Skip to content
2000
image of Comprehension of the Function of Antioxidants in Targeting Different Signaling Pathways to Cure Oxidative Stress-Induced Hepatotoxicity

Abstract

Oxidative stress plays a central role in the pathogenesis of liver diseases, including hepatotoxicity, by disrupting the balance between reactive oxygen species (ROS) and the hepatic antioxidant defense system. Excessive ROS production leads to inflammation, fibrosis, and cellular damage. Antioxidants—both endogenous and exogenous—can mitigate these effects by neutralizing ROS and restoring redox homeostasis. This review evaluates the mechanistic role of antioxidants in modulating key oxidative stress-related signaling pathways, such as nuclear factor erythroid 2-related factor 2 (Nrf2), mitogen-activated protein kinases (MAPKs), nuclear factor-kappa B (NF-κB), phosphoinositide 3-kinase/Akt (PI3K/Akt), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). Through the regulation of these pathways, antioxidants reduce apoptosis, suppress pro-inflammatory signaling, and enhance the expression of detoxifying enzymes. Natural compounds like flavonoids, polyphenols, and vitamins C and E have shown hepatoprotective effects, while synthetic antioxidants and their combinations with other therapeutic agents represent promising strategies for clinical application. This review underscores the therapeutic potential of antioxidants in combating oxidative stress-induced hepatotoxicity by offering a comprehensive overview of their mechanistic targets.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266398364250811231140
2025-08-21
2025-11-09
Loading full text...

Full text loading...

References

  1. Hancock J.T. Desikan R. Neill S.J. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 2001 29 2 345 349 10.1042/bst0290345 11356180
    [Google Scholar]
  2. Sinenko S.A. Starkova T.Y. Kuzmin A.A. Tomilin A.N. Physiological signaling functions of reactive oxygen species in stem cells: From flies to man. Front. Cell Dev. Biol. 2021 9 714370 10.3389/fcell.2021.714370 34422833
    [Google Scholar]
  3. Li S. Tan H.Y. Wang N. Zhang Z.J. Lao L. Wong C.W. Feng Y. The role of oxidative stress and antioxidants in liver diseases. Int. J. Mol. Sci. 2015 16 11 26087 26124 10.3390/ijms161125942 26540040
    [Google Scholar]
  4. Apel K. Hirt H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004 55 1 373 399 10.1146/annurev.arplant.55.031903.141701 15377225
    [Google Scholar]
  5. Forrester S.J. Kikuchi D.S. Hernandes M.S. Xu Q. Griendling K.K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 2018 122 6 877 902 10.1161/CIRCRESAHA.117.311401 29700084
    [Google Scholar]
  6. van der Vliet A. Janssen-Heininger Y.M.W. Anathy V. Oxidative stress in chronic lung disease: From mitochondrial dysfunction to dysregulated redox signaling. Mol. Aspects Med. 2018 63 59 69 10.1016/j.mam.2018.08.001 30098327
    [Google Scholar]
  7. Zhou D. Shao L. Spitz D.R. Reactive oxygen species in normal and tumor stem cells. Adv. Cancer Res. 2014 122 1 67 10.1016/B978‑0‑12‑420117‑0.00001‑3 24974178
    [Google Scholar]
  8. Cichoż-Lach H. Michalak A. Oxidative stress as a crucial factor in liver diseases. World J. Gastroenterol. 2014 20 25 8082 8091 10.3748/wjg.v20.i25.8082 25009380
    [Google Scholar]
  9. Sánchez-Valle V. Chávez-Tapia N.C. Uribe M. Méndez-Sánchez N. Role of oxidative stress and molecular changes in liver fibrosis: A review. Curr. Med. Chem. 2012 19 28 4850 4860 10.2174/092986712803341520 22709007
    [Google Scholar]
  10. Li X. Chen Y. Mao Y. Dai P. Sun X. Zhang X. Cheng H. Wang Y. Banda I. Wu G. Ma J. Huang S. Forouzanfar T. Curcumin protects osteoblasts from oxidative stress-induced dysfunction via GSK3β-Nrf2 clinical trials. Front. Bioeng. Biotechnol. 2020 8 625 10.3389/fbioe.2020.00625 32612986
    [Google Scholar]
  11. Abrahams S. Haylett W.L. Johnson G. Carr J.A. Bardien S. Antioxidant effects of curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019 406 1 21 10.1016/j.neuroscience.2019.02.020 30825584
    [Google Scholar]
  12. Banerjee P. Gaddam N. Chandler V. Chakraborty S. Oxidative stress-induced liver damage and remodeling of the liver vasculature. Am. J. Pathol. 2023 193 10 1400 1414 10.1016/j.ajpath.2023.06.002 37355037
    [Google Scholar]
  13. Ighodaro O.M. Akinloye O.A. First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alex. J. Med. 2018 54 4 287 293 10.1016/j.ajme.2017.09.001
    [Google Scholar]
  14. Hayes J.D. Dinkova-Kostova A.T. Tew K.D. Oxidative stress in cancer. Cancer Cell 2020 38 2 167 197 10.1016/j.ccell.2020.06.001 32649885
    [Google Scholar]
  15. Ursini F. Maiorino M. Forman H.J. Redox homeostasis: The Golden Mean of healthy living. Redox Biol. 2016 8 205 215 10.1016/j.redox.2016.01.010 26820564
    [Google Scholar]
  16. Orabi S.A. Abou-Hussein S.D. Antioxidant defense mechanisms enhance oxidative stress tolerance in plants. A review. Curr. Sci. Int. 2019 8 3 565 576
    [Google Scholar]
  17. Birben E. Sahiner U.M. Sackesen C. Erzurum S. Kalayci O. Oxidative stress and antioxidant defense. World Allergy Organ. J. 2012 5 1 9 19 10.1097/WOX.0b013e3182439613 23268465
    [Google Scholar]
  18. Muriel P. Gordillo K.R. Role of oxidative stress in liver health and disease. Oxid. Med. Cell. Longev. 2016 2016 1 9037051 10.1155/2016/9037051 27092207
    [Google Scholar]
  19. Schieber M. Chandel N.S. ROS function in redox signaling and oxidative stress. Curr. Biol. 2014 24 10 R453 R462 10.1016/j.cub.2014.03.034 24845678
    [Google Scholar]
  20. Crosas-Molist E. Fabregat I. Role of NADPH oxidases in the redox biology of liver fibrosis. Redox Biol. 2015 6 106 111 10.1016/j.redox.2015.07.005 26204504
    [Google Scholar]
  21. Zorov D.B. Juhaszova M. Sollott S.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol. Rev. 2014 94 3 909 950 10.1152/physrev.00026.2013 24987008
    [Google Scholar]
  22. Day E.A. Ford R.J. Steinberg G.R. AMPK as a therapeutic target for treating metabolic diseases. Trends Endocrinol. Metab. 2017 28 8 545 560 10.1016/j.tem.2017.05.004 28647324
    [Google Scholar]
  23. Yuan T. Yang T. Chen H. Fu D. Hu Y. Wang J. Yuan Q. Yu H. Xu W. Xie X. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biol. 2019 20 247 260 10.1016/j.redox.2018.09.025 30384259
    [Google Scholar]
  24. Lawan A. Bennett A.M. Mitogen-activated protein kinase regulation in hepatic metabolism. Trends Endocrinol. Metab. 2017 28 12 868 878 10.1016/j.tem.2017.10.007 29128158
    [Google Scholar]
  25. Westenberger G. Sellers J. Fernando S. Junkins S. Han S.M. Min K. Lawan A. Function of mitogen-activated protein kinases in hepatic inflammation. J. Cell. Signal. 2021 2 3 172 180 10.33696/Signaling.2.049 34557866
    [Google Scholar]
  26. Zhao H. Eguchi S. Alam A. Ma D. The role of nuclear factor-erythroid 2 related factor 2 (Nrf-2) in the protection against lung injury. Am. J. Physiol. Lung Cell. Mol. Physiol. 2017 312 2 L155 L162 10.1152/ajplung.00449.2016 27864288
    [Google Scholar]
  27. Tonev D. Momchilova A. Oxidative stress and the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway in multiple sclerosis: Focus on certain exogenous and endogenous Nrf2 activators and therapeutic plasma exchange modulation. Int. J. Mol. Sci. 2023 24 24 17223 10.3390/ijms242417223 38139050
    [Google Scholar]
  28. Jumnongprakhon P. Govitrapong P. Tocharus C. Pinkaew D. Tocharus J. Melatonin protects methamphetamine-induced neuroinflammation through NF-κB and Nrf2 pathways in glioma cell line. Neurochem. Res. 2015 40 7 1448 1456 10.1007/s11064‑015‑1613‑2 25998888
    [Google Scholar]
  29. Hardeland R. Melatonin and inflammation—Story of a double‐edged blade. J. Pineal Res. 2018 65 4 e12525 10.1111/jpi.12525 30242884
    [Google Scholar]
  30. Mohamed G.A. Cucurbitacin E glucoside alleviates concanavalin A-induced hepatitis through enhancing SIRT1/Nrf2/HO-1 and inhibiting NF-kB/NLRP3 signaling routes. J. Ethnopharmacol. 2022 292
    [Google Scholar]
  31. Rahban M. Habibi-Rezaei M. Mazaheri M. Saso L. Moosavi-Movahedi A.A. Anti-viral potential and modulation of Nrf2 by curcumin: Pharmacological implications. Antioxidants 2020 9 12 1228 10.3390/antiox9121228 33291560
    [Google Scholar]
  32. Zhang Y. Wei Z. Liu W. Wang J. He X. Huang H. Zhang J. Yang Z. Melatonin protects against arsenic trioxide-induced liver injury by the upregulation of Nrf2 expression through the activation of PI3K/AKT pathway. Oncotarget 2017 8 3 3773 3780 10.18632/oncotarget.13931 27980225
    [Google Scholar]
  33. Li B. Wang L. Lu Q. Da W. Liver injury attenuation by curcumin in a rat NASH model: An Nrf2 activation-mediated effect? Ir. J. Med. Sci. 2016 185 1 93 100 10.1007/s11845‑014‑1226‑9 25385666
    [Google Scholar]
  34. Luo D.D. Chen J.F. Liu J.J. Xie J.H. Zhang Z.B. Gu J.Y. Zhuo J.Y. Huang S. Su Z.R. Sun Z.H. Tetrahydrocurcumin and octahydrocurcumin, the primary and final hydrogenated metabolites of curcumin, possess superior hepatic-protective effect against acetaminophen-induced liver injury: Role of CYP2E1 and Keap1-Nrf2 pathway. Food Chem. Toxicol. 2019 123 349 362 10.1016/j.fct.2018.11.012 30423402
    [Google Scholar]
  35. Jiang C. Luo P. Li X. Liu P. Li Y. Xu J. Nrf2/ARE is a key pathway for curcumin-mediated protection of TMJ chondrocytes from oxidative stress and inflammation. Cell Stress Chaperones 2020 25 3 395 406 10.1007/s12192‑020‑01079‑z 32124251
    [Google Scholar]
  36. Manieri E. Sabio G. Stress kinases in the modulation of metabolism and energy balance. J. Mol. Endocrinol. 2015 55 2 R11 R22 10.1530/JME‑15‑0146 26363062
    [Google Scholar]
  37. Nakagawa H. Maeda S. Molecular mechanisms of liver injury and hepatocarcinogenesis: focusing on the role of stress-activated MAPK. Pathol. Res. Int. 2012 2012 1 14 10.1155/2012/172894 22666632
    [Google Scholar]
  38. Yu Q. Chen S. Li J. Tang H. Shi J. Guo W. Zhang S. Mitogen activated protein kinase phosphatase 5 alleviates liver ischemia–reperfusion injury by inhibiting TAK1/JNK/p38 pathway. Sci. Rep. 2023 13 1 11110 10.1038/s41598‑023‑37768‑9 37429895
    [Google Scholar]
  39. Kaminska B. MAPK signalling pathways as molecular targets for anti-inflammatory therapy—from molecular mechanisms to therapeutic benefits. Biochim. Biophys. Acta. Proteins Proteomics 2005 1754 1-2 253 262 10.1016/j.bbapap.2005.08.017 16198162
    [Google Scholar]
  40. Zeb A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020 44 9 e13394 10.1111/jfbc.13394 32691460
    [Google Scholar]
  41. Hu Y. Cheng L. Du S. Wang K. Liu S. Antioxidant curcumin induces oxidative stress to kill tumor cells (Review). Oncol. Lett. 2023 27 2 67 10.3892/ol.2023.14200 38192657
    [Google Scholar]
  42. Pasten C. Olave N.C. Zhou L. Tabengwa E.M. Wolkowicz P.E. Grenett H.E. Polyphenols downregulate PAI-1 gene expression in cultured human coronary artery endothelial cells: Molecular contributor to cardiovascular protection. Thromb. Res. 2007 121 1 59 65 10.1016/j.thromres.2007.02.001 17379280
    [Google Scholar]
  43. Kandere-Grzybowska K. Kempuraj D. Cao J. Cetrulo C.L. Theoharides T.C. Regulation of IL‐1‐induced selective IL‐6 release from human mast cells and inhibition by quercetin. Br. J. Pharmacol. 2006 148 2 208 215 10.1038/sj.bjp.0706695 16532021
    [Google Scholar]
  44. Behl T. Rana T. Alotaibi G.H. Shamsuzzaman M. Naqvi M. Sehgal A. Polyphenols inhibiting MAPK signalling route mediated oxidative stress and inflammation in depression. Biomed. Pharmacother. 2022 12 146
    [Google Scholar]
  45. Meng D.F. Guo L.L. Peng L.X. Zheng L.S. Xie P. Mei Y. Li C.Z. Peng X.S. Lang Y.H. Liu Z.J. Wang M.D. Xie D.H. Shu D.T. Hu H. Lin S.T. Li H.F. Luo F.F. Sun R. Huang B.J. Qian C.N. Antioxidants suppress radiation-induced apoptosis via inhibiting MAPK pathway in nasopharyngeal carcinoma cells. Biochem. Biophys. Res. Commun. 2020 527 3 770 777 10.1016/j.bbrc.2020.04.093 32446561
    [Google Scholar]
  46. Luedde T. Trautwein C. Intracellular survival pathways in the liver. Liver Int. 2006 26 10 1163 1174 10.1111/j.1478‑3231.2006.01366.x 17105581
    [Google Scholar]
  47. Xiao C. Ghosh S. NF-κB, an evolutionarily conserved mediator of immune and inflammatory responses. Advances in Experimental Medicine and Biology. Boston, MA Springer US 2005 41 45
    [Google Scholar]
  48. Basak S. Kim H. Kearns J.D. Tergaonkar V. O’Dea E. Werner S.L. Benedict C.A. Ware C.F. Ghosh G. Verma I.M. Hoffmann A. A fourth IkappaB protein within the NF-kappaB signaling module. Cell 2007 128 2 369 381 10.1016/j.cell.2006.12.033 17254973
    [Google Scholar]
  49. Hoffmann A. Natoli G. Ghosh G. Transcriptional regulation via the NF-κB signaling module. Oncogene 2006 25 51 6706 6716 10.1038/sj.onc.1209933 17072323
    [Google Scholar]
  50. Luedde T. Schwabe R.F. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat. Rev. Gastroenterol. Hepatol. 2011 8 2 108 118 10.1038/nrgastro.2010.213 21293511
    [Google Scholar]
  51. Islam M.S. Yu H. Miao L. Liu Z. He Y. Sun H. Hepatoprotective effect of the ethanol extract of Illicium henryi against acute liver injury in mice induced by lipopolysaccharide. Antioxidants 2019 8 10 446 10.3390/antiox8100446 31581526
    [Google Scholar]
  52. Alkandahri M.Y. Pamungkas B.T. Oktoba Z. Shafirany M.Z. Sulastri L. Arfania M. Anggraeny E.N. Pratiwi A. Astuti F.D. Indriyani; Dewi, S.Y.; Hamidah, S.Z. Hepatoprotective effect of kaempferol: A review of the dietary sources, bioavailability, mechanisms of action, and safety. Adv. Pharmacol. Pharm. Sci. 2023 2023 1 16 10.1155/2023/1387665 36891541
    [Google Scholar]
  53. Xu W. Zheng H. Fu Y. Gu Y. Zou H. Yuan Y. Gu J. Liu Z. Bian J. Role of PI3K/Akt-mediated Nrf2/HO-1 signaling pathway in resveratrol alleviation of zearalenone-induced oxidative stress and apoptosis in TM4 cells. Toxins 2022 14 11 733 10.3390/toxins14110733 36355983
    [Google Scholar]
  54. Simon A.R. Rai U. Fanburg B.L. Cochran B.H. Activation of the JAK-STAT pathway by reactive oxygen species. Am. J. Physiol. Cell Physiol. 1998 275 6 C1640 C1652 10.1152/ajpcell.1998.275.6.C1640 9843726
    [Google Scholar]
  55. Rezagholizade-shirvan A. Soltani M. Shokri S. Radfar R. Arab M. Shamloo E. Bioactive compound encapsulation: Characteristics, applications in food systems, and implications for human health. Food Chem. X 2024 24 101953 10.1016/j.fochx.2024.101953 39582652
    [Google Scholar]
  56. Sies H. Stahl W. Vitamins E and C, beta-carotene, and other carotenoids as antioxidants. Am. J. Clin. Nutr. 1995 62 6 1315S 1321S.(Suppl.) 10.1093/ajcn/62.6.1315S 7495226
    [Google Scholar]
  57. Li W. Kong, AN Molecular mechanisms of Nrf2-mediated antioxidant response. Mol. Carcinog. 2009 48 91 104 10.1002/mc.20465
    [Google Scholar]
  58. Kang J.X. Weylandt K.H. Modulation of inflammatory cytokines by omega-3 fatty acids. Subcell. Biochem. 2008 49 133 143 10.1007/978‑1‑4020‑8831‑5_5 18751910
    [Google Scholar]
  59. Bal W. Sokołowska M. Kurowska E. Faller P. Binding of transition metal ions to albumin: Sites, affinities and rates. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 12 5444 5455 10.1016/j.bbagen.2013.06.018 23811338
    [Google Scholar]
  60. Teixeira J. Chavarria D. Borges F. Wojtczak L. Wieckowski M.R. Karkucinska-Wieckowska A. Oliveira P.J. Dietary polyphenols and mitochondrial function: Role in health and disease. Curr. Med. Chem. 2019 26 19 3376 3406 10.2174/0929867324666170529101810 28554320
    [Google Scholar]
  61. Chaudhary P. Janmeda P. Docea A.O. Yeskaliyeva B. Abdull Razis A.F. Modu B. Calina D. Sharifi-Rad J. Oxidative stress, free radicals and antioxidants: Potential crosstalk in the pathophysiology of human diseases. Front Chem. 2023 11 1158198 10.3389/fchem.2023.1158198 37234200
    [Google Scholar]
  62. Rahaman M.M. Hossain R. Herrera-Bravo J. Islam M.T. Atolani O. Adeyemi O.S. Owolodun O.A. Kambizi L. Daştan S.D. Calina D. Sharifi-Rad J. Natural antioxidants from some fruits, seeds, foods, natural products, and associated health benefits: An update. Food Sci. Nutr. 2023 11 4 1657 1670 10.1002/fsn3.3217 37051367
    [Google Scholar]
  63. Guedes J.P. Baptista V. Santos-Pereira C. Sousa M.J. Manon S. Chaves S.R. Côrte-Real M. Acetic acid triggers cytochrome c release in yeast heterologously expressing human Bax. Apoptosis 2022 27 5-6 368 381 10.1007/s10495‑022‑01717‑0 35362903
    [Google Scholar]
  64. Roehlen N. Crouchet E. Baumert T.F. Liver fibrosis: Mechanistic concepts and therapeutic perspectives. Cells 2020 9 4 875 10.3390/cells9040875 32260126
    [Google Scholar]
  65. Turner M.D. Nedjai B. Hurst T. Pennington D.J. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim. Biophys. Acta Mol. Cell Res. 2014 1843 11 2563 2582 10.1016/j.bbamcr.2014.05.014 24892271
    [Google Scholar]
  66. Shi T. Bian X. Yao Z. Wang Y. Gao W. Guo C. Quercetin improves gut dysbiosis in antibiotic-treated mice. Food Funct. 2020 11 9 8003 8013 10.1039/D0FO01439G 32845255
    [Google Scholar]
  67. Shabbir U. Rubab M. Daliri E.B.M. Chelliah R. Javed A. Oh D.H. Curcumin, quercetin, catechins and metabolic diseases: The role of gut Microbiota. Nutrients 2021 13 1 206 10.3390/nu13010206 33445760
    [Google Scholar]
  68. Zhang B. Pan C. Feng C. Yan C. Yu Y. Chen Z. Guo C. Wang X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022 27 1 45 52 10.1080/13510002.2022.2046423 35213291
    [Google Scholar]
  69. Ashok A. Andrabi S.S. Mansoor S. Kuang Y. Kwon B.K. Labhasetwar V. Antioxidant therapy in oxidative stress-induced neurodegenerative diseases: role of nanoparticle-based drug delivery systems in clinical translation. Antioxidants 2022 11 2 408 10.3390/antiox11020408 35204290
    [Google Scholar]
  70. Modi H.R. Musyaju S. Ratcliffe M. Shear D.A. Scultetus A.H. Pandya J.D. Mitochondria-targeted antioxidant therapeutics for traumatic brain injury. Antioxidants 2024 13 3 303 10.3390/antiox13030303 38539837
    [Google Scholar]
  71. Di Pietro V. Yakoub K.M. Caruso G. Lazzarino G. Signoretti S. Barbey A.K. Tavazzi B. Lazzarino G. Belli A. Amorini A.M. Antioxidant therapies in traumatic brain injury. Antioxidants 2020 9 3 260 10.3390/antiox9030260 32235799
    [Google Scholar]
  72. Blériot C. Dupuis T. Jouvion G. Eberl G. Disson O. Lecuit M. Liver-resident macrophage necroptosis orchestrates type 1 microbicidal inflammation and type-2-mediated tissue repair during bacterial infection. Immunity 2015 42 1 145 158 10.1016/j.immuni.2014.12.020 25577440
    [Google Scholar]
  73. Li J. Wang T. Liu P. Yang F. Wang X. Zheng W. Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct. 2021 12 9 3898 3918 10.1039/D0FO02736G 33977953
    [Google Scholar]
  74. Allameh A. Niayesh-Mehr R. Aliarab A. Sebastiani G. Pantopoulos K. Oxidative stress in liver pathophysiology and disease. Antioxidants 2023 12 9 1653 10.3390/antiox12091653 37759956
    [Google Scholar]
  75. Sies H. Berndt C. Jones D.P. Oxidative Stress. Annu. Rev. Biochem. 2017 86 1 715 748 10.1146/annurev‑biochem‑061516‑045037 28441057
    [Google Scholar]
  76. Wen H. Yang H. An Y.J. Kim J.M. Lee D.H. Jin X. Park S. Min K.J. Park S. Enhanced phase II detoxification contributes to beneficial effects of dietary restriction as revealed by multi-platform metabolomics studies. Mol. Cell. Proteomics 2013 12 3 575 586 10.1074/mcp.M112.021352 23230277
    [Google Scholar]
  77. He L. He T. Farrar S. Ji L. Liu T. Ma X. Antioxidants maintain cellular redox homeostasis by elimination of reactive oxygen species. Cell. Physiol. Biochem. 2017 44 2 532 553 10.1159/000485089 29145191
    [Google Scholar]
  78. He Z. Li X. Yang H. Wu P. Wang S. Cao D. Guo X. Xu Z. Gao J. Zhang W. Luo X. Effects of oral vitamin C supplementation on liver health and associated parameters in patients with non-alcoholic fatty liver disease: A randomized clinical trial. Front. Nutr. 2021 8 745609 10.3389/fnut.2021.745609 34595203
    [Google Scholar]
  79. Losada-Barreiro S. Sezgin-Bayindir Z. Paiva-Martins F. Bravo-Díaz C. Biochemistry of antioxidants: Mechanisms and pharmaceutical applications. Biomedicines 2022 10 12 3051 10.3390/biomedicines10123051 36551806
    [Google Scholar]
  80. Sotler R. Poljšak B. Dahmane R. Jukić T. Pavan Jukić D. Rotim C. Trebše P. Starc A. Prooxidant activities of antioxidants and their impact on health. Acta Clin. Croat. 2019 7 726 10.20471/acc.2019.58.04.20
    [Google Scholar]
  81. Gherardi G. Corbioli G. Ruzza F. Rizzuto R. CoQ10 and resveratrol effects to ameliorate aged-related mitochondrial dysfunctions. Nutrients 2022 14 20 4326 10.3390/nu14204326 36297010
    [Google Scholar]
  82. Mustafa M. Ahmad R. Tantry I.Q. Ahmad W. Siddiqui S. Alam M. Abbas K. Moinuddin; Hassan, M.I.; Habib, S.; Islam, S. Apoptosis: A comprehensive overview of signaling pathways, morphological changes, and physiological significance and therapeutic implications. Cells 2024 13 22 1838 10.3390/cells13221838 39594587
    [Google Scholar]
  83. Ren L. Zhan P. Wang Q. Wang C. Liu Y. Yu Z. Zhang S. Curcumin upregulates the Nrf2 system by repressing inflammatory signaling-mediated Keap1 expression in insulin-resistant conditions. Biochem. Biophys. Res. Commun. 2019 514 3 691 698 10.1016/j.bbrc.2019.05.010 31078267
    [Google Scholar]
  84. Endale M. Park S.C. Kim S. Kim S.H. Yang Y. Cho J.Y. Rhee M.H. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology 2013 218 12 1452 1467 10.1016/j.imbio.2013.04.019 23735482
    [Google Scholar]
  85. Thompson A.M. Martin K.A. Rzucidlo E.M. Resveratrol induces vascular smooth muscle cell differentiation through stimulation of SirT1 and AMPK. PLoS One 2014 9 1 e85495 10.1371/journal.pone.0085495 24416418
    [Google Scholar]
  86. Xu L. Li W. Chen Z. Guo Q. Wang C. Santhanam R.K. Chen H. Inhibitory effect of epigallocatechin-3-O-gallate on α-glucosidase and its hypoglycemic effect via targeting PI3K/AKT signaling pathway in L6 skeletal muscle cells. Int. J. Biol. Macromol. 2019 125 605 611 10.1016/j.ijbiomac.2018.12.064 30529552
    [Google Scholar]
  87. Matsuda T. Ferreri K. Todorov I. Kuroda Y. Smith C.V. Kandeel F. Mullen Y. Silymarin protects pancreatic β-cells against cytokine-mediated toxicity: implication of c-Jun NH2-terminal kinase and janus kinase/signal transducer and activator of transcription pathways. Endocrinology 2005 146 1 175 185 10.1210/en.2004‑0850 15459112
    [Google Scholar]
  88. Sutrisno S. Sulistyorini C. Manungkalit E.M. Winarsih L. Noorhamdani N. Winarsih S. The effect of genistein on TGF-β signal, dysregulation of apoptosis, cyclooxygenase-2 pathway, and NF-kB pathway in mice peritoneum of endometriosis model. Middle East Fertil. Soc. J. 2017 22 4 295 299 10.1016/j.mefs.2017.05.002
    [Google Scholar]
  89. Lee C. Collaborative power of Nrf2 and PPARγ activators against metabolic and drug‐induced oxidative injury. Oxid. Med. Cell. Longev. 2017 2017 1 1378175 10.1155/2017/1378175 28928902
    [Google Scholar]
  90. Yang P.M. Wu Z.Z. Zhang Y.Q. Wung B.S. Lycopene inhibits ICAM-1 expression and NF-κB activation by Nrf2-regulated cell redox state in human retinal pigment epithelial cells. Life Sci. 2016 155 94 101 10.1016/j.lfs.2016.05.006 27155396
    [Google Scholar]
  91. Zhou R.J. Ye H. Wang F. Wang J.L. Xie M.L. Apigenin inhibits d-galactosamine/LPS-induced liver injury through upregulation of hepatic Nrf-2 and PPARγ expressions in mice. Biochem. Biophys. Res. Commun. 2017 493 1 625 630 10.1016/j.bbrc.2017.08.141 28867192
    [Google Scholar]
  92. Dugbartey G.J. Alornyo K.K. Adams I. Atule S. Obeng-Kyeremeh R. Amoah D. Adjei S. Targeting hepatic sulfane sulfur/hydrogen sulfide signaling pathway with α-lipoic acid to prevent diabetes-induced liver injury via upregulating hepatic CSE/3-MST expression. Diabetol. Metab. Syndr. 2022 14 1 148 10.1186/s13098‑022‑00921‑x 36229864
    [Google Scholar]
  93. Ke X. Zhang R. Li P. Zuo L. Wang M. Yang J. Wang J. Hydrochloride Berberine ameliorates alcohol-induced liver injury by regulating inflammation and lipid metabolism. Biochem. Biophys. Res. Commun. 2022 610 49 55 10.1016/j.bbrc.2022.04.009 35436630
    [Google Scholar]
  94. Yang S.Y. Pyo M.C. Nam M.H. Lee K.W. ERK/Nrf2 pathway activation by caffeic acid in HepG2 cells alleviates its hepatocellular damage caused by t-butylhydroperoxide-induced oxidative stress. BMC Complement. Altern. Med. 2019 19 1 139 10.1186/s12906‑019‑2551‑3
    [Google Scholar]
  95. Wang Q. Botchway B.O.A. Zhang Y. Liu X. Ellagic acid activates the Keap1-Nrf2-ARE signaling pathway in improving Parkinson’s disease: A review. Biomed. Pharmacother. 2022 156 113848 10.1016/j.biopha.2022.113848 36242848
    [Google Scholar]
  96. Zarneshan S.N. Fakhri S. Farzaei M.H. Khan H. Saso L. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem. Toxicol. 2020 145 111714 10.1016/j.fct.2020.111714 32871194
    [Google Scholar]
  97. Rani N. Arya D.S. Chrysin rescues rat myocardium from ischemia-reperfusion injury via PPAR-γ/Nrf2 activation. Eur. J. Pharmacol. 2020 883 173389 10.1016/j.ejphar.2020.173389 32707190
    [Google Scholar]
  98. Wu T. Xie Y. Wu Z. Li Y. Jiang M. Yu H. Li X. Wang J. Zhou E. Yang Z. β-Carotene protects mice against lipopolysaccharide and D-galactosamine induced acute liver injury via regulation of NF-κB, MAPK, and Nrf2 signaling. J. Oleo Sci. 2023 72 11 1027 1035 10.5650/jos.ess23100 37914264
    [Google Scholar]
  99. Poljsak B. Šuput D. Milisav I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 2013 2013 1 11 10.1155/2013/956792 23738047
    [Google Scholar]
  100. Espinosa-Diez C. Miguel V. Mennerich D. Kietzmann T. Sánchez-Pérez P. Cadenas S. Lamas S. Antioxidant responses and cellular adjustments to oxidative stress. Redox Biol. 2015 6 183 197 10.1016/j.redox.2015.07.008 26233704
    [Google Scholar]
  101. Lanigan R.S. Yamarik T.A. Final report on the safety assessment of BHT(1). Int. J. Toxicol. 2002 21 2_suppl 19 94.(Suppl. 2) 10.1080/10915810290096513 12396675
    [Google Scholar]
  102. Gusti A.M.T. Qusti S.Y. Alshammari E.M. Toraih E.A. Fawzy M.S. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: A preliminary case-control study. Antioxidants 2021 10 4 595 10.3390/antiox10040595 33924357
    [Google Scholar]
  103. Cano-Sancho G. Casas M. Interactions between environmental pollutants and dietary nutrients: current evidence and implications in epidemiological research. J. Epidemiol. Community Health 2021 75 2 108 113 10.1136/jech‑2020‑213789 33023970
    [Google Scholar]
  104. Wu H. Norton V. Cui K. Zhu B. Bhattacharjee S. Lu Y.W. Wang B. Shan D. Wong S. Dong Y. Chan S.L. Cowan D. Xu J. Bielenberg D.R. Zhou C. Chen H. Diabetes and its cardiovascular complications: Comprehensive network and systematic analyses. Front. Cardiovasc. Med. 2022 9 841928 10.3389/fcvm.2022.841928 35252405
    [Google Scholar]
  105. Reese-Petersen A.L. Breisnes H.W. Gabor D. Rønnow S.R. Manoel B. Bajaj M. Arenstorff C.S. Aighobahi E. Vestermark R. Karsdal M.A. Biomarker-guided drug development provides value for patients, payers and drug developers: lessons learned from 25 years in the biomarker industry. Biomarkers 2024 29 4 222 232 10.1080/1354750X.2024.2342016 38606909
    [Google Scholar]
  106. Zhang L. Virgous C. Si H. Synergistic anti-inflammatory effects and mechanisms of combined phytochemicals. J. Nutr. Biochem. 2019 69 19 30 10.1016/j.jnutbio.2019.03.009 31048206
    [Google Scholar]
  107. Arulselvan P. Fard M.T. Tan W.S. Gothai S. Fakurazi S. Norhaizan M.E. Kumar S.S. Role of antioxidants and natural products in inflammation. Oxid. Med. Cell. Longev. 2016 2016 1 5276130 10.1155/2016/5276130 27803762
    [Google Scholar]
  108. Zhao Z. Ukidve A. Kim J. Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell 2020 181 1 151 167 10.1016/j.cell.2020.02.001 32243788
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266398364250811231140
Loading
/content/journals/ctmc/10.2174/0115680266398364250811231140
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: NF-κB ; MAPKs ; Oxidative stress ; hepatotoxicity ; JAK/STAT ; antioxidants ; PI3K/Akt ; Nrf2
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test