Skip to content
2000
image of Unlocking the Multifunctional Therapeutic Potential of Manassantin: A Lignan-Derived Scaffold

Abstract

Manassantin, a dineolignan, is a natural compound that has gained significant attention due to its diverse pharmacological properties, including anti-inflammatory, anticancer, neuroprotective, and antimicrobial effects. Its unique polyphenolic scaffold offers a versatile platform for drug development, enabling targeted therapeutic applications. This review explores the molecular mechanisms underlying the bioactivity of manassantin with a focus on its role in modulating key cellular pathways, including NF-κB, MAPK, JAK/STAT, oxidative stress, apoptosis, and inflammatory signaling. Furthermore, it highlights recent advancements in structural modifications aimed at enhancing the pharmacokinetic and pharmacodynamic properties of this compound. By unlocking the full therapeutic potential of manassantin, this study paves the way for its future development as a multifunctional therapeutic agent.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266389940250812105153
2025-08-21
2025-12-17
Loading full text...

Full text loading...

References

  1. Cragg G.M. Newman D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 6 3670 3695 10.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  2. Bharate S.B. Lindsley C.W. Natural Products Driven Medicinal Chemistry. J. Med. Chem. 2024 67 23 20723 20730 10.1021/acs.jmedchem.4c02736 39629819
    [Google Scholar]
  3. Kumar S. Saharan R. Khokra S.L. Singh S. Tiwari A. Tiwari V. Sahoo B.M. Kumar M. A comprehensive review on therapeutic potentials of natural cyclic peptides. Curr. Nutr. Food Sci. 2022 18 5 441 449 10.2174/1573401318666220114153509
    [Google Scholar]
  4. Atanasov A.G. Zotchev S.B. Dirsch V.M. Orhan I.E. Banach M. Rollinger J.M. Barreca D. Weckwerth W. Bauer R. Bayer E.A. Majeed M. Bishayee A. Bochkov V. Bonn G.K. Braidy N. Bucar F. Cifuentes A. D’Onofrio G. Bodkin M. Diederich M. Dinkova-Kostova A.T. Efferth T. El Bairi K. Arkells N. Fan T.P. Fiebich B.L. Freissmuth M. Georgiev M.I. Gibbons S. Godfrey K.M. Gruber C.W. Heer J. Huber L.A. Ibanez E. Kijjoa A. Kiss A.K. Lu A. Macias F.A. Miller M.J.S. Mocan A. Müller R. Nicoletti F. Perry G. Pittalà V. Rastrelli L. Ristow M. Russo G.L. Silva A.S. Schuster D. Sheridan H. Skalicka-Woźniak K. Skaltsounis L. Sobarzo-Sánchez E. Bredt D.S. Stuppner H. Sureda A. Tzvetkov N.T. Vacca R.A. Aggarwal B.B. Battino M. Giampieri F. Wink M. Wolfender J.L. Xiao J. Yeung A.W.K. Lizard G. Popp M.A. Heinrich M. Berindan-Neagoe I. Stadler M. Daglia M. Verpoorte R. Supuran C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov. 2021 20 3 200 216 10.1038/s41573‑020‑00114‑z 33510482
    [Google Scholar]
  5. Lee Y.J. Kim J. Yi J.M. Oh S.M. Kim N.S. Kim H. Oh D.S. Bang O.S. Lee J. Anti-proliferative neolignans from Saururus chinensis against human cancer cell lines. Biol. Pharm. Bull. 2012 35 8 1361 1366 10.1248/bpb.b110670 22863938
    [Google Scholar]
  6. Lu Y. Son J.K. Chang H.W. Saucerneol F. Saucerneol F, a New Lignan Isolated from Saururus chinensis, Attenuates Degranulation via Phospholipase Cγ1 Inhibition and Eicosanoid Generation by Suppressing MAP Kinases in Mast Cells. Biomol. Ther. (Seoul) 2012 20 6 526 531 10.4062/biomolther.2012.20.6.526 24009845
    [Google Scholar]
  7. Tsai W.J. Shen C.C. Tsai T.H. Lin L.C. Lignans from the aerial parts of Saururus chinensis: isolation, structural characterization, and their effects on platelet aggregation. J. Nat. Prod. 2014 77 1 125 131 10.1021/np400772h 24387347
    [Google Scholar]
  8. Brito J.R. Wilairatana P. Roquini D.B. Parra B.C. Gonçalves M.M. Souza D.C.S. Ferreira E.A. Salvadori M.C. Teixeira F.S. Lago J.H.G. de Moraes J. Neolignans isolated from Saururus cernuus L. (Saururaceae) exhibit efficacy against Schistosoma mansoni. Sci. Rep. 2022 12 1 19320 10.1038/s41598‑022‑23110‑2 36369516
    [Google Scholar]
  9. Lee E. Haa K. Yook J.M. Jin M.H. Seo C.S. Son K.H. Kim H.P. Bae K.H. Kang S.S. Son J.K. Chang H.W. Anti-asthmatic activity of an ethanol extract from Saururus chinensis. Biol. Pharm. Bull. 2006 29 2 211 215 10.1248/bpb.29.211 16462020
    [Google Scholar]
  10. Quan Z. Lee Y.J. Yang J.H. Lu Y. Li Y. Lee Y.K. Jin M. Kim J.Y. Choi J.H. Son J.K. Chang H.W. Ethanol extracts of Saururus chinensis suppress ovalbumin-sensitization airway inflammation. J. Ethnopharmacol. 2010 132 1 143 149 10.1016/j.jep.2010.08.002 20699114
    [Google Scholar]
  11. Yoo S.R. Ha H. Shin H.K. Seo C.S. Anti-Inflamatory Activity of Neolignan Compound Isolated from the Roots of Saururus chinensis. Plants 2020 9 8 932 10.3390/plants9080932 32717911
    [Google Scholar]
  12. Song M. Lee S.Y. Kim M. Park S. Park J. Kwon Y. Park D.H. Saururus chinensis- controlled allergic pulmonary disease through NF-κB/COX-2 and PGE 2 pathways. PeerJ 2020 8 e10043 10.7717/peerj.10043 33024647
    [Google Scholar]
  13. Hahm J.C. Lee I.K. Kang W.K. Kim S.U. Ahn Y.J. Cytotoxicity of neolignans identified in Saururus chinensis towards human cancer cell lines. Planta Med. 2005 71 5 464 469 10.1055/s‑2005‑864143 15931587
    [Google Scholar]
  14. Kim J.Y. Kang J.S. Kim H.M. Kim Y.K. Lee H.K. Song S. Hong J.T. Kim Y. Han S.B. Inhibition of phenotypic and functional maturation of dendritic cells by manassantin a. J. Pharmacol. Sci. 2009 109 4 583 592 10.1254/jphs.08299FP 19352074
    [Google Scholar]
  15. Kim S.J. Lu Y. Kwon O. Hwangbo K. Seo C.S. Lee S.H. Kim C.H. Chang Y.C. Son J.K. Chang H.W. Manassantin a isolated from saururus chinensis inhibits 5-lipoxygenase-dependent leukotriene c4 generation by blocking mitogen-activated protein kinase activation in mast cells. Biol. Pharm. Bull. 2011 34 11 1769 1772 10.1248/bpb.34.1769 22040894
    [Google Scholar]
  16. Kwon D.Y. Lee H.E. Weitzel D.H. Park K. Lee S.H. Lee C.T. Stephenson T.N. Park H. Fitzgerald M.C. Chi J.T. Mook R.A. Dewhirst M.W. Lee Y.M. Hong J. Synthesis and biological evaluation of manassantin analogues for hypoxia-inducible factor 1α inhibition. J. Med. Chem. 2015 58 19 7659 7671 10.1021/acs.jmedchem.5b01220 26394152
    [Google Scholar]
  17. Kasper A.C. Moon E.J. Hu X. Park Y. Wooten C.M. Kim H. Yang W. Dewhirst M.W. Hong J. Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations. Bioorg. Med. Chem. Lett. 2009 19 14 3783 3786 10.1016/j.bmcl.2009.04.071 19423348
    [Google Scholar]
  18. Hwang B.Y. Lee J.H. Nam J.B. Hong Y.S. Lee J.J. Lignans from Saururus chinensis inhibiting the transcription factor NF-κB. Phytochemistry 2003 64 3 765 771 10.1016/S0031‑9422(03)00391‑1 13679100
    [Google Scholar]
  19. Liu Z. Lu H. Liu R. Chen B. Wang S. Ma J. Fu J. The dineolignan from Saururus chinensis, manassantin B, inhibits tumor-induced angiogenesis via downregulation of matrix metalloproteinases 9 in human endothelial cells. Oncol. Rep. 2014 32 2 659 667 10.3892/or.2014.3244 24920499
    [Google Scholar]
  20. Seo C.S. Lee W.H. Chung H.W. Chang E.J. Lee S.H. Jahng Y. Hwang B.Y. Son J.K. Han S.B. Kim Y. Manassantin A and B from Saururus chinensis inhibiting cellular melanin production. Phytother. Res. 2009 23 11 1531 1536 10.1002/ptr.2791 19367669
    [Google Scholar]
  21. Lai K. Selinger D.W. Solomon J.M. Wu H. Schmitt E. Serluca F.C. Curtis D. Benson J.D. Integrated compound profiling screens identify the mitochondrial electron transport chain as the molecular target of the natural products manassantin, sesquicillin, and arctigenin. ACS Chem. Biol. 2013 8 1 257 267 10.1021/cb300495e 23138533
    [Google Scholar]
  22. Ma Y. Min H.K. Oh U. Hawkridge A.M. Wang W. Mohsin A.A. Chen Q. Sanyal A. Lesnefsky E.J. Fang X. The lignan manassantin is a potent and specific inhibitor of mitochondrial complex I and bioenergetic activity in mammals. J. Biol. Chem. 2017 292 51 20989 20997 10.1074/jbc.M117.812925 29046352
    [Google Scholar]
  23. Lee J.Y. Song J.H. Yoon I.S. Ko H.J. Kim D.D. Cho H.J. Determination of manassantin B in rat plasma using a high performance liquid chromatography with fluorescence detection and its quantitative application to pharmacokinetic study. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2016 1011 121 127 10.1016/j.jchromb.2015.12.058 26773890
    [Google Scholar]
  24. Bertout J.A. Patel S.A. Simon M.C. The impact of O2 availability on human cancer. Nat. Rev. Cancer 2008 8 12 967 975 10.1038/nrc2540 18987634
    [Google Scholar]
  25. Kung A.L. Wang S. Klco J.M. Kaelin W.G. Livingston D.M. Suppression of tumor growth through disruption of hypoxia-inducible transcription. Nat. Med. 2000 6 12 1335 1340 10.1038/82146 11100117
    [Google Scholar]
  26. Zhang C. Yu J. Li S. Effect of basic fibroblast growth factor on hypoxia-inducible factor (HIF)-1α expression (Exp) and HIF-1 transcription in breast cancer cell through PI-3 K Akt signaling. Cytokine 2025 187 156859 10.1016/j.cyto.2025.156859 39826472
    [Google Scholar]
  27. Zhang J. Ouyang F. Gao A. Zeng T. Li M. Li H. Zhou W. Gao Q. Tang X. Zhang Q. Ran X. Tian G. Quan X. Tang Z. Zou J. Zeng Y. Long Y. Li Y. ESM1 enhances fatty acid synthesis and vascular mimicry in ovarian cancer by utilizing the PKM2-dependent warburg effect within the hypoxic tumor microenvironment. Mol. Cancer 2024 23 1 94 10.1186/s12943‑024‑02009‑8 38720298
    [Google Scholar]
  28. Hodges T.W. Hossain C.F. Kim Y.P. Zhou Y.D. Nagle D.G. Molecular-targeted antitumor agents: the Saururus cernuus dineolignans manassantin B and 4-O-demethylmanassantin B are potent inhibitors of hypoxia-activated HIF-1. J. Nat. Prod. 2004 67 5 767 771 10.1021/np030514m 15165135
    [Google Scholar]
  29. Hossain C.F. Kim Y.P. Baerson S.R. Zhang L. Bruick R.K. Mohammed K.A. Agarwal A.K. Nagle D.G. Zhou Y.D. Saururus cernuus lignans—Potent small molecule inhibitors of hypoxia-inducible factor-1. Biochem. Biophys. Res. Commun. 2005 333 3 1026 1033 10.1016/j.bbrc.2005.05.191 15967416
    [Google Scholar]
  30. Song S.Y. Lee I. Park C. Lee H. Hahm J.C. Kang W.K. Neolignans from Saururus chinensis inhibit PC-3 prostate cancer cell growth via apoptosis and senescence-like mechanisms. Int. J. Mol. Med. 2005 16 4 517 523 16142381
    [Google Scholar]
  31. Minegishi H. Matsukawa T. Nakamura H. Synthesis and biological evaluation of diaryl-substituted carboranes as inhibitors of hypoxia inducible factor (HIF)-1 transcriptional activity. ChemMedChem 2013 8 2 265 271 10.1002/cmdc.201200502 23281069
    [Google Scholar]
  32. Lang L. Liu X. Li Y. Zhou Q. Xie P. Yan C. Chen X. A synthetic manassantin a derivative inhibits hypoxia-inducible factor 1 and tumor growth. PLoS One 2014 9 6 e99584 10.1371/journal.pone.0099584 24925080
    [Google Scholar]
  33. Lai F. liu; liu; Ji, M.; Xie, P.; Chen, X. LXY6090 – a novel manassantin A derivative – limits breast cancer growth through hypoxia-inducible factor-1 inhibition. OncoTargets Ther. 2016 9 3829 3840 10.2147/OTT.S106925 27445487
    [Google Scholar]
  34. Lee Y.K. Seo C.S. Lee C.S. Lee K.S. Kang S.J. Jahng Y. Chang H.W. Son J.K. Inhibition of DNA topoisomerases I and II and cytotoxicity by lignans from Saururus chinensis. Arch. Pharm. Res. 2009 32 10 1409 1415 10.1007/s12272‑009‑2010‑7 19898804
    [Google Scholar]
  35. Kwak S.H. Stephenson T.N. Lee H.E. Ge Y. Lee H. Min S.M. Kim J.H. Kwon D.Y. Lee Y.M. Hong J. Evaluation of Manassantin A Tetrahydrofuran Core Region Analogues and Cooperative Therapeutic Effects with EGFR Inhibition. J. Med. Chem. 2020 63 13 6821 6833 10.1021/acs.jmedchem.0c00151 32579356
    [Google Scholar]
  36. Yang Z. Klionsky D.J. Eaten alive: A history of macroautophagy. Nat. Cell Biol. 2010 12 9 814 822 10.1038/ncb0910‑814 20811353
    [Google Scholar]
  37. Tekirdag K. Cuervo A.M. Chaperone-mediated autophagy and endosomal microautophagy: Jointed by a chaperone. J. Biol. Chem. 2018 293 15 5414 5424 10.1074/jbc.R117.818237 29247007
    [Google Scholar]
  38. Schopf F.H. Biebl M.M. Buchner J. The HSP90 chaperone machinery. Nat. Rev. Mol. Cell Biol. 2017 18 6 345 360 10.1038/nrm.2017.20 28429788
    [Google Scholar]
  39. Byun J.K. Lee S.H. Moon E.J. Park M.H. Jang H. Weitzel D.H. Kim H.H. Basnet N. Kwon D.Y. Lee C.T. Stephenson T.N. Jeong J.H. Patel B.A. Park S.J. Chi J.T. Dewhirst M.W. Hong J. Lee Y.M. Manassantin a inhibits tumour growth under hypoxia through the activation of chaperone-mediated autophagy by modulating Hsp90 activity. Br. J. Cancer 2023 128 8 1491 1502 10.1038/s41416‑023‑02148‑7 36759727
    [Google Scholar]
  40. Wang Y. Li C. Jiang T. Yin Y. Wang Y. Zhao H. Yu L. A comprehensive exploration of twist1 to identify a biomarker for tumor immunity and prognosis in pan-cancer. Medicine (Baltimore) 2024 103 15 e37790 10.1097/MD.0000000000037790 38608058
    [Google Scholar]
  41. Geer Wallace M.A. Kwon D.Y. Weitzel D.H. Lee C.T. Stephenson T.N. Chi J.T. Mook R.A. Dewhirst M.W. Hong J. Fitzgerald M.C. Discovery of manassantin a protein targets using large-scale protein folding and stability measurements. J. Proteome Res. 2016 15 8 2688 2696 10.1021/acs.jproteome.6b00237 27322910
    [Google Scholar]
  42. Bassiouni W. Ali M.A.M. Schulz R. Multifunctional intracellular matrix metalloproteinases: Implications in disease. FEBS J. 2021 288 24 7162 7182 10.1111/febs.15701 33405316
    [Google Scholar]
  43. Zhao Y. Li B. Liu J. Chen L. Teng H. Galangin prevents against ethanol-induced intestinal barrier dysfunction and NLRP3 inflammasome activation via NF-κB/MAPK signaling pathways in mice and Caco-2 cells. J. Agric. Food. Chem. 2024 acs.jafc.4c00747 10.1021/acs.jafc.4c00747 2024
    [Google Scholar]
  44. Lin Y. Yang P. Phillygenin inhibits the inflammation and apoptosis of pulmonary epithelial cells by activating PPARγ signaling via downregulation of MMP8. Mol. Med. Rep. 2021 24 5 775 10.3892/mmr.2021.12415 34490481
    [Google Scholar]
  45. Lee J.H. Hwang B.Y. Kim K.S. Nam J.B. Hong Y.S. Lee J.J. Suppression of RelA/p65 transactivation activity by a lignoid manassantin isolated from Saururus chinensis. Biochem. Pharmacol. 2003 66 10 1925 1933 10.1016/S0006‑2952(03)00553‑7 14599550
    [Google Scholar]
  46. De Bosscher K. Vanden Berghe W. Haegeman G. The interplay between the glucocorticoid receptor and nuclear factor-kappaB or activator protein-1: Molecular mechanisms for gene repression. Endocr. Rev. 2003 24 4 488 522 10.1210/er.2002‑0006 12920152
    [Google Scholar]
  47. Li Q. Verma I.M. NF-κB regulation in the immune system. Nat. Rev. Immunol. 2002 2 10 725 734 10.1038/nri910 12360211
    [Google Scholar]
  48. Son K.N. Song I. Shin Y.H. Pai T.K. Chung D.K. Baek N.I. Lee J.J. Kim J. Inhibition of NF-IL6 activity by manassantin B, a dilignan isolated from Saururus chinensis, in phorbol myristate acetate-stimulated U937 promonocytic cells. Mol. Cells 2005 20 1 105 111 10.1016/S1016‑8478(23)13205‑5 16258248
    [Google Scholar]
  49. Ross R. The pathogenesis of atherosclerosis: A perspective for the 1990s. Nature 1993 362 6423 801 809 10.1038/362801a0 8479518
    [Google Scholar]
  50. DeGraba T.J. Expression of inflammatory mediators and adhesion molecules in human atherosclerotic plaque. Neurology 1997 49 (5_suppl_4), S15-S19.(Suppl. 4) 10.1212/WNL.49.5_Suppl_4.S15 9371143
    [Google Scholar]
  51. Zubirán R. Neufeld E.B. Dasseux A. Remaley A.T. Sorokin A.V. Recent advances in targeted management of inflammation in atherosclerosis: A narrative review. Cardiol. Ther. 2024 13 3 465 491 10.1007/s40119‑024‑00376‑3 39031302
    [Google Scholar]
  52. Rho M.C. Kwon O.E. Kim K. Lee S.W. Chung M.Y. Kim Y.H. Hayashi M. Lee H.S. Kim Y.K. Inhibitory effects of manassantin A and B isolated from the roots of Saururus chinensis on PMA-induced ICAM-1 expression. Planta Med. 2003 69 12 1147 1149 10.1055/s‑2003‑818007 14750033
    [Google Scholar]
  53. Chang J.S. Lee S.W. Kim M.S. Yun B.R. Park M.H. Lee S.G. Park S.J. Lee W.S. Rho M.C. Manassantin A and B from Saururus chinensis inhibit interleukin-6-induced signal transducer and activator of transcription 3 activation in Hep3B cells. J. Pharmacol. Sci. 2011 115 1 84 88 10.1254/jphs.10239SC 21258167
    [Google Scholar]
  54. Lu Y. Hwang S.L. Son J.K. Chang H.W. Manassantin B isolated from Saururus chinensis inhibits cyclooxygenase-2-dependent prostaglandin D2 generation by blocking Fyn-mediated nuclear factor-kappaB and mitogen activated protein kinase pathways in bone marrow derived-mast cells. Biol. Pharm. Bull. 2013 36 8 1370 1374 10.1248/bpb.b13‑00146 23719635
    [Google Scholar]
  55. Lee J. Huh M.S. Kim Y.C. Hattori M. Otake T. Lignan, sesquilignans and dilignans, novel HIV-1 protease and cytopathic effect inhibitors purified from the rhizomes of Saururus chinensis. Antiviral Res. 2010 85 2 425 428 10.1016/j.antiviral.2009.11.002 19900481
    [Google Scholar]
  56. Cui H. Xu B. Wu T. Xu J. Yuan Y. Gu Q. Potential antiviral lignans from the roots of Saururus chinensis with activity against Epstein-Barr virus lytic replication. J. Nat. Prod. 2014 77 1 100 110 10.1021/np400757k 24359277
    [Google Scholar]
  57. Song J.H. Ahn J.H. Kim S.R. Cho S. Hong E.H. Kwon B.E. Kim D. Choi M. Choi H.J. Cha Y. Chang S.Y. Ko H.J. Manassantin B shows antiviral activity against coxsackievirus B3 infection by activation of the STING/TBK-1/IRF3 signalling pathway. Sci. Rep. 2019 9 1 9413 10.1038/s41598‑019‑45868‑8 31253850
    [Google Scholar]
  58. Wang Q. Zhu N. Hu J. Wang Y. Xu J. Gu Q. Lieberman P.M. Yuan Y. The mTOR inhibitor manassantin B reveals a crucial role of mTORC2 signaling in Epstein-Barr virus reactivation. J. Biol. Chem. 2020 295 21 7431 7441 10.1074/jbc.RA120.012645 32312752
    [Google Scholar]
  59. Dal Picolo C.R. Bezerra M.P. Gomes K.S. Passero L.F.D. Laurenti M.D. Martins E.G.A. Sartorelli P. Lago J.H.G. Antileishmanial activity evaluation of adunchalcone, a new prenylated dihydrochalcone from Piper aduncum L. Fitoterapia 2014 97 28 33 10.1016/j.fitote.2014.05.009 24862066
    [Google Scholar]
  60. Caldas L.A. Yoshinaga M.L. Ferreira M.J.P. Lago J.H.G. de Souza A.B. Laurenti M.D. Passero L.F.D. Sartorelli P. Antileishmanial activity and ultrastructural changes of sesquiterpene lactones isolated from calea pinnatifida (asteraceae). Bioorg. Chem. 2019 83 348 353 10.1016/j.bioorg.2018.10.059 30399466
    [Google Scholar]
  61. Néris P.L.N. Caldas J.P.A. Rodrigues Y.K.S. Amorim F.M. Leite J.A. Rodrigues-Mascarenhas S. Barbosa-Filho J.M. Rodrigues L.C. Oliveira M.R. Neolignan licarin a presents effect against leishmania (leishmania) major associated with immunomodulation in vitro. Exp. Parasitol. 2013 135 2 307 313 10.1016/j.exppara.2013.07.007 23891943
    [Google Scholar]
  62. de Castro Oliveira L.G. Brito L.M. de Moraes Alves M.M. Amorim L.V. Sobrinho-Júnior E.P.C. de Carvalho C.E.S. da Franca Rodrigues K.A. Arcanjo D.D.R. das Graças Lopes Citó, A.M.; de Amorim Carvalho, F.A. In vitro Effects of the Neolignan 2,3‐Dihydrobenzofuran Against Leishmania Amazonensis. Basic Clin. Pharmacol. Toxicol. 2017 120 1 52 58 10.1111/bcpt.12639 27398818
    [Google Scholar]
  63. Costa-Silva T.A. Grecco S.S. de Sousa F.S. Lago J.H.G. Martins E.G.A. Terrazas C.A. Varikuti S. Owens K.L. Beverley S.M. Satoskar A.R. Tempone A.G. Immunomodulatory and antileishmanial activity of phenylpropanoid dimers isolated from nectandra leucantha. J. Nat. Prod. 2015 78 4 653 657 10.1021/np500809a 25835647
    [Google Scholar]
  64. Brito J.R. Passero L.F.D. Bezerra-Souza A. Laurenti M.D. Romoff P. Barbosa H. Ferreira E.A. Lago J.H.G. Antileishmanial activity and ultrastructural changes of related tetrahydrofuran dineolignans isolated from saururus cernuus L. (saururaceae). J. Pharm. Pharmacol. 2019 71 12 1871 1878 10.1111/jphp.13171 31595517
    [Google Scholar]
  65. Park S.Y. Lee S. Choi W. Koh E. Seo J. Ryu S. Kim Y. Kwon D. Koh W. Immunosuppressive lignans isolated from saururus chinensis. Planta Med. 2007 73 7 674 678 10.1055/s‑2007‑981525 17538870
    [Google Scholar]
  66. Rao K.V. Puri V.N. el-Sawaf H.A. Further studies on the neuroleptic profile of manassantin A. Eur. J. Pharmacol. 1990 179 3 367 376 10.1016/0014‑2999(90)90177‑8 1973109
    [Google Scholar]
  67. Jeong T.S. Soon Kim K. An S.J. Cho K.H. Lee S. Song Lee W.; Lee, W. Novel 3,5-diaryl pyrazolines as human acyl-CoA: Cholesterol acyltransferase inhibitors. Bioorg. Med. Chem. Lett. 2004 14 11 2715 2717 10.1016/j.bmcl.2004.03.079 15125920
    [Google Scholar]
  68. Lee W.S. Lee D.W. Baek Y.I. An S.J. Cho K.H. Choi Y.K. Kim H.C. Park H.Y. Bae K.H. Jeong T.S. Human ACAT-1 and -2 inhibitory activities of saucerneol B, manassantin A and B isolated from Saururus chinensis. Bioorg. Med. Chem. Lett. 2004 14 12 3109 3112 10.1016/j.bmcl.2004.04.023 15149654
    [Google Scholar]
  69. Kwon O.E. Lee H.S. Lee S.W. Chung M.Y. Bae K.H. Rho M.C. Kim Y.K. Manassantin a and b isolated fromSaururus chinensis inhibit TNF-α-induced Cell adhesion molecule expression of human umbilical vein endothelial cells. Arch. Pharm. Res. 2005 28 1 55 60 10.1007/BF02975136 15742809
    [Google Scholar]
  70. Lee H.D. Lee W.H. Roh E. Seo C.S. Son J.K. Lee S.H. Hwang B.Y. Jung S.H. Han S.B. Kim Y. Manassantin a inhibits camp‐induced melanin production by down‐regulating the gene expressions of MITF and tyrosinase in melanocytes. Exp. Dermatol. 2011 20 9 761 763 10.1111/j.1600‑0625.2011.01296.x 21569106
    [Google Scholar]
  71. Chang H. Choi H. Joo K.M. Kim D. Lee T.R. Manassantin B inhibits melanosome transport in melanocytes by disrupting the melanophilin–myosin Va interaction. Pigment Cell Melanoma Res. 2012 25 6 765 772 10.1111/pcmr.12002 22863119
    [Google Scholar]
  72. Song J.W. Seo C.S. Kim T.I. Moon O.S. Won Y.S. Son H.Y. Son J.K. Kwon H.J. Protective effects of manassantin a against ethanol-induced gastric injury in rats. Biol. Pharm. Bull. 2016 39 2 221 229 10.1248/bpb.b15‑00642 26632199
    [Google Scholar]
  73. Herzig S. Shaw R.J. AMPK: Guardian of metabolism and mitochondrial homeostasis. Nat. Rev. Mol. Cell Biol. 2018 19 2 121 135 10.1038/nrm.2017.95 28974774
    [Google Scholar]
  74. Cai J. Qiong G. Li C. Sun L. Luo Y. Yuan S. Gonzalez F.J. Xu J. Manassantin B attenuates obesity by inhibiting adipogenesis and lipogenesis in an AMPK dependent manner. FASEB J. 2021 35 5 e21496 10.1096/fj.202002126RR 33904622
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266389940250812105153
Loading
/content/journals/ctmc/10.2174/0115680266389940250812105153
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: MAPK ; dineolignans ; NF-κB ; Manassantin ; anticancer ; JAK/STAT ; anti-inflammatory
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test