Skip to content
2000
image of In Silico and In Vivo Hepatorenal Protective Effect of Chitosan-Loaded Chrysin Nanoparticles in Obese Rats

Abstract

Introduction

Obesity, a widespread health condition marked by excessive body fat, markedly elevates the risk of chronic diseases and has emerged as a major global health issue. Chrysin, a flavonoid with promising health benefits, exhibits potent antioxidant and anti-inflammatory properties. This study seeks to examine the impact of chitosan chrysin nanoparticles (Chrysin-CSNPS) on obesity induced by a high-fat diet (HFD) in male rats.

Methods

Rats were fed a high-fat diet for 4 weeks to induce obesity, followed by a 4-week treatment period. Thirty rats were allocated into five groups (six rats per group): control (dist. water, orally), HFD control (dist. water, orally), HFD + chrysin (500 mg/kg, orally), HFD + chitosan-NP (60 mg/kg, orally), and HFD + Chrysin-CSNPS (60 mg/kg, orally).

Results

studies revealed that chrysin has a binding energy value of −8.8 kcal/mol to fat mass and obesity-associated (FTO) protein. Also, Chrysin is identified as an inhibitor of several cytochrome P450 enzymes, specifically CYP1A2, CYP2D6, and CYP3A4. Albumin, high-density lipoprotein cholesterol, glutathione, and nitric oxide levels rose, whereas glucose, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, creatinine, urea, total cholesterol, triglycerides, malondialdehyde, and nitric oxide levels fell upon Chrysin-CSNPS treatment. The histological examination revealed a significant enhancement in the structures of the liver and kidneys.

Discussion

These findings suggest that chrysin could potentially inhibit FTO activity, thereby contributing to a reduction in obesity-related phenotypes. The compound that satisfied Lipinski’s criteria was selected for toxicity prediction.

Conclusion

Chrysin-CSNPS have hypolipidemic properties and an antioxidant role, reducing HFD consequences in the liver and kidney.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266388484250807033921
2025-08-18
2025-11-09
Loading full text...

Full text loading...

References

  1. Faccioli N. Poitou C. Clément K. Dubern B. Current treatments for patients with genetic obesity. J. Clin. Res. Pediatr. Endocrinol. 2023 15 2 108 119 10.4274/jcrpe.galenos.2023.2023‑3‑2 37191347
    [Google Scholar]
  2. Chooi Y.C. Ding C. Magkos F. The epidemiology of obesity. Metabolism 2019 92 6 10 10.1016/j.metabol.2018.09.005 30253139
    [Google Scholar]
  3. Obesity and overweight. Retrieved from: https://www.who.int/news-Room/fact-Sheets/detail/obesity-And-Overweigh 2020
  4. Kirichenko T.V. Markina Y.V. Bogatyreva A.I. Tolstik T.V. Varaeva Y.R. Starodubova A.V. The role of adipokines in inflammatory mechanisms of obesity. Int. J. Mol. Sci. 2022 23 23 14982 10.3390/ijms232314982
    [Google Scholar]
  5. Safaei M. Sundararajan E.A. Driss M. Boulila W. Shapi’i A. A systematic literature review on obesity: Understanding the causes & consequences of obesity and reviewing various machine learning approaches used to predict obesity. Comput. Biol. Med. 2021 136 104754 10.1016/j.compbiomed.2021.104754 34426171
    [Google Scholar]
  6. Lin X. Li H. Obesity: Epidemiology, pathophysiology, and therapeutics. Front. Endocrinol. 2021 12 706978 10.3389/fendo.2021.706978 34552557
    [Google Scholar]
  7. Romieu I. Dossus L. Barquera S. Blottière H.M. Franks P.W. Gunter M. Hwalla N. Hursting S.D. Leitzmann M. Margetts B. Nishida C. Potischman N. Seidell J. Stepien M. Wang Y. Westerterp K. Winichagoon P. Wiseman M. Willett W.C. Energy balance and obesity: What are the main drivers? Cancer Causes Control. 2017 28 3 247 258 10.1007/s10552‑017‑0869‑z
    [Google Scholar]
  8. Henning R.J. Obesity and obesity-induced inflammatory disease contribute to atherosclerosis: A review of the pathophysiology and treatment of obesity. Am. J. Cardiovasc. Dis. 2021 11 4 504 529 34548951
    [Google Scholar]
  9. Powell-Wiley T.M. Poirier P. Burke L.E. Després J.P. Gordon-Larsen P. Lavie C.J. Lear S.A. Ndumele C.E. Neeland I.J. Sanders P. St-Onge M.P. Obesity and cardiovascular disease: A scientific statement from the american heart association. Circulation 2021 143 21 e984 e1010 10.1161/CIR.0000000000000973 33882682
    [Google Scholar]
  10. Marcus C. Danielsson P. Hagman E. Pediatric obesity—Long‐term consequences and effect of weight loss. J. Intern. Med. 2022 292 6 870 891 10.1111/joim.13547 35883220
    [Google Scholar]
  11. Pakhare M. Anjankar A. Critical correlation between obesity and cardiovascular diseases and recent advancements in obesity. Cureus 2024 16 1 51681 10.7759/cureus.51681 38314003
    [Google Scholar]
  12. Piché M.E. Tchernof A. Després J.P. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 2020 126 11 1477 1500 10.1161/CIRCRESAHA.120.316101 32437302
    [Google Scholar]
  13. Pati S. Irfan W. Jameel A. Ahmed S. Shahid R.K. Obesity and cancer: A current overview of epidemiology, pathogenesis, outcomes, and management. Cancers 2023 15 2 485 10.3390/cancers15020485 36672434
    [Google Scholar]
  14. Berger N.A. Obesity and cancer pathogenesis. Ann. N. Y. Acad. Sci. 2014 1311 1 57 76 10.1111/nyas.12416 24725147
    [Google Scholar]
  15. Jin X. Qiu T. Li L. Yu R. Chen X. Li C. Proud C.G. Jiang T. Pathophysiology of obesity and its associated diseases. Acta. Pharm. Sin. B 2023 13 6 2403 2424 10.1016/j.apsb.2023.01.012 37425065
    [Google Scholar]
  16. Coulter A.A. Rebello C.J. Greenway F.L. Centrally acting agents for obesity: Past, present, and future. Drugs 2018 78 11 1113 1132 10.1007/s40265‑018‑0946‑y 30014268
    [Google Scholar]
  17. Tak Y.J. Lee S.Y. Long-term efficacy and safety of anti-obesity treatment: Where do we stand? Curr. Obes. Rep. 2021 10 1 14 30 10.1007/s13679‑020‑00422‑w 33410104
    [Google Scholar]
  18. Karri S. Sharma S. Hatware K. Patil K. Natural anti-obesity agents and their therapeutic role in management of obesity: A future trend perspective. Biomed. Pharmacother. 2019 110 224 238 10.1016/j.biopha.2018.11.076
    [Google Scholar]
  19. Shaik Mohamed Sayed U.F. Moshawih S. Goh H.P. Kifli N. Gupta G. Singh S.K. Chellappan D.K. Dua K. Hermansyah A. Ser H.L. Ming L.C. Goh B.H. Natural products as novel anti-obesity agents: Insights into mechanisms of action and potential for therapeutic management. Front. Pharmacol. 2023 14 1182937 10.3389/fphar.2023.1182937 37408757
    [Google Scholar]
  20. Abd El Aziz Y.E. Soliman A.M. Fahmy S.R. Mohamed A.S. Clove aqueous extract alleviates acute kidney injury induced by folic acid in rats. Curr. Chem. Biol. 2024 18 2 104 112 10.2174/0122127968337186240926063010
    [Google Scholar]
  21. Pellis A. Guebitz G.M. Nyanhongo G.S. Chitosan: Sources, processing and modification techniques. Gels 2022 8 7 393 10.3390/gels8070393 35877478
    [Google Scholar]
  22. de Souza A.F. Galindo H.M. de Lima M.A.B. Ribeaux D.R. Rodríguez D.M. da Silva Andrade R.F. Gusmão N.B. de Campos-Takaki G.M. Biotechnological strategies for chitosan production by mucoralean strains and dimorphism using renewable substrates. Int. J. Mol. Sci. 2020 21 12 4286 10.3390/ijms21124286 32560213
    [Google Scholar]
  23. Lovskaya D. Menshutina N. Mochalova M. Nosov A. Grebenyuk A. Chitosan-based aerogel particles as highly effective local hemostatic agents. production process and in vivo evaluations. Polymers 2020 12 9 2055 10.3390/polym12092055 32927608
    [Google Scholar]
  24. Ahn S.I. Cho S. Choi N.J. Effectiveness of chitosan as a dietary supplement in lowering cholesterol in murine models: A meta-analysis. Mar. Drugs 2021 19 1 26 10.3390/md19010026 33435383
    [Google Scholar]
  25. Desai N. Rana D. Salave S. Gupta R. Patel P. Karunakaran B. Sharma A. Giri J. Benival D. Kommineni N. Chitosan: A potential biopolymer in drug delivery and biomedical applications. Pharmaceutics 2023 15 4 1313 10.3390/pharmaceutics15041313 37111795
    [Google Scholar]
  26. Mostafa I.Y. Ahmad M.S. Aboellil A.H. Mohamed A.S. Comparative evaluation of antibacterial and toxicity mechanisms of silver nanoparticles biosynthesized by streptomyces, lemon, and chitosan. Curr. Nanosci. 2025 21 5 889 909 10.2174/0115734137275299231220093929
    [Google Scholar]
  27. Guadarrama-Escobar O.R. Serrano-Castañeda P. Anguiano-Almazán E. Vázquez-Durán A. Peña-Juárez M.C. Vera-Graziano R. Morales-Florido M.I. Rodriguez-Perez B. Rodriguez-Cruz I.M. Miranda-Calderón J.E. Escobar-Chávez J.J. Chitosan nanoparticles as oral drug carriers. Int. J. Mol. Sci. 2023 24 5 4289 10.3390/ijms24054289 36901719
    [Google Scholar]
  28. Shagdarova B. Konovalova M. Varlamov V. Svirshchevskaya E. Anti-Obesity effects of chitosan and its derivatives. Polymers 2023 15 19 3967 10.3390/polym15193967 37836016
    [Google Scholar]
  29. Hassan M.A.T. Soliman A.M. Mohamed A.S. The therapeutic potency of silver/chitosan, silver/saponin and chitosan/saponin nanocomposites on ethanol-induced gastric ulcers in wistar rats. Recent Adv. Inflamm. Allergy Drug Discov 2024 18 2 115 128 10.2174/0127722708283559240405075921
    [Google Scholar]
  30. Mani R. Natesan V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry 2018 145 187 196 10.1016/j.phytochem.2017.09.016 29161583
    [Google Scholar]
  31. Pai S.A. Martis E.A. Munshi R.P. Gursahani M.S. Mestry S.N. Juvekar A.R. Chrysin mitigated obesity by regulating energy intake and expenditure in rats. J. Tradit. Complement. Med. 2020 10 6 577 585 10.1016/j.jtcme.2019.09.002 33134134
    [Google Scholar]
  32. Choi J.H. Yun J.W. Chrysin induces brown fat–like phenotype and enhances lipid metabolism in 3T3-L1 adipocytes. Nutrition 2016 32 9 1002 1010 10.1016/j.nut.2016.02.007 27133810
    [Google Scholar]
  33. Talebi M. Talebi M. Farkhondeh T. Simal-Gandara J. Kopustinskiene D.M. Bernatoniene J. Samarghandian S. Emerging cellular and molecular mechanisms underlying anticancer indications of chrysin. Cancer Cell. Int. 2021 21 1 214 10.1186/s12935‑021‑01906‑y 33858433
    [Google Scholar]
  34. Wali A.F. Jabnoun S. Razmpoor M. Akbar I. Dhaheri Y.A. Khan A. Chrysin, an important active ingredient of honey: Beneficial pharmacological activities and molecular mechanism of action. Therapeutic Applications of Honey and its Phytochemicals Springer Singapore 2020 2 409 432 10.1007/978‑981‑15‑7305‑7_19
    [Google Scholar]
  35. Gao S. Siddiqui N. Etim I. Du T. Zhang Y. Liang D. Developing nutritional component chrysin as a therapeutic agent: Bioavailability and pharmacokinetics consideration, and ADME mechanisms. Biomed. Pharmacother. 2021 142 112080 10.1016/j.biopha.2021.112080
    [Google Scholar]
  36. Siddhardha B. Pandey U. Kaviyarasu K. Pala R. Syed A. Bahkali A. Elgorban A. Chrysin-loaded chitosan nanoparticles potentiates antibiofilm activity against Staphylococcus aureus. Pathogens 2020 9 2 115 10.3390/pathogens9020115 32059467
    [Google Scholar]
  37. Prabhakar L. Davis G D.J. Computational study of potential inhibitors for fat mass and obesity-associated protein from seaweed and plant compounds. PeerJ 2022 10 14256 10.7717/peerj.14256 36299509
    [Google Scholar]
  38. Yang Z. Yu G. Zhu X. Peng T. Lv Y. Critical roles of FTO-mediated mRNA m6A demethylation in regulating adipogenesis and lipid metabolism: Implications in lipid metabolic disorders. Genes Dis. 2022 9 1 51 61 10.1016/j.gendis.2021.01.005 35005107
    [Google Scholar]
  39. Morris G.M. Huey R. Lindstrom W. Sanner M.F. Belew R.K. Goodsell D.S. Olson A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 2009 30 16 2785 2791 10.1002/jcc.21256 19399780
    [Google Scholar]
  40. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  41. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  42. Daina A. Michielin O. Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep. 2017 7 1 42717 10.1038/srep42717 28256516
    [Google Scholar]
  43. Chinedu E. Arome D. Ameh F. A new method for determining acute toxicity in animal models. Toxicol. Int. 2013 20 3 224 226 10.4103/0971‑6580.121674 24403732
    [Google Scholar]
  44. Reed M.J. Meszaros K. Entes L.J. Claypool M.D. Pinkett J.G. Gadbois T.M. Reaven G.M. A new rat model of type 2 diabetes: The fat-fed, streptozotocin-treated rat. Metabolism 2000 49 11 1390 1394 10.1053/meta.2000.17721 11092499
    [Google Scholar]
  45. Bancroft, J.D.; Gamble, M., Eds.; Theory and practice of histological techniques. Amsterdam, Netherlands Elsevier 2008
    [Google Scholar]
  46. Yustisia I. Tandiari D. Cangara M.H. Hamid F. Daud N.A.S. A high-fat, high-fructose diet induced hepatic steatosis, renal lesions, dyslipidemia, and hyperuricemia in non-obese rats. Heliyon 2022 8 10 10896 10.1016/j.heliyon.2022.e10896 36247176
    [Google Scholar]
  47. Qutb S.A. Soliman A.M. Fahmy S.R. Mohamed A.S. Renoprotective effects of eugenol-loaded chitosan nanoparticles on septic rats. Drug Deliv. Lett. 2025 15 1 1 14 10.2174/0122103031335223250122153155
    [Google Scholar]
  48. Papamargaritis D. le Roux C.W. Holst J.J. Davies M.J. New therapies for obesity. Cardiovasc. Res. 2024 119 18 2825 2842 10.1093/cvr/cvac176 36448672
    [Google Scholar]
  49. Dabiri S. Jafari S. Molavi O. Advances in nanocarrier-mediated delivery of chrysin: Enhancing solubility, bioavailability, and anticancer efficacy. Bioimpacts 2024 15 30269 10.34172/bi.30269 40161948
    [Google Scholar]
  50. Roomy M.A. Hussain K. Behbehani H.M. Abu-Farha J. Al-Harris R. Ambi A.M. Abdalla M.A. Al-Mulla F. Abu-Farha M. Abubaker J. Therapeutic advances in obesity management: An overview of the therapeutic interventions. Front. Endocrinol. 2024 15 1364503 10.3389/fendo.2024.1364503 38715796
    [Google Scholar]
  51. Bastías-Pérez M. Serra D. Herrero L. Dietary options for rodents in the study of obesity. Nutrients 2020 12 11 3234 10.3390/nu12113234 33105762
    [Google Scholar]
  52. Tang H. Dong L. Xia X. Chen X. Ren M. Shu G. Fu H. Lin J. Zhao L. Zhang L. Cheng G. Wang X. Zhang W. Preparation, optimization, and anti-pulmonary infection activity of casein-based chrysin nanoparticles. Int. J. Nanomedicine 2024 19 5511 5522 10.2147/IJN.S457643 38895144
    [Google Scholar]
  53. Ivanova D.G. Yaneva Z.L. Antioxidant properties and redox-modulating activity of chitosan and its derivatives: Biomaterials with application in cancer therapy. Biores. Open Access 2020 9 1 64 72 10.1089/biores.2019.0028 32219012
    [Google Scholar]
  54. Ibrahim S.S. Abo Elseoud O.G. Mohamedy M.H. Amer M.M. Mohamed Y.Y. Elmansy S.A. Kadry M.M. Attia A.A. Fanous R.A. Kamel M.S. Solyman Y.A. Shehata M.S. George M.Y. Nose-to-brain delivery of chrysin transfersomal and composite vesicles in doxorubicin-induced cognitive impairment in rats: Insights on formulation, oxidative stress and TLR4/NF-kB/NLRP3 pathways. Neuropharmacology 2021 197 108738 10.1016/j.neuropharm.2021.108738 34339751
    [Google Scholar]
  55. Xu G. Huang X. Qiu L. Wu J. Hu Y. Mechanism study of chitosan on lipid metabolism in hyperlipidemic rats. Asia Pac. J. Clin. Nutr. 2007 16 Suppl. 1 313 317 17392126
    [Google Scholar]
  56. Shukla R. Pandey V. Vadnere G.P. Lodhi S. Role of flavonoids in management of inflammatory disorders. Bioactive food as dietary interventions for arthritis and related inflammatory diseases. United States Academic Press 2019 293 322 10.1016/B978‑0‑12‑813820‑5.00018‑0
    [Google Scholar]
  57. Lipinski C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol. 2004 1 4 337 341 10.1016/j.ddtec.2004.11.007 24981612
    [Google Scholar]
  58. Deodhar M. Al Rihani S.B. Arwood M.J. Darakjian L. Dow P. Turgeon J. Michaud V. Mechanisms of CYP450 inhibition: Understanding drug-drug interactions due to mechanism-based inhibition in clinical practice. Pharmaceutics 2020 12 9 846 10.3390/pharmaceutics12090846 32899642
    [Google Scholar]
  59. Tantu R. Titin Dunggio Niluh Arwati, Description of blood glucose levels in obesity patients in puskesmas north city. J. Health. Tech. Sci. 2023 1 2 23 34 10.47918/jhts.v1i2.368
    [Google Scholar]
  60. Chaudhari A. Gujarathi S. Bhatia G. Comparison of blood glucose in obese and non-obese students in a medical college. Intern J. Res. Med. Sci. 2020 8 11 3916 3919 10.18203/2320‑6012.ijrms20204877
    [Google Scholar]
  61. Gabuza K.B. Sibuyi N.R.S. Mobo M.P. Madiehe A.M. Differentially expressed serum proteins from obese Wistar rats as a risk factor for obesity-induced diseases. Sci. Rep. 2020 10 1 12415 10.1038/s41598‑020‑69198‑2 32709962
    [Google Scholar]
  62. Pangestu Y.M. Antolis A. Pateda V. T K. Warouw S.M.S. Perbandingan kadar gula darah puasa pada anak obes dengan resistensi insulin dan tanpa resistensi insulin. Sari Pediatri 2016 15 3 161 166 10.14238/sp15.3.2013.161‑6
    [Google Scholar]
  63. Ramírez-Espinosa J. Saldaña-Ríos J. García-Jiménez S. Villalobos-Molina R. Ávila-Villarreal G. Rodríguez-Ocampo A. Bernal-Fernández G. Estrada-Soto S. Chrysin induces antidiabetic, antidyslipidemic and anti-inflammatory effects in athymic nude diabetic mice. Molecules 2017 23 1 67 10.3390/molecules23010067 29283418
    [Google Scholar]
  64. Jalili V. Poorahmadi Z. Hasanpour Ardekanizadeh N. Gholamalizadeh M. Ajami M. Houshiarrad A. Hajipour A. Shafie F. Alizadeh A. Mokhtari Z. Shafaei H. Esmaeili M. Doaei S. The association between obesity with serum levels of liver enzymes, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase and gamma‐glutamyl transferase in adult women. Endocrinol. Diabetes Metab. 2022 5 6 367 10.1002/edm2.367 36039792
    [Google Scholar]
  65. Ali N. Sumon A.H. Fariha K.A. Asaduzzaman M. Kathak R.R. Molla N.H. Mou A.D. Barman Z. Hasan M. Miah R. Islam F. Assessment of the relationship of serum liver enzymes activity with general and abdominal obesity in an urban Bangladeshi population. Sci. Rep. 2021 11 1 6640 10.1038/s41598‑021‑86216‑z 33758311
    [Google Scholar]
  66. Julián M.T. Arteaga I. Torán-Monserrat P. Pera G. Pérez-Montes de Oca A. Ruiz-Rojano I. Casademunt-Gras E. Chacón C. Alonso N. The link between abdominal obesity indices and the progression of liver fibrosis: Insights from a population-based study. Nutrients 2024 16 11 1586 10.3390/nu16111586 38892518
    [Google Scholar]
  67. Brunt E.M. Wong V.W.S. Nobili V. Day C.P. Sookoian S. Maher J.J. Bugianesi E. Sirlin C.B. Neuschwander-Tetri B.A. Rinella M.E. Nonalcoholic fatty liver disease. Nat. Rev. Dis. Primers 2015 1 1 15080 10.1038/nrdp.2015.80 27188459
    [Google Scholar]
  68. Milić S. Lulić D. Štimac D. Non-alcoholic fatty liver disease and obesity: Biochemical, metabolic and clinical presentations. World J. Gastroenterol. 2014 20 28 9330 9337 10.3748/wjg.v20.i28.9330 25071327
    [Google Scholar]
  69. El-Eshmawy M.M. Impact of obesity on liver function tests: Is nonalcoholic fatty liver disease the only player? A review article. Porto Biomed. J. 2023 8 5 228 10.1097/j.pbj.0000000000000228 37846300
    [Google Scholar]
  70. Rashed A. Mohamed A.S. Soliman A. Ameliorative effect of galium verum (Rubiaceae Family) methanolic extract on folic acid-induced acute kidney injury in male rats. Iraqi J. Pharm. Sci. 2023 32 3 14 24 10.31351/vol32iss3pp14‑24
    [Google Scholar]
  71. Dalhoum M. Berriche O. Ben O.R. Talbi E. Tlili R. Hamza S. Gammoudi A. Kacem A. Kallel L. Jamoussi H. A simple blood screening tests for predicting non-alcoholic fatty liver disease in obese patients. Endocrine Abstracts, 99 Bioscientifica Bristol Parkway North 2024 10.1530/endoabs.99.EP1141
    [Google Scholar]
  72. Shehzad D.N. Sebghatullah D.S. Chand D.J. Dr M.S.A. Fatima D.Y. Masood D.R. The impact of obesity on serum albumin levels in adults without liver or kidney dysfunction. J. Popul. Ther. Clin. Pharmacol. 2024 31 5 36 40 10.53555/jptcp.v31i5.6077
    [Google Scholar]
  73. Arafa N.H. Shehata M.R. Mohamed A.S. Ovothiol-a mitigates high-fat diet-induced non-alcoholic fatty liver disease in rats. Curr. Pharm. Des. 2024 20 8 e220124225931 10.2174/0115734072272429231106090645
    [Google Scholar]
  74. Liu C. Shao M. Lu L. Zhao C. Qiu L. Liu Z. Obesity, insulin resistance and their interaction on liver enzymes. PLoS One 2021 16 4 0249299 10.1371/journal.pone.0249299 33882064
    [Google Scholar]
  75. Li W. Homer K. Hull S. Boomla K. Robson J. Alazawi W. Obesity predicts liver function testing and abnormal liver results. Obesity 2020 28 1 132 138 10.1002/oby.22669 31804018
    [Google Scholar]
  76. Horvath S. Erhart W. Brosch M. Ammerpohl O. von Schönfels W. Ahrens M. Heits N. Bell J.T. Tsai P.C. Spector T.D. Deloukas P. Siebert R. Sipos B. Becker T. Röcken C. Schafmayer C. Hampe J. Obesity accelerates epigenetic aging of human liver. Proc. Natl. Acad. Sci. USA 2014 111 43 15538 15543 10.1073/pnas.1412759111 25313081
    [Google Scholar]
  77. Huang J. Gao T. Zhang H. Wang X. Association of obesity profiles and metabolic health status with liver injury among US adult population in NHANES 1999–2016. Sci. Rep. 2023 13 1 15958 10.1038/s41598‑023‑43028‑7 37749307
    [Google Scholar]
  78. Talebi M. Talebi M. Farkhondeh T. Simal-Gandara J. İlgün S. Pourbagher shahri A.M. Samini M. Samarghandian S. A review on hepatoprotective effect of chrysin: Preclinical implications and molecular cascades came into focus. Curr. Diabetes Rev. 2024 21 10.2174/0115733998329724240918091335 39648422
    [Google Scholar]
  79. Evangelista L.S. Cho W.K. Kim Y. Obesity and chronic kidney disease: A population-based study among South Koreans. PLoS One 2018 13 2 0193559 10.1371/journal.pone.0193559 29489920
    [Google Scholar]
  80. Chang Y. Ryu S. Choi Y. Zhang Y. Cho J. Kwon M.J. Hyun Y.Y. Lee K.B. Kim H. Jung H.S. Yun K.E. Ahn J. Rampal S. Zhao D. Suh B.S. Chung E.C. Shin H. Pastor-Barriuso R. Guallar E. Metabolically healthy obesity and development of chronic kidney disease. Ann. Intern. Med. 2016 164 5 305 312 10.7326/M15‑1323 26857595
    [Google Scholar]
  81. Ude U.A. Kalu M.E. Ogbonna C.L. Usanga V.U. Azi S.O. Evaluation of urea, creatinine levels, and proteinuria among obese individuals within abakaliki metropolis. Nigerian J. Basic Clin. Sci. 2022 19 2 120 125 10.4103/njbcs.njbcs_74_21
    [Google Scholar]
  82. Singh Ray D.A. Kumar Kare D.P. Makwane D.H. Saxena D.T. Garg M.C. Estimation of serum creatinine, serum urea, glomerular filtration rate and proteinuria among apparently healthy adults to assess the renal impairment and its association with body mass index: An observational hospital-based study. Intern J. Med. Res. Rev. 2020 8 2 183 188 10.17511/ijmrr.2020.i02.09
    [Google Scholar]
  83. Siddiqui A.M. Shinde A.R. Estimation of serum urea, creatinine and uric acid in obese subjects. Inter J. Inno Res. Med. Sci. 2017 2 08 1201 1203 10.23958/ijirms/vol02‑i08/18
    [Google Scholar]
  84. Koch V.H. Obesity facts and their influence on renal function across the life span. Front. Med. 2021 8 704409 10.3389/fmed.2021.704409
    [Google Scholar]
  85. Prasad R. Jha R.K. Keerti A. Chronic kidney disease: Its relationship with obesity. Cureus 2022 14 10 30535 10.7759/cureus.30535 36415443
    [Google Scholar]
  86. Edeogu C.O. Kalu M.E. Famurewa A.C. Asogwa N.T. Onyeji G.N. Ikpemo K.O. Nephroprotective effect of Moringa oleifera seed oil on gentamicin-induced nephrotoxicity in rats: Biochemical evaluation of antioxidant, anti-inflammatory, and antiapoptotic pathways. J. Am. Coll. Nutr. 2020 39 4 307 315 10.1080/07315724.2019.1649218 31403889
    [Google Scholar]
  87. Kandemir F. Kucukler S. Eldutar E. Caglayan C. Gülçin İ. Chrysin protects rat kidney from paracetamol-induced oxidative stress, inflammation, apoptosis, and autophagy: A multi-biomarker approach. Sci. Pharm. 2017 85 1 4 10.3390/scipharm85010004 28134775
    [Google Scholar]
  88. Shabana S. Shahid S.U. Sarwar S. The abnormal lipid profile in obesity and coronary heart disease (CHD) in Pakistani subjects. Lipids Health. Dis. 2020 19 1 73 10.1186/s12944‑020‑01248‑0 32290855
    [Google Scholar]
  89. Bays H.E. Kirkpatrick C. Maki K.C. Toth P.P. Morgan R.T. Tondt J. Christensen S.M. Dixon D. Jacobson T.A. Obesity, dyslipidemia, and cardiovascular disease: A joint expert review from the Obesity Medicine Association and the National Lipid Association 2024. Obes Pillars 2024 10 10.1016/j.obpill.2024.100108
    [Google Scholar]
  90. Khanali J. Ghasemi E. Rashidi M.M. Ahmadi N. Ghamari S.H. Azangou-Khyavy M. Malekpour M.R. Abbasi-Kangevari M. Hashemi S.M. Naderian M. Rezaei N. Dilmaghani-Marand A. Farzi Y. Kazemi A. Yoosefi M. Hajebi A. Rezaei S. Azadnajafabad S. Fattahi N. Nasserinejad M. Abdolhamidi E. Haghshenas R. Rezaei N. Djalalinia S. Larijani B. Farzadfar F. Prevalence of plasma lipid abnormalities and associated risk factors among Iranian adults based on the findings from STEPs survey 2021. Sci. Rep. 2023 13 1 15499 10.1038/s41598‑023‑42341‑5 37726324
    [Google Scholar]
  91. Hyassat D. Al-Saeksaek S. Naji D. Mahasneh A. Khader Y. Abujbara M. El-Khateeb M. Ajlouni K. Dyslipidemia among patients with type 2 diabetes in Jordan: Prevalence, pattern, and associated factors. Front. Public. Health. 2022 10 1002466 10.3389/fpubh.2022.1002466 36424970
    [Google Scholar]
  92. Almari M. Mohammad A. Abubaker J. Ziyab A.H. Obesity and prediabetes are jointly associated with lipid abnormalities among adolescents: A cross-sectional study. Diabetes Metab. Syndr. Obes. 2021 14 345 353 10.2147/DMSO.S290383 33519222
    [Google Scholar]
  93. Rahman M.A. Ripon M.A.R. Amin M.T. Bhowmik D.R. Bhuiyan M.S. Hossain M.S. Alpha-amylase activity in serum is positively associated with c-reactive protein in obesity and diabetes. Dhaka Univer J. Pharm. Sci. 2024 23 1 7 12 10.3329/dujps.v23i1.74086
    [Google Scholar]
  94. la Rose A.M. Bazioti V. Westerterp M. Adipocyte membrane cholesterol regulates obesity. Arterioscler. Thromb. Vasc. Biol. 2018 38 4 687 689 10.1161/ATVBAHA.118.310768 29563111
    [Google Scholar]
  95. Chung S. Parks J.S. Dietary cholesterol effects on adipose tissue inflammation. Curr. Opin. Lipidol. 2016 27 1 19 25 10.1097/MOL.0000000000000260 26655292
    [Google Scholar]
  96. Loomba R. Friedman S.L. Shulman G.I. Mechanisms and disease consequences of nonalcoholic fatty liver disease. Cell. 2021 184 10 2537 2564 10.1016/j.cell.2021.04.015 33989548
    [Google Scholar]
  97. Zarzecki M.S. Araujo S.M. Bortolotto V.C. de Paula M.T. Jesse C.R. Prigol M. Hypolipidemic action of chrysin on Triton WR-1339-induced hyperlipidemia in female C57BL/6 mice. Toxicol. Rep. 2014 1 200 208 10.1016/j.toxrep.2014.02.003 28962239
    [Google Scholar]
  98. Yuvaraj S. Sasikumar S. Puhari S.S.M. Ramprasath T. Baskaran N. Vasudevan V. Selvam G.S. Chrysin reduces hypercholesterolemia‐mediated atherosclerosis through modulating oxidative stress, microflora, and apoptosis in experimental rats. J. Food. Biochem. 2022 46 11 14349 10.1111/jfbc.14349 35892244
    [Google Scholar]
  99. Sayed F.A. Mohamed A.S. Fahmy H.M. Doxorubicin-loaded methoxy-intercalated kaolinite as a repackaging of doxorubicin for an enhanced breast cancer treatment: In vitro and in vivo investigation. Nanotechnology 2024 1 6 10.1088/1361‑6528/ad823f 39357527
    [Google Scholar]
  100. Manna P. Jain S.K. Obesity, oxidative stress, adipose tissue dysfunction, and the associated health risks: Causes and therapeutic strategies. Metab. Syndr. Relat. Disord. 2015 13 10 423 444 10.1089/met.2015.0095 26569333
    [Google Scholar]
  101. Masenga S.K. Kabwe L.S. Chakulya M. Kirabo A. Mechanisms of oxidative stress in metabolic syndrome. Int. J. Mol. Sci. 2023 24 9 7898 10.3390/ijms24097898 37175603
    [Google Scholar]
  102. Jakubiak G.K. Osadnik K. Lejawa M. Kasperczyk S. Osadnik T. Pawlas N. Oxidative stress in association with metabolic health and obesity in young adults. Oxid. Med. Cell. Longev. 2021 2021 1 9987352 10.1155/2021/9987352 34257828
    [Google Scholar]
  103. Gonçalves-Soares D. Zanette J. Yunes J.S. Yepiz-Plascencia G.M. Bainy A.C.D. Expression and activity of glutathione S-transferases and catalase in the shrimp Litopenaeus vannamei inoculated with a toxic Microcystis aeruginosa strain. Mar. Environ. Res. 2012 75 54 61 10.1016/j.marenvres.2011.07.007 21889198
    [Google Scholar]
  104. Zielinska-Blizniewska H. Sitarek P. Merecz-Sadowska A. Malinowska K. Zajdel K. Jablonska M. Sliwinski T. Zajdel R. Plant extracts and reactive oxygen species as two counteracting agents with anti- and pro-obesity properties. Int. J. Mol. Sci. 2019 20 18 4556 10.3390/ijms20184556 31540021
    [Google Scholar]
  105. Moreno-Fernández S. Garcés-Rimón M. Vera G. Astier J. Landrier J.F. Miguel M. High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 2018 10 10 1502 10.3390/nu10101502 30322196
    [Google Scholar]
  106. Al-Muzafar H.M. Alshehri F.S. Amin K.A. The role of pioglitazone in antioxidant, anti-inflammatory, and insulin sensitivity in a high fat-carbohydrate diet-induced rat model of insulin resistance. Braz. J. Med. Biol. Res. 2021 54 8 10782 10.1590/1414‑431x2020e10782 34037093
    [Google Scholar]
  107. Fuentes-Venado C.E. Terán-Pérez G. Espinosa-Hernández V.M. Martínez-Herrera E. Segura-Uribe J.J. Mercadillo R.E. Pinto-Almazán R. Guerra-Araiza C. Nutritional status influences oxidative stress and insulin resistance in preschool children. Metab. Syndr. Relat. Disord. 2021 19 9 513 523 10.1089/met.2021.0021 34314624
    [Google Scholar]
  108. Cota-Magaña A.I. Vazquez-Moreno M. Rocha-Aguado A. Ángeles-Mejía S. Valladares-Salgado A. Díaz-Flores M. López-Díazguerrero N.E. Cruz M. Obesity is associated with oxidative stress markers and antioxidant enzyme activity in mexican children. Antioxidants 2024 13 4 457 10.3390/antiox13040457 38671905
    [Google Scholar]
  109. Foroumandi E. Alizadeh M. Kheirouri S. Asghari Jafarabadi M. Exploring the role of body mass index in relationship of serum nitric oxide and advanced glycation end products in apparently healthy subjects. PLoS One 2019 14 3 0213307 10.1371/journal.pone.0213307 30856212
    [Google Scholar]
  110. Fujita K. Wada K. Nozaki Y. Yoneda M. Endo H. Takahashi H. Kirikoshi H. Inamori M. Saito S. Nakajima A. Serum nitric oxide metabolite as a biomarker of visceral fat accumulation: Clinical significance of measurement for nitrate/nitrite. Med. Sci. Monit. 2011 17 3 CR123 CR131 10.12659/MSM.881445 21358598
    [Google Scholar]
  111. Boulinguiez A. Staels B. Duez H. Lancel S. Mitochondria and endoplasmic reticulum: Targets for a better insulin sensitivity in skeletal muscle? Biochim. Biophys. Acta. Mol. Cell. Biol. Lipids 2017 1862 9 901 916 10.1016/j.bbalip.2017.05.011 28529179
    [Google Scholar]
  112. Said F. Omar A. R. Mohamed A. S. Dakrory A. I. Abdelaziz M. H. Protective effects of chitosan-loaded pomegranate peel extract nanoparticles on infertility in diabetic male rats. Curr. Top. Med. Chem. 2024 24 e220124225931 10.2174/0115680266308882240806175831
    [Google Scholar]
  113. Charradi K. Elkahoui S. Limam F. Aouani E. High-fat diet induced an oxidative stress in white adipose tissue and disturbed plasma transition metals in rat: Prevention by grape seed and skin extract. J. Physiol. Sci. 2013 63 6 445 455 10.1007/s12576‑013‑0283‑6 24158847
    [Google Scholar]
  114. Jia Q.Q. Wang J.C. Long J. Zhao Y. Chen S.J. Zhai J.D. Wei L.B. Zhang Q. Chen Y. Long H.B. Sesquiterpene lactones and their derivatives inhibit high glucose-induced NF-κB activation and MCP-1 and TGF-β1 expression in rat mesangial cells. Molecules 2013 18 10 13061 13077 10.3390/molecules181013061 24152676
    [Google Scholar]
  115. Tan B.L. Norhaizan M.E. Liew W.P.P. Nutrients and oxidative stress: Friend or foe? Oxid. Med. Cell. Longev. 2018 2018 1 9719584 10.1155/2018/9719584 29643982
    [Google Scholar]
  116. Li H. Ren J. Li Y. Wu Q. Wei J. Oxidative stress: The nexus of obesity and cognitive dysfunction in diabetes. Front. Endocrinol. 2023 14 1134025 10.3389/fendo.2023.1134025 37077347
    [Google Scholar]
  117. Oršolić N. Nemrava J. Jeleč Ž. Kukolj M. Odeh D. Jakopović B. Jazvinšćak Jembrek M. Bagatin T. Fureš R. Bagatin D. Antioxidative and anti-inflammatory activities of chrysin and naringenin in a drug-induced bone loss model in rats. Int. J. Mol. Sci. 2022 23 5 2872 10.3390/ijms23052872 35270014
    [Google Scholar]
  118. Mohammed H.A. Sulaiman G.M. Albukhaty S. Al-Saffar A.Z. Elshibani F.A. Ragab E.A. Chrysin, the flavonoid molecule of antioxidant interest. ChemistrySelect 2023 8 48 202303306 10.1002/slct.202303306
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266388484250807033921
Loading
/content/journals/ctmc/10.2174/0115680266388484250807033921
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Obesity ; chrysin ; high-fat diet ; natural product ; nanoparticles ; oxidative stress
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test