood P.C. Kolhouse J.F. Studies of the role of a particulate folate-binding protein in the uptake of 5-methyltetrahydrofolate by cultured human KB cells. J. Biol. Chem. 1985 260 28 14911 14917 10.1016/S0021‑9258(18)95679‑6 4066659
    [Google Scholar]
  72. Turek J.J. Low P.S. Low P.S. Endocytosis of folate-protein conjugates: ultrastructural localization in kb cells. J. Cell Sci. 1993 106 1 423 430 10.1242/jcs.106.1.423 8270640
    [Google Scholar]
  73. Anderson R.G.W. Kamen B.A. Rothberg K.G. Lacey S.W. Potocytosis: sequestration and transport of small molecules by caveolae. Science 1992 255 5043 410 411 10.1126/science.1310359 1310359
    [Google Scholar]
  74. Nagpal K. Kumar P. Mohan A. Thakur S. Dendrimers for therapeutic delivery: compositions, characterizations, and current status. Crit Rev Ther Drug Carrier Syst. 2019 36 4 277 304 10.1615/CritRevTherDrugCarrierSyst.2018025749
    [Google Scholar]
  75. Dubey S.K. Kali M. Hejmady S. Saha R.N. Alexander A. Kesharwani P. Recent advances of dendrimers as multifunctional nano-carriers to combat breast cancer. Eur. J. Pharm. Sci. 2021 164 105890 10.1016/j.ejps.2021.105890 34087355
    [Google Scholar]
  76. Fang J. Nakamura H. Maeda H. The EPR effect: Unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 2011 63 3 136 151 10.1016/j.addr.2010.04.009 20441782
    [Google Scholar]
  77. Glasgow M.D.K. Chougule M.B. Recent developments in active tumor targeted multifunctional nanoparticles for combination chemotherapy in cancer treatment and imaging. J. Biomed. Nanotechnol. 2015 11 11 1859 1898 10.1166/jbn.2015.2145 26554150
    [Google Scholar]
  78. Dufès C. Uchegbu I. Schätzlein A. Dendrimers in gene delivery. Adv. Drug Deliv. Rev. 2005 57 15 2177 2202 10.1016/j.addr.2005.09.017 16310284
    [Google Scholar]
  79. Nikzamir M. Hanifehpour Y. Akbarzadeh A. Panahi Y. Applications of dendrimers in nanomedicine and drug delivery: A review. J. Inorg. Organomet. Polym. Mater. 2021 31 6 2246 2261 10.1007/s10904‑021‑01925‑2
    [Google Scholar]
  80. Marcinkowska M. Sobierajska E. Stanczyk M. Janaszewska A. Chworos A. Klajnert-Maculewicz B. Conjugate of PAMAM dendrimer, doxorubicin and monoclonal antibody—trastuzumab: the new approach of a well-known strategy. Polymers (Basel) 2018 10 2 187 10.3390/polym10020187 30966223
    [Google Scholar]
  81. Kulhari H. Pooja D. Shrivastava S. Kuncha M. Naidu V.G.M. Bansal V. Sistla R. Adams D.J. Trastuzumab-grafted PAMAM dendrimers for the selective delivery of anticancer drugs to HER2-positive breast cancer. Sci. Rep. 2016 6 1 23179 10.1038/srep23179 27052896
    [Google Scholar]
  82. Aleanizy F.S. Alqahtani F.Y. Setó S. Khalil N. Aleshaiwi L. Alghamdi M. Alquadeib B. Alkahtani H. Aldarwesh A. Alqahtani Q.H. Abdelhady H.G. Alsarra I. Trastuzumab targeted neratinib loaded poly-amidoamine dendrimer nanocapsules for breast cancer therapy. Int. J. Nanomedicine 2020 15 5433 5443 10.2147/IJN.S256898 32801698
    [Google Scholar]
  83. Singh J. Jain K. Mehra N.K. Jain N.K. Dendrimers in anticancer drug delivery: mechanism of interaction of drug and dendrimers. Artif. Cells Nanomed. Biotechnol. 2016 44 7 1626 1634 10.3109/21691401.2015.1129625 26747336
    [Google Scholar]
  84. Kumar K. A role of dendrimers in drug delivery for cancer therapy. Int. J. Indig. Herb Drug. 2021 9 16
    [Google Scholar]
  85. Qi R. Majoros I. Misra A.C. Koch A.E. Campbell P. Marotte H. Bergin I.L. Cao Z. Goonewardena S. Morry J. Zhang S. Beer M. Makidon P. Kotlyar A. Thomas T.P. Baker J.R. Jr Folate receptor-targeted dendrimer-methotrexate conjugate for inflammatory arthritis. J. Biomed. Nanotechnol. 2015 11 8 1431 1441 10.1166/jbn.2015.2077 26295143
    [Google Scholar]
  86. Hartley G.S. Runnicles D.F. The determination of the size of paraffin-chain salt micelles from diffusion measurements. Proc. R. Soc. Lond. A Math. Phys. Sci. 1938 168 934 420 440 10.1098/rspa.1938.0181
    [Google Scholar]
  87. Perumal S. Atchudan R. Lee W. A review of polymeric micelles and their applications. Polymers (Basel) 2022 14 12 2510 10.3390/polym14122510 35746086
    [Google Scholar]
  88. Manjappa A.S. Kumbhar P.S. Patil A.B. Disouza J.I. Patravale V.B. Polymeric mixed micelles: improving the anticancer efficacy of single-copolymer micelles. Crit. Rev. Therap. Drug Carrier Sys. 2019 36 1 2018020481 10.1615/CritRevTherDrugCarrierSyst.2018020481
    [Google Scholar]
  89. Majumder N. G Das N. Das S.K. Polymeric micelles for anticancer drug delivery. Ther. Deliv. 2020 11 10 613 635 10.4155/tde‑2020‑0008 32933425
    [Google Scholar]
  90. Fournier E. Dufresne M.H. Smith D.C. Ranger M. Leroux J.C. A novel one-step drug-loading procedure for water-soluble amphiphilic nanocarriers. Pharm. Res. 2004 21 6 962 968 10.1023/B:PHAM.0000029284.40637.69 15212160
    [Google Scholar]
  91. Hwang D. Ramsey J.D. Kabanov A.V. Polymeric micelles for the delivery of poorly soluble drugs: From nanoformulation to clinical approval. Adv. Drug Deliv. Rev. 2020 156 80 118 10.1016/j.addr.2020.09.009 32980449
    [Google Scholar]
  92. Dehghan Kelishady P. Saadat E. Ravar F. Akbari H. Dorkoosh F. Pluronic F127 polymeric micelles for co-delivery of paclitaxel and lapatinib against metastatic breast cancer: preparation, optimization and in vitro evaluation. Pharm. Dev. Technol. 2015 20 8 1009 1017 10.3109/10837450.2014.965323 25265388
    [Google Scholar]
  93. Salahpour Anarjan F. Active targeting drug delivery nanocarriers: Ligands. Nano-Structures & Nano-Objects 2019 19 100370 10.1016/j.nanoso.2019.100370
    [Google Scholar]
  94. Rizwanullah M. Ahmad M.Z. Ghoneim M.M. Alshehri S. Imam S.S. Md S. Alhakamy N.A. Jain K. Ahmad J. Receptor-mediated targeted delivery of surface-modifiednanomedicine in breast cancer: recent update and challenges. Pharmaceutics 2021 13 12 2039 10.3390/pharmaceutics13122039 34959321
    [Google Scholar]
  95. Wang X. Li S. Shi Y. Chuan X. Li J. Zhong T. Zhang H. Dai W. He B. Zhang Q. The development of site-specific drug delivery nanocarriers based on receptor mediation. J. Control. Release 2014 193 139 153 10.1016/j.jconrel.2014.05.028 24862317
    [Google Scholar]
  96. Caballero A.B. Cardo L. Claire S. Craig J.S. Hodges N.J. Vladyka A. Albrecht T. Rochford L.A. Pikramenou Z. Hannon M.J. Assisted delivery of anti-tumour platinum drugs using DNA-coiling gold nanoparticles bearing lumophores and intercalators: towards a new generation of multimodal nanocarriers with enhanced action. Chem. Sci. (Camb.) 2019 10 40 9244 9256 10.1039/C9SC02640A 32055309
    [Google Scholar]
  97. Siddique S. Chow J.C.L. Gold nanoparticles for drug delivery and cancer therapy. Appl. Sci. (Basel) 2020 10 11 3824 10.3390/app10113824
    [Google Scholar]
  98. Zamora-Justo J.A. Abrica-González P. Vázquez-Martínez G.R. Muñoz-Diosdado A. Balderas-López J.A. Ibáñez-Hernández M. Polyethylene glycol‐coated gold nanoparticles as DNA and atorvastatin delivery systems and cytotoxicity evaluation. J. Nanomater. 2019 2019 1 1 11 10.1155/2019/5982047
    [Google Scholar]
  99. Yücel O. Şengelen A. Emik S. Önay-Uçar E. Arda N. Gürdağ G. Folic acid-modified methotrexate-conjugated gold nanoparticles as nano-sized trojans for drug delivery to folate receptor-positive cancer cells. Nanotechnology 2020 31 35 355101 10.1088/1361‑6528/ab9395 32413875
    [Google Scholar]
  100. Jain N. Jain P. Rajput D. Patil U.K. Green synthesized plant-based silver nanoparticles: therapeutic prospective for anticancer and antiviral activity. Micro and Nano Systems Letters 2021 9 1 5 10.1186/s40486‑021‑00131‑6
    [Google Scholar]
  101. Singh G. Babele P.K. Shahi S.K. Sinha R.P. Tyagi M.B. Kumar A. Green synthesis of silver nanoparticles using cell extracts of Anabaena doliolum and screening of its antibacterial and antitumor activity. J. Microbiol. Biotechnol. 2014 24 10 1354 1367 10.4014/jmb.1405.05003 24986675
    [Google Scholar]
  102. Gong N. Chen S. Jin S. Zhang J. Wang P.C. Liang X.J. Effects of the physicochemical properties of gold nanostructures on cellular internalization. Regen. Biomater. 2015 2 4 273 280 10.1093/rb/rbv024 26813673
    [Google Scholar]
  103. Cui W. Li J. Zhang Y. Rong H. Lu W. Jiang L. Effects of aggregation and the surface properties of gold nanoparticles on cytotoxicity and cell growth. Nanomedicine 2012 8 1 46 53 10.1016/j.nano.2011.05.005 21658475
    [Google Scholar]
  104. Redza-Dutordoir M. Averill-Bates D.A. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim. Biophys. Acta Mol. Cell Res. 2016 1863 12 2977 2992 10.1016/j.bbamcr.2016.09.012 27646922
    [Google Scholar]
  105. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  106. Wang C. Youle R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet. 2009 43 1 95 118 10.1146/annurev‑genet‑102108‑134850 19659442
    [Google Scholar]
  107. Shen H.M. Liu Z. JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic. Biol. Med. 2006 40 6 928 939 10.1016/j.freeradbiomed.2005.10.056 16540388
    [Google Scholar]
  108. Han J. Lv W. Sheng H. Wang Y. Cao L. Huang S. Zhu L. Hu J. Ecliptasaponin A induces apoptosis through the activation of ASK1/JNK pathway and autophagy in human lung cancer cells. Ann. Transl. Med. 2019 7 20 539 10.21037/atm.2019.10.07 31807521
    [Google Scholar]
  109. Seervi M. Xue D. Mitochondrial cell death pathways in Caenorhabiditis elegans. Curr. Top. Dev. Biol. 2015 114 43 65 10.1016/bs.ctdb.2015.07.019 26431563
    [Google Scholar]
  110. Noël C. Simard J.C. Girard D. Gold nanoparticles induce apoptosis, endoplasmic reticulum stress events and cleavage of cytoskeletal proteins in human neutrophils. Toxicol. In Vitro 2016 31 12 22 10.1016/j.tiv.2015.11.003 26551149
    [Google Scholar]
  111. Rónavári A. Igaz N. Adamecz D.I. Szerencsés B. Molnar C. Kónya Z. Pfeiffer I. Kiricsi M. Green silver and gold nanoparticles: Biological synthesis approaches and potentials for biomedical applications. Molecules 2021 26 4 844 10.3390/molecules26040844 33562781
    [Google Scholar]
  112. Zhou Y. Liyanage P.Y. Devadoss D. Rios Guevara L.R. Cheng L. Graham R.M. Chand H.S. Al-Youbi A.O. Bashammakh A.S. El-Shahawi M.S. Leblanc R.M. Nontoxic amphiphilic carbon dots as promising drug nanocarriers across the blood–brain barrier and inhibitors of β-amyloid. Nanoscale 2019 11 46 22387 22397 10.1039/C9NR08194A 31730144
    [Google Scholar]
  113. Pandey R.R. Chusuei C.C. Carbon nanotubes, graphene, and carbon dots as electrochemical biosensing composites. Molecules 2021 26 21 6674 10.3390/molecules26216674 34771082
    [Google Scholar]
  114. Rauti R. Musto M. Bosi S. Prato M. Ballerini L. Properties and behavior of carbon nanomaterials when interfacing neuronal cells: How far have we come? Carbon 2019 143 430 446 10.1016/j.carbon.2018.11.026
    [Google Scholar]
  115. Adam G.O. Sharker S.M. Ryu J.H. Emerging biomedical applications of carbon dot and polymer composite materials. Appl. Sci. (Basel) 2022 12 20 10565 10.3390/app122010565
    [Google Scholar]
  116. Duan Q. Ma Y. Che M. Zhang B. Zhang Y. Li Y. Zhang W. Sang S. Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track. J. Drug Deliv. Sci. Technol. 2019 49 527 533 10.1016/j.jddst.2018.12.015
    [Google Scholar]
  117. Bhattacharya S. Phatake R.S. Nabha Barnea S. Zerby N. Zhu J.J. Shikler R. Lemcoff N.G. Jelinek R. Fluorescent self-healing carbon dot/polymer gels. ACS Nano 2019 13 2 1433 1442 30615415
    [Google Scholar]
  118. Sharifi M. Hosseinali S.H. Saboury A.A. Szegezdi E. Falahati M. Involvement of planned cell death of necroptosis in cancer treatment by nanomaterials: Recent advances and future perspectives. J. Control. Release 2019 299 121 137 10.1016/j.jconrel.2019.02.007 30763621
    [Google Scholar]
  119. Lavrik I. Golks A. Krammer P.H. Death receptor signaling. J. Cell Sci. 2005 118 2 265 267 10.1242/jcs.01610 15654015
    [Google Scholar]
  120. Chevalier M.T. Gonzalez J. Alvarez V. Biodegradable polymeric microparticles as drug delivery devices. J. Control. Rel. 2014 70 1-2 1 20 10.1016/S0168‑3659(00)00339‑4
    [Google Scholar]
  121. Chitosan A.B. Pakalapati H. Khalid M. Walvekar R. Siddiqui H. Natural and synthetic biocompatible and biodegradable polymers. Biodegrad. Biocompat. Polymer Compos. 2018 286 2 3
    [Google Scholar]
  122. Sionkowska A. Current research on the blends of natural and synthetic polymers as new biomaterials: Review. Prog. Polym. Sci. 2011 36 9 1254 1276 10.1016/j.progpolymsci.2011.05.003
    [Google Scholar]
  123. Owens D. III Peppas N. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006 307 1 93 102 10.1016/j.ijpharm.2005.10.010 16303268
    [Google Scholar]
  124. Rao J.P. Geckeler K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci. 2011 36 7 887 913 10.1016/j.progpolymsci.2011.01.001
    [Google Scholar]
  125. Niculescu A.G. Grumezescu A.M. Polymer-based nanosystems—A versatile delivery approach. Materials (Basel) 2021 14 22 6812 10.3390/ma14226812 34832213
    [Google Scholar]
  126. Masood F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C 2016 60 569 578 10.1016/j.msec.2015.11.067 26706565
    [Google Scholar]
  127. Nagavarma B.V. Yadav H.K. Ayaz A.V. Vasudha L.S. Shivakumar H.G. Different techniques for preparation of polymeric nanoparticles-a review. Asian J. Pharm. Clin. Res. 2012 5 3 16 23
    [Google Scholar]
  128. Gao W. Chan J.M. Farokhzad O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm. 2010 7 6 1913 1920 10.1021/mp100253e 20836539
    [Google Scholar]
  129. Mai B.T. Fernandes S. Balakrishnan P.B. Pellegrino T. Nanosystems based on magnetic nanoparticles and thermo-or pH-responsive polymers: An update and future perspectives. Acc. Chem. Res. 2018 51 5 999 1013 10.1021/acs.accounts.7b00549 29733199
    [Google Scholar]
  130. Sartaj A. Qamar Z. Qizilbash F.F. Annu Md S. Alhakamy N.A. Baboota S. Ali J. Annu, Md S, Alhakamy NA, Baboota S, Ali J. Polymeric nanoparticles: Exploring the current drug development and therapeutic insight of breast cancer treatment and recommendations. Polymers (Basel) 2021 13 24 4400 10.3390/polym13244400 34960948
    [Google Scholar]
  131. Sur S. Rathore A. Dave V. Reddy K.R. Chouhan R.S. Sadhu V. Recent developments in functionalized polymer nanoparticles for efficient drug delivery system. Nano-Struct. Nano-Obj. 2019 20 100397 10.1016/j.nanoso.2019.100397
    [Google Scholar]
  132. Kayser O. Lemke A. Hernández-Trejo N. The impact of nanobiotechnology on the development of new drug delivery systems. Curr. Pharm. Biotechnol. 2005 6 1 3 5 10.2174/1389201053167158 15727551
    [Google Scholar]
  133. Bae Y. Nishiyama N. Fukushima S. Koyama H. Yasuhiro M. Kataoka K. Preparation and biological characterization of polymeric micelle drug carriers with intracellular pH-triggered drug release property: tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjug. Chem. 2005 16 1 122 130 10.1021/bc0498166 15656583
    [Google Scholar]
  134. Guo X. Wang L. Wei X. Zhou S. Polymer-based drug delivery systems for cancer treatment. J. Polym. Sci. A Polym. Chem. 2016 54 22 3525 3550 10.1002/pola.28252
    [Google Scholar]
  135. Shimada T. Ueda M. Jinno H. Chiba N. Wada M. Watanabe J. Ishihara K. Kitagawa Y. Development of targeted therapy with paclitaxel incorporated into EGF-conjugated nanoparticles. Anticancer Res. 2009 29 4 1009 1014 19414339
    [Google Scholar]
  136. Chan J.M. Zhang L. Yuet K.P. Liao G. Rhee J.W. Langer R. Farokhzad O.C. PLGA–lecithin–PEG core–shell nanoparticles for controlled drug delivery. Biomaterials 2009 30 8 1627 1634 10.1016/j.biomaterials.2008.12.013 19111339
    [Google Scholar]
  137. Manaspon C. Viravaidya-Pasuwat K. Pimpha N. Preparation of folate‐conjugated pluronic F127/chitosan core‐shell nanoparticles encapsulating doxorubicin for breast cancer treatment. J. Nanomater. 2012 2012 1 593878 10.1155/2012/593878
    [Google Scholar]
  138. Rarokar N. Agrawal R. Yadav S. Khedekar P. Ravikumar C. Telange D. Gurav S. Pteroyl-γ-l-glutamate/Pluronic® F68 modified polymeric micelles loaded with docetaxel for targeted delivery and reduced toxicity. J. Mol. Liq. 2023 369 120842 10.1016/j.molliq.2022.120842
    [Google Scholar]
  139. Elbaz N.M. Ziko L. Siam R. Mamdouh W. Core-shell silver/polymeric nanoparticles-based combinatorial therapy against breast cancer in-vitro. Sci. Rep. 2016 6 1 30729 10.1038/srep30729 27491622
    [Google Scholar]
  140. Soe Z.C. Kwon J.B. Thapa R.K. Ou W. Nguyen H.T. Gautam M. Oh K.T. Choi H.G. Ku S.K. Yong C.S. Kim J.O. Transferrin-conjugated polymeric nanoparticle for receptor-mediated delivery of doxorubicin in doxorubicin-resistant breast cancer cells. Pharmaceutics 2019 11 2 63 10.3390/pharmaceutics11020063 30717256
    [Google Scholar]
  141. Ruiz A.G. Ganem A. Corichi I.M. Sánchez J.R. Lecithin–chitosan–TPGS nanoparticles as nanocarriers of (−)-epicatechin enhanced its anticancer activity in breast cancer cells. RSC Advances 2018 8 61 34773 34782 10.1039/C8RA06327C 35547028
    [Google Scholar]
  142. Zhang X. Niu S. Williams G.R. Wu J. Chen X. Zheng H. Zhu L.M. Dual-responsive nanoparticles based on chitosan for enhanced breast cancer therapy. Carbohydr. Polym. 2019 221 84 93 10.1016/j.carbpol.2019.05.081 31227170
    [Google Scholar]
  143. Foglietta F. Spagnoli G.C. Muraro M.G. Ballestri M. Guerrini A. Ferroni C. Aluigi A. Sotgiu G. Varchi G. Anticancer activity of paclitaxel-loaded keratin nanoparticles in two-dimensional and perfused three-dimensional breast cancer models. Int. J. Nanomedicine 2018 13 4847 4867 10.2147/IJN.S159942 30214193
    [Google Scholar]
  144. Gupta Y. Jain A. Jain P. Jain S.K. Design and development of folate appended liposomes for enhanced delivery of 5-FU to tumor cells. J. Drug Target. 2007 15 3 231 240 10.1080/10611860701289719 17454361
    [Google Scholar]
  145. Hiremath C.G. Heggnnavar G.B. Kariduraganavar M.Y. Hiremath M.B. Co-delivery of paclitaxel and curcumin to foliate positive cancer cells using Pluronic-coated iron oxide nanoparticles. Prog. Biomater. 2019 8 3 155 168 10.1007/s40204‑019‑0118‑5 31197663
    [Google Scholar]
  146. Jin M. Jin G. Kang L. Chen L. Gao Z. Huang W. Smart polymeric nanoparticles with pH-responsive and PEG-detachable properties for co-delivering paclitaxel and survivin siRNA to enhance antitumor outcomes. Int. J. Nanomedicine 2018 13 2405 2426 10.2147/IJN.S161426 29719390
    [Google Scholar]
  147. Abdellatif A.A.H. Ali A.T. Bouazzaoui A. Alsharidah M. Al Rugaie O. Tolba N.S. Formulation of polymeric nanoparticles loaded sorafenib; evaluation of cytotoxicity, molecular evaluation, and gene expression studies in lung and breast cancer cell lines. Nanotechnol. Rev. 2022 11 1 987 1004 10.1515/ntrev‑2022‑0058
    [Google Scholar]
  148. Mohanty C. Das M. Kanwar J.R. Sahoo S.K. Receptor mediated tumor targeting: an emerging approach for cancer therapy. Curr. Drug Deliv. 2011 8 1 45 58 10.2174/156720111793663606 21034422
    [Google Scholar]
  149. Large D.E. Soucy J.R. Hebert J. Auguste D.T. Advances in receptor‐mediated, tumor‐targeted drug delivery. Adv. Ther. 2019 2 1 1800091 10.1002/adtp.201800091 38699509
    [Google Scholar]
  150. Mehra N.K. Mishra V. Jain N.K. Receptor-based targeting of therapeutics. Ther. Deliv. 2013 4 3 369 394 10.4155/tde.13.6 23442082
    [Google Scholar]
  151. Vhora I. Patil S. Bhatt P. Gandhi R. Baradia D. Misra A. Receptor-targeted drug delivery: current perspective and challenges. Ther. Deliv. 2014 5 9 1007 1024 10.4155/tde.14.63 25375343
    [Google Scholar]
/content/journals/pnt/10.2174/0122117385339882241206095441
Loading
/content/journals/pnt/10.2174/0122117385339882241206095441
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: ligand-mediated ; receptors ; nanocarriers ; drug delivery systems ; Breast cancer
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test