Skip to content
2000
image of Progress in Synthesis and Therapeutic Applications of Mefloquine: AReview

Abstract

Mefloquine is a synthetic antimalarial drug known for its effectiveness in the treatment and prevention of malaria. This belongs to the amino alcohol group of compounds. Its structure consists of a quinoline and piperidine ring, along with two chiral centers, which give rise to four distinct stereoisomers. There are various synthetic methods for preparing this compound from starting materials such as p-trifluoromethylaniline, 4-bromoquinoline, and trifluoroacetimidoyl iodide. In recent years, mefloquine has gained attention for its potential therapeutic applications beyond malaria, with research exploring its use in cancer therapy, parasitic infections, neurological disorders, tuberculosis, and COVID-19. This article covers its synthetic approaches, established application as an antimalarial compound, as well as repurposed therapeutic applications.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266389780250828104634
2025-09-16
2025-11-08
Loading full text...

Full text loading...

References

  1. a Boumzour W. El Youssfi S. El Hammoumi M.M. Maazouz O. Nassri A. El Bachiri A. Synthesis and therapeutic application of beta-amino alcohol derivatives. J. Mol. Struct. 2025 1321 4 140028 10.1016/j.molstruc.2024.140028
    [Google Scholar]
  2. b Quiliano M. Mendoza A. Fong K.Y. Pabón A. Goldfarb N.E. Fabing I. Vettorazzi A. López de Cerain A. Dunn B.M. Garavito G. Wright D.W. Deharo E. Pérez-Silanes S. Aldana I. Galiano S. Exploring the scope of new arylamino alcohol derivatives: Synthesis, antimalarial evaluation, toxicological studies, and target exploration. Int. J. Parasitol. Drugs Drug Resist. 2016 6 3 184 198 10.1016/j.ijpddr.2016.09.004 27718413
    [Google Scholar]
  3. c Julianto T.S. The potential antimalarial drug of aryl amino alcohol derivatives from eugenol: Synthesis, in-vitro and in-silico analysis of bioactivity. Rasayan J. Chem. 2023 16 3 1425 1434 10.31788/RJC.2023.1636940
    [Google Scholar]
  4. a Wang W. Hu Y. Lin R. Wu H. Progress on the synthesis of 1,3-amino alcohol. Chin J. Org Chem. 2020 40 5 1129 10.6023/cjoc201911011
    [Google Scholar]
  5. b Bhagavathula D.S. Boddeti G. Venu R. A brief review on synthesis of β-amino alcohols by ring opening of epoxides. Res. Rev. J. Chem. 2017 6 2 27 46
    [Google Scholar]
  6. a Fullam E. Abuhammad A. Wilson D.L. Anderton M.C. Davies S.G. Russell A.J. Sim E. Analysis of β-amino alcohols as inhibitors of the potential anti-tubercular target N-acetyltransferase. Bioorg. Med. Chem. Lett. 2011 21 4 1185 1190 10.1016/j.bmcl.2010.12.099 21251821
    [Google Scholar]
  7. b Zheng Y. Qiang X. Xu R. Song Q. Tian C. Liu H. Li W. Tan Z. Deng Y. Design, synthesis and evaluation of pterostilbene β-amino alcohol derivatives as multifunctional agents for Alzheimer’s disease treatment. Bioorg. Chem. 2018 78 298 306 10.1016/j.bioorg.2018.03.016 29625269
    [Google Scholar]
  8. Karle J.M. Karle I.L. Crystal structure of (-)-mefloquine hydrochloride reveals consistency of configuration with biological activity. Antimicrob. Agents Chemother. 2002 46 5 1529 1534 10.1128/AAC.46.5.1529‑1534.2002 11959592
    [Google Scholar]
  9. Dassonville-Klimpt A. Cézard C. Mullié C. Agnamey P. Jonet A. Da Nascimento S. Marchivie M. Guillon J. Sonnet P. Absolute configuration and antimalarial activity of Erythro ‐Mefloquine enantiomers. ChemPlusChem 2013 78 7 642 646 10.1002/cplu.201300074 31986621
    [Google Scholar]
  10. Müller M. Orben C.M. Schützenmeister N. Schmidt M. Leonov A. Reinscheid U.M. Dittrich B. Griesinger C. The absolute configuration of (+)- and (-)-erythro-mefloquine. Angew. Chem. Int. Ed. 2013 52 23 6047 6049 10.1002/anie.201300258 23616269
    [Google Scholar]
  11. Schmidt M. Sun H. Rogne P. Scriba G.K.E. Griesinger C. Kuhn L.T. Reinscheid U.M. Determining the absolute configuration of (+)-mefloquine HCl, the side-effect-reducing enantiomer of the antimalaria drug Lariam. J. Am. Chem. Soc. 2012 134 6 3080 3083 10.1021/ja209050k 22148194
    [Google Scholar]
  12. a Schlagenhauf P. Adamcova M. Regep L. Schaerer M.T. Rhein H.G. The position of mefloquine as a 21st century malaria chemoprophylaxis. Malar. J. 2010 9 1 357 10.1186/1475‑2875‑9‑357 21143906
    [Google Scholar]
  13. b Peters W. Robinson B.L. Mittelholzer M.L. Crevoisier C. Stürchler D. The chemotherapy of rodent malaria. LII. Response of Plasmodium yoelii ssp. NS to mefloquine and its enantiomers. Ann. Trop. Med. Parasitol. 1995 89 5 465 468 10.1080/00034983.1995.11812978 7495359
    [Google Scholar]
  14. Karbwang J. White N.J. Clinical pharmacokinetics of mefloquine. Clin. Pharmacokinet. 1990 19 4 264 279 10.2165/00003088‑199019040‑00002 2208897
    [Google Scholar]
  15. Use of the quinoline anti-malarial drugs mefloquine and tafenoquine in the australian defence force submission 12. 2018 Available from: https://www.aph.gov.au/DocumentStore.ashx?id=1fe598a1-1b7f-4a41-bec3-94c71bb3a95e&subId=657858
  16. Mefloquine (Monograph) play pronunciation. 2025 Available from: https://www.drugs.com/monograph/mefloquine.html
  17. Schützenmeister N. Müller M. Reinscheid U.M. Griesinger C. Leonov A. Trapped in misbelief for almost 40 years: Selective synthesis of the four stereoisomers of mefloquine. Chemistry 2013 19 51 17584 17588 10.1002/chem.201303403 24226934
    [Google Scholar]
  18. Karle J.M. Olmeda R. Gerena L. Milhous W.K. Plasmodium falciparum: Role of absolute stereochemistry in the antimalarial activity of synthetic amino alcohol antimalarial agents. Exp. Parasitol. 1993 76 4 345 351 10.1006/expr.1993.1042 8513873
    [Google Scholar]
  19. Shepard R. D. Fletcher A. Use of (+)-mefloquine for the treatment of malaria with reduced side-effects. WO Patent 9839003A1 1998
    [Google Scholar]
  20. Carroll F.I. Blackwell J.T. Optical isomers of aryl-2-piperidylmethanol antimalarial agents. Preparation, optical purity, and absolute stereochemistry. J. Med. Chem. 1974 17 2 210 219 10.1021/jm00248a015 4588275
    [Google Scholar]
  21. a Yan K.H. Lin Y.W. Hsiao C.H. Wen Y.C. Lin K.H. Liu C.C. Hsieh M.C. Yao C.J. Yan M.D. Lai G.M. Chuang S.E. Lee L.M. Mefloquine induces cell death in prostate cancer cells and provides a potential novel treatment strategy in vivo. Oncol. Lett. 2013 5 5 1567 1571 10.3892/ol.2013.1259 23759954
    [Google Scholar]
  22. b Liu Y. Chen S. Xue R. Zhao J. Di M. Mefloquine effectively targets gastric cancer cells through phosphatase-dependent inhibition of PI3K/Akt/mTOR signaling pathway. Biochem. Biophys. Res. Commun. 2016 470 2 350 355 10.1016/j.bbrc.2016.01.046 26780727
    [Google Scholar]
  23. Wan B. Wu Z. Zhang X. Huang B. Mefloquine as a dual inhibitor of glioblastoma angiogenesis and glioblastoma via disrupting lysosomal function. Biochem. Biophys. Res. Commun. 2021 580 7 13 10.1016/j.bbrc.2021.09.069 34607260
    [Google Scholar]
  24. El Sharazly B.M. Aboul Asaad I.A. Yassen N.A. El Maghraby G.M. Carter W.G. Mohamed D.A. Amer B.S. Ismail H.I.H. Mefloquine loaded niosomes as a promising approach for the treatment of acute and chronic toxoplasmosis. Acta Trop. 2023 239 106810 10.1016/j.actatropica.2022.106810 36581225
    [Google Scholar]
  25. Lampinen M. Hagforsen E. Weström S. Bergström A. Levedahl K.H. Paivandy A. Lara-Valencia P. Pejler G. Rollman O. Mefloquine causes selective mast cell apoptosis in cutaneous mastocytosis lesions by a secretory granule‐mediated pathway. Exp. Dermatol. 2022 31 11 1729 1740 10.1111/exd.14651 35876458
    [Google Scholar]
  26. a Tharmalingam N. Jayanthan H.S. Port J. Rossatto F.C.P. Mylonakis E. Mefloquine reduces the bacterial membrane fluidity of Acinetobacter baumannii and distorts the bacterial membrane when combined with polymyxin B. bioRxiv 2025 10.1101/2025.01.15.633232
    [Google Scholar]
  27. b Krieger D. Vesenbeckh S. Schönfeld N. Bettermann G. Bauer T.T. Rüssmann H. Mauch H. Mefloquine as a potential drug against multidrug-resistant tuberculosis. Eur. Respir. J. 2015 46 5 1503 1505 10.1183/13993003.00321‑2015 26206875
    [Google Scholar]
  28. Hirayama M. Nosaki Y. Matsui K. Terao S. Kuwayama M. Tateyama H. Yoshida M. Hashizume Y. Efficacy of mefloquine to progressive multifocal leukoencephalopathy initially presented with parkinsonism. Clin. Neurol. Neurosurg. 2012 114 6 728 731 10.1016/j.clineuro.2011.12.010 22209147
    [Google Scholar]
  29. Gofton T.E. Al-Khotani A. O’Farrell B. Ang L.C. McLachlan R.S. Mefloquine in the treatment of progressive multifocal leukoencephalopathy. J. Neurol. Neurosurg. Psychiatry 2011 82 4 452 455 10.1136/jnnp.2009.190652 20562463
    [Google Scholar]
  30. Droguerre M. Duchêne A. Picoli C. Portal B. Lejards C. Guiard B.P. Meunier J. Villard V. Déglon N. Hamon M. Mouthon F. Charvériat M. Efficacy of THN201, a combination of donepezil and mefloquine, to reverse neurocognitive deficits in Alzheimer’s disease. Front. Neurosci. 2020 14 563 10.3389/fnins.2020.00563 32612499
    [Google Scholar]
  31. Xu X. Wang J. Han K. Li S. Xu F. Yang Y. Antimalarial drug mefloquine inhibits nuclear factor kappa B signaling and induces apoptosis in colorectal cancer cells. Cancer Sci. 2018 109 4 1220 1229 10.1111/cas.13540 29453896
    [Google Scholar]
  32. Vieira Santos V. Campos Pereira L. dos Santos Miranda A.L.L. Quadros H.C. Magalhães Moreira D.R. Johansson Azeredo F. Efficacy of artesunate-mefloquine combination therapy on survival in Plasmodium berghei-infected mice: A time-to-event analysis. Front Trop. Dis. 2024 5 1454252 10.3389/fitd.2024.1454252
    [Google Scholar]
  33. Lutz R.E. Ohnmacht C.J. Patel A.R. Antimalarials. 7. Bis(trifluoromethyl)-.alpha.-(2-piperidyl)-4-quinolinemethanols. J. Med. Chem. 1971 14 10 926 928 10.1021/jm00292a008 5115690
    [Google Scholar]
  34. Broger E.A. Hofheinz W. Meili A. Asymmetrische hydrierung. EP Patent 0553778 B1 2001
    [Google Scholar]
  35. Schmid R. Broger E.A. Cereghetti M. Crameri Y. Foricher J. Lalonde M. Müller R.K. Scalone M. Schoettel G. Zutter U. New developments in enantioselective hydrogenation. Pure Appl. Chem. 1996 68 1 131 138 10.1351/pac199668010131
    [Google Scholar]
  36. Xie Z.X. Zhang L.Z. Ren X.J. Tang S.Y. Li Y. Asymmetric synthesis of (+)‐(11 R, 12 S)‐Mefloquine hydrochloride. Chin. J. Chem. 2008 26 7 1272 1276 10.1002/cjoc.200890231
    [Google Scholar]
  37. Qiu Y. Kitamura S. Guillory J.K. A high-performance liquid chromatographic method for the quantitative enantioselective analysis of mefloquine stereoisomers. Pharm. Res. 1992 9 12 1640 1643 10.1023/A:1015832912774 1488410
    [Google Scholar]
  38. Kumar M.S. Nageshwar Y.V.D. Meshram H.M. A facile and alternative method for the synthesis of mefloquine. Synth. Commun. 1996 26 10 1913 1919 10.1080/00397919608003544
    [Google Scholar]
  39. Knight J.D. Sauer S.J. Coltart D.M. Asymmetric total synthesis of the antimalarial drug (+)-mefloquine hydrochloride via chiral N-amino cyclic carbamate hydrazones. Org. Lett. 2011 13 12 3118 3121 10.1021/ol2010193 21615091
    [Google Scholar]
  40. Lim D. Coltart D.M. Simple and efficient asymmetric α-alkylation and α,α-bisalkylation of acyclic ketones by using chiral N-amino cyclic carbamate hydrazones. Angew. Chem. Int. Ed. 2008 47 28 5207 5210 10.1002/anie.200800848 18528835
    [Google Scholar]
  41. Ding J. Hall D.G. Concise synthesis and antimalarial activity of all four mefloquine stereoisomers using a highly enantioselective catalytic borylative alkene isomerization. Angew. Chem. Int. Ed. 2013 52 31 8069 8073 10.1002/anie.201303931 23818420
    [Google Scholar]
  42. Lessard S. Peng F. Hall D.G. α-hydroxyalkyl heterocycles via chiral allylic boronates: Pd-catalyzed borylation leading to a formal enantioselective isomerization of allylic ether and amine. J. Am. Chem. Soc. 2009 131 28 9612 9613 10.1021/ja903946f 19552416
    [Google Scholar]
  43. Swamy K.C.K. Kumar N.N.B. Balaraman E. Kumar K.V.P.P. Mitsunobu and related reactions: Advances and applications. Chem. Rev. 2009 109 6 2551 2651 10.1021/cr800278z 19382806
    [Google Scholar]
  44. Rastelli E.J. Coltart D.M. A concise and highly enantioselective total synthesis of (+)‐anti‐and (−)‐syn‐Mefloquine hydrochloride: Definitive absolute stereochemical assignment of the mefloquines. Angew. Chem. 2015 127 47 14276 14280 10.1002/ange.201507304
    [Google Scholar]
  45. Jonet A. Dassonville-Klimpt A. Da Nascimento S. Leger J.M. Guillon J. Sonnet P. First enantioselective synthesis of 4-aminoalcohol quinoline derivatives through a regioselective SN2 epoxide opening mechanism. Tetrahedron Asymmetry 2011 22 2 138 148 10.1016/j.tetasy.2011.01.003
    [Google Scholar]
  46. Sharpless K.B. Amberg W. Bennani Y.L. Crispino G.A. Hartung J. Jeong K.S. Kwong H.L. Morikawa K. Wang Z.M. The osmium-catalyzed asymmetric dihydroxylation: A new ligand class and a process improvement. J. Org. Chem. 1992 57 10 2768 2771 10.1021/jo00036a003
    [Google Scholar]
  47. Racys D.T. Rea D. Fülöp V. Wills M. Inhibition of prolyl oligopeptidase with a synthetic unnatural dipeptide. Bioorg. Med. Chem. 2010 18 13 4775 4782 10.1016/j.bmc.2010.05.012 20627594
    [Google Scholar]
  48. Alibés R. Ballbé M. Busqué F. de March P. Elias L. Figueredo M. Font J. A new general access to either type of Securinega alkaloids: Synthesis of securinine and (-)-allonorsecurinine. Org. Lett. 2004 6 11 1813 1816 10.1021/ol049455+ 15151421
    [Google Scholar]
  49. Mengel A. Reiser O. Around and beyond Cram’s Rule. Chem. Rev. 1999 99 5 1191 1224 10.1021/cr980379w 11749444
    [Google Scholar]
  50. Trenholme G.M. Williams R.L. Desjardins R.E. Frischer H. Carson P.E. Rieckmann K.H. Canfield C.J. Mefloquine (WR 142,490) in the treatment of human malaria. Science 1975 190 4216 792 794 10.1126/science.1105787 1105787
    [Google Scholar]
  51. Croft A.M. A lesson learnt: The rise and fall of Lariam and Halfan. J. R. Soc. Med. 2007 100 4 170 174 10.1177/014107680710011411 17404338
    [Google Scholar]
  52. Zhang J. Krugliak M. Ginsburg H. The fate of ferriprotorphyrin IX in malaria infected erythrocytes in conjunction with the mode of action of antimalarial drugs. Mol. Biochem. Parasitol. 1999 99 1 129 141 10.1016/S0166‑6851(99)00008‑0 10215030
    [Google Scholar]
  53. Slater A.F.G. Cerami A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature 1992 355 6356 167 169 10.1038/355167a0 1729651
    [Google Scholar]
  54. Scholl P.F. Tripathi A.K. Sullivan D.J. Bioavailable iron and heme metabolism in Plasmodium falciparum. Curr. Top. Microbiol. Immunol. 2005 295 293 324 10.1007/3‑540‑29088‑5_12
    [Google Scholar]
  55. Ziegler J. Linck R. Wright D. Heme Aggregation inhibitors: Antimalarial drugs targeting an essential biomineralization process. Curr. Med. Chem. 2001 8 2 171 189 10.2174/0929867013373840 11172673
    [Google Scholar]
  56. Gildenhuys J. Sammy C.J. Müller R. Streltsov V.A. le Roex T. Kuter D. de Villiers K.A. Alkoxide coordination of iron(iii) protoporphyrin IX by antimalarial quinoline methanols: A key interaction observed in the solid-state and solution. Dalton Trans. 2015 44 38 16767 16777 10.1039/C5DT02671G 26335948
    [Google Scholar]
  57. Slater A.F.G. Chloroquine: Mechanism of drug action and resistance in plasmodium falciparum. Pharmacol. Ther. 1993 57 2-3 203 235 10.1016/0163‑7258(93)90056‑J 8361993
    [Google Scholar]
  58. Chou A.C. Fitch C.D. Control of heme polymerase by chloroquine and other quinoline derivatives. Biochem. Biophys. Res. Commun. 1993 195 1 422 427 10.1006/bbrc.1993.2060 8363618
    [Google Scholar]
  59. Campanale N. Nickel C. Daubenberger C.A. Wehlan D.A. Gorman J.J. Klonis N. Becker K. Tilley L. Identification and characterization of heme-interacting proteins in the malaria parasite, Plasmodium falciparum. J. Biol. Chem. 2003 278 30 27354 27361 10.1074/jbc.M303634200 12748176
    [Google Scholar]
  60. Hawley S.R. Bray P.G. Mungthin M. Atkinson J.D. O’Neill P.M. Ward S.A. Relationship between antimalarial drug activity, accumulation, and inhibition of heme polymerization in Plasmodium falciparum in vitro. Antimicrob. Agents Chemother. 1998 42 3 682 686 10.1128/AAC.42.3.682 9517951
    [Google Scholar]
  61. Portela C. Afonso C.M.M. Pinto M.M.M. João Ramos M. Definition of an electronic profile of compounds with inhibitory activity against hematin aggregation in malaria parasite. Bioorg. Med. Chem. 2004 12 12 3313 3321 10.1016/j.bmc.2004.03.060 15158799
    [Google Scholar]
  62. Chevli R. Fitch C.D. The antimalarial drug mefloquine binds to membrane phospholipids. Antimicrob. Agents Chemother. 1982 21 4 581 586 10.1128/AAC.21.4.581 6979309
    [Google Scholar]
  63. Jacobs G.H. Aikawa M. Milhous W.K. Rabbege J.R. An ultrastructural study of the effects of mefloquine on malaria parasites. Am. J. Trop. Med. Hyg. 1987 36 1 9 14 10.4269/ajtmh.1987.36.9 3544894
    [Google Scholar]
  64. Olliaro P. Castelli F. Caligaris S. Druilhe P. Carosi G. Ultrastructure of Plasmodium falciparum “in vitro”. II. Morphological patterns of different quinolines effects. Microbiologica 1989 12 1 15 28 2654570
    [Google Scholar]
  65. Desneves J. Thorn G. Berman A. Galatis D. La Greca N. Sinding J. Foley M. Deady L.W. Cowman A.F. Tilley L. Photoaffinity labeling of mefloquine-binding proteins in human serum, uninfected erythrocytes and Plasmodium falciparum-infected erythrocytes. Mol. Biochem. Parasitol. 1996 82 2 181 194 10.1016/0166‑6851(96)02732‑6 8946384
    [Google Scholar]
  66. Fitch C.D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004 74 16 1957 1972 10.1016/j.lfs.2003.10.003 14967191
    [Google Scholar]
  67. Famin O. Krugliak M. Ginsburg H. Kinetics of inhibition of glutathione-mediated degradation of ferriprotoporphyrin IX by antimalarial drugs. Biochem. Pharmacol. 1999 58 1 59 68 10.1016/S0006‑2952(99)00059‑3 10403519
    [Google Scholar]
  68. Mullié C. Jonet A. Dassonville-Klimpt A. Gosmann G. Sonnet P. Inhibitory effect of ursolic acid derivatives on hydrogen peroxide- and glutathione-mediated degradation of hemin: A possible additional mechanism of action for antimalarial activity. Exp. Parasitol. 2010 125 3 202 207 10.1016/j.exppara.2010.01.016 20109452
    [Google Scholar]
  69. Egan T.J. Quinoline antimalarials. Expert Opin. Ther. Pat. 2001 11 2 185 209 10.1517/13543776.11.2.185
    [Google Scholar]
  70. Hoppe H.C. van Schalkwyk D.A. Wiehart U.I.M. Meredith S.A. Egan J. Weber B.W. Antimalarial quinolines and artemisinin inhibit endocytosis in Plasmodium falciparum. Antimicrob. Agents Chemother. 2004 48 7 2370 2378 10.1128/AAC.48.7.2370‑2378.2004 15215083
    [Google Scholar]
  71. Famin O. Ginsburg H. Differential effects of 4-aminoquinoline-containing antimalarial drugs on hemoglobin digestion in Plasmodium falciparum-infected erythrocytes. Biochem. Pharmacol. 2002 63 3 393 398 10.1016/S0006‑2952(01)00878‑4 11853690
    [Google Scholar]
  72. Ghavami M. Dapper C.H. Dalal S. Holzschneider K. Klemba M. Carlier P.R. Parallel inhibition of amino acid efflux and growth of erythrocytic Plasmodium falciparum by mefloquine and non-piperidine analogs: Implication for the mechanism of antimalarial action. Bioorg. Med. Chem. Lett. 2016 26 19 4846 4850 10.1016/j.bmcl.2016.08.005 27544402
    [Google Scholar]
  73. Maertens C. Wei L. Droogmans G. Nilius B. Inhibition of volume-regulated and calcium-activated chloride channels by the antimalarial mefloquine. J. Pharmacol. Exp. Ther. 2000 295 1 29 36 10.1016/S0022‑3565(24)38865‑2 10991957
    [Google Scholar]
  74. Sullivan D.J. Matile H. Ridley R.G. Goldberg D.E. A common mechanism for blockade of heme polymerization by antimalarial quinolines. J. Biol. Chem. 1998 273 47 31103 31107 10.1074/jbc.273.47.31103 9813011
    [Google Scholar]
  75. Gunjan S. Singh S.K. Sharma T. Dwivedi H. Chauhan B.S. Imran Siddiqi M. Tripathi R. Mefloquine induces ROS mediated programmed cell death in malaria parasite: Plasmodium. Apoptosis 2016 21 9 955 964 10.1007/s10495‑016‑1265‑y 27357656
    [Google Scholar]
  76. Wong W. Bai X.C. Sleebs B.E. Triglia T. Brown A. Thompson J.K. Jackson K.E. Hanssen E. Marapana D.S. Fernandez I.S. Ralph S.A. Cowman A.F. Scheres S.H.W. Baum J. Mefloquine targets the Plasmodium falciparum 80S ribosome to inhibit protein synthesis. Nat. Microbiol. 2017 2 6 17031 10.1038/nmicrobiol.2017.31 28288098
    [Google Scholar]
  77. Kumar A. Ghosh D.K. Ali J. Ranjan A. Characterization of lipid binding properties of plasmodium falciparum acyl-coenzyme a binding protein and their competitive inhibition by mefloquine. ACS Chem. Biol. 2019 14 5 901 915 10.1021/acschembio.9b00003 30986346
    [Google Scholar]
  78. Sweeney T.R. The present status of malaria chemotherapy: Mefloquine, a novel antimalarial. Med. Res. Rev. 1981 1 3 281 301 10.1002/med.2610010304 7050565
    [Google Scholar]
  79. Rocha V.P.C. Nonato F.R. Guimarães E.T. Rodrigues de Freitas L.A. Soares M.B.P. Activity of antimalarial drugs in vitro and in a murine model of cutaneous leishmaniasis. J. Med. Microbiol. 2013 62 7 1001 1010 10.1099/jmm.0.058115‑0 23538561
    [Google Scholar]
  80. Küster T. Stadelmann B. Hermann C. Scholl S. Keiser J. Hemphill A. In vitro and in vivo efficacies of mefloquine-based treatment against alveolar echinococcosis. Antimicrob. Agents Chemother. 2011 55 2 713 721 10.1128/AAC.01392‑10 21135182
    [Google Scholar]
  81. Van Nassauw L. Toovey S. Van Op den bosch, J.; Timmermans, J.P.; Vercruysse, J.; Vercruysse, J. Schistosomicidal activity of the antimalarial drug, mefloquine, in Schistosoma mansoni-infected mice. Travel Med. Infect. Dis. 2008 6 5 253 258 10.1016/j.tmaid.2008.06.006 18760248
    [Google Scholar]
  82. Keiser J. Chollet J. Xiao S.H. Mei J.Y. Jiao P.Y. Utzinger J. Tanner M. Mefloquine--an aminoalcohol with promising antischistosomal properties in mice. PLoS Negl. Trop. Dis. 2009 3 1 350 10.1371/journal.pntd.0000350 19125172
    [Google Scholar]
  83. Manneck T. Haggenmüller Y. Keiser J. Morphological effects and tegumental alterations induced by mefloquine on schistosomula and adult flukes of Schistosoma mansoni. Parasitology 2010 137 1 85 98 10.1017/S0031182009990965 19814844
    [Google Scholar]
  84. Panic G. Ruf M.T. Keiser J. Immunohistochemical investigations of treatment with Ro 13-3978, praziquantel, oxamniquine, and mefloquine in Schistosoma mansoni-infected mice. Antimicrob. Agents Chemother. 2017 61 12 e01142 e17 10.1128/AAC.01142‑17 28971860
    [Google Scholar]
  85. Xiao S. Mei J. Jiao P. The in vitro effect of mefloquine and praziquantel against juvenile and adult Schistosoma japonicum. Parasitol. Res. 2009 106 1 237 246 10.1007/s00436‑009‑1656‑x 19851783
    [Google Scholar]
  86. Kondo Y. Kanzawa T. Sawaya R. Kondo S. The role of autophagy in cancer development and response to therapy. Nat. Rev. Cancer 2005 5 9 726 734 10.1038/nrc1692 16148885
    [Google Scholar]
  87. Notte A. Leclere L. Michiels C. Autophagy as a mediator of chemotherapy-induced cell death in cancer. Biochem. Pharmacol. 2011 82 5 427 434 10.1016/j.bcp.2011.06.015 21704023
    [Google Scholar]
  88. Sharma N. Thomas S. Golden E.B. Hofman F.M. Chen T.C. Petasis N.A. Schönthal A.H. Louie S.G. Inhibition of autophagy and induction of breast cancer cell death by mefloquine, an antimalarial agent. Cancer Lett. 2012 326 2 143 154 10.1016/j.canlet.2012.07.029 22863539
    [Google Scholar]
  89. He C. Klionsky D.J. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 2009 43 1 67 93 10.1146/annurev‑genet‑102808‑114910 19653858
    [Google Scholar]
  90. Mathew R. Karp C.M. Beaudoin B. Vuong N. Chen G. Chen H.Y. Bray K. Reddy A. Bhanot G. Gelinas C. DiPaola R.S. Karantza-Wadsworth V. White E. Autophagy suppresses tumorigenesis through elimination of p62. Cell 2009 137 6 1062 1075 10.1016/j.cell.2009.03.048 19524509
    [Google Scholar]
  91. Tate C.R. Rhodes L.V. Segar H.C. Driver J.L. Pounder F.N. Burow M.E. Collins-Burow B.M. Targeting triple-negative breast cancer cells with the histone deacetylase inhibitor panobinostat. Breast Cancer Res. 2012 14 3 R79 10.1186/bcr3192 22613095
    [Google Scholar]
  92. Yang S. Wang X. Contino G. Liesa M. Sahin E. Ying H. Bause A. Li Y. Stommel J.M. Dell’Antonio G. Mautner J. Tonon G. Haigis M. Shirihai O.S. Doglioni C. Bardeesy N. Kimmelman A.C. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011 25 7 717 729 10.1101/gad.2016111 21406549
    [Google Scholar]
  93. Glaumann H. Motakefi A.M. Jansson H. Intracellular distribution and effect of the antimalarial drug mefloquine on lysosomes of rat liver. Liver 1992 12 4 183 190 10.1111/j.1600‑0676.1992.tb01045.x 1406082
    [Google Scholar]
  94. Mu J.Y. Israili Z.H. Dayton P.G. Studies of the disposition and metabolism of mefloquine HCl (WR 142,490), a quinolinemethanol antimalarial, in the rat. Limited studies with an analog, WR 30,090. Drug Metab. Dispos. 1975 3 3 198 210 10.1016/S0090‑9556(25)05714‑9 238819
    [Google Scholar]
  95. Fujita R. Ishikawa M. Takayanagi M. Takayanagi Y. Sasaki K. Enhancement of doxorubicin activity in multidrug-resistant cells by mefloquine. Methods Find. Exp. Clin. Pharmacol. 2000 22 5 281 284 10.1358/mf.2000.22.5.796646 11031728
    [Google Scholar]
  96. Myeku N. Figueiredo-Pereira M.E. Dynamics of the degradation of ubiquitinated proteins by proteasomes and autophagy: Association with sequestosome 1/p62. J. Biol. Chem. 2011 286 25 22426 22440 10.1074/jbc.M110.149252 21536669
    [Google Scholar]
  97. Jaakkola P.M. Pursiheimo J.P. p62 degradation by autophagy: Another way for cancer cells to survive under hypoxia. Autophagy 2009 5 3 410 412 10.4161/auto.5.3.7823 19197142
    [Google Scholar]
  98. Guo B. Villeneuve D.J. Hembruff S.L. Kirwan A.F. Blais D.E. Bonin M. Parissenti A.M. Cross-resistance studies of isogenic drug-resistant breast tumor cell lines support recent clinical evidence suggesting that sensitivity to paclitaxel may be strongly compromised by prior doxorubicin exposure. Breast Cancer Res. Treat. 2004 85 1 31 51 10.1023/B:BREA.0000021046.29834.12 15039596
    [Google Scholar]
  99. Cho H.Y. Thomas S. Golden E.B. Gaffney K.J. Hofman F.M. Chen T.C. Louie S.G. Petasis N.A. Schönthal A.H. Enhanced killing of chemo-resistant breast cancer cells via controlled aggravation of ER stress. Cancer Lett. 2009 282 1 87 97 10.1016/j.canlet.2009.03.007 19345476
    [Google Scholar]
  100. Mechetner E. Kyshtoobayeva A. Zonis S. Kim H. Stroup R. Garcia R. Parker R.J. Fruehauf J.P. Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 1998 4 2 389 398 9516927
    [Google Scholar]
  101. Riffkin C.D. Chung R. Wall D.M. Zalcberg J.R. Cowman A.F. Foley M. Tilley L. Modulation of the function of human MDR1 P-glycoprotein by the antimalarial drug mefloquine. Biochem. Pharmacol. 1996 52 10 1545 1552 10.1016/S0006‑2952(96)00556‑4 8937469
    [Google Scholar]
  102. Duarte D. Vale N. New trends for antimalarial drugs: Synergism between antineoplastics and antimalarials on breast cancer cells. Biomolecules 2020 10 12 1623 10.3390/biom10121623 33271968
    [Google Scholar]
  103. Geng Y. Kohli L. Klocke B.J. Roth K.A. Chloroquine-induced autophagic vacuole accumulation and cell death in glioma cells is p53 independent. Neuro-oncol. 2010 12 5 473 481 20406898
    [Google Scholar]
  104. Maraka S. Groves M.D. Mammoser A.G. Melguizo-Gavilanes I. Conrad C.A. Tremont-Lukats I.W. Loghin M.E. O’Brien B.J. Puduvalli V.K. Sulman E.P. Hess K.R. Aldape K.D. Gilbert M.R. de Groot J.F. Alfred Yung W.K. Penas-Prado M. Phase 1 lead‐in to a phase 2 factorial study of temozolomide plus memantine, mefloquine, and metformin as postradiation adjuvant therapy for newly diagnosed glioblastoma. Cancer 2019 125 3 424 433 10.1002/cncr.31811 30359477
    [Google Scholar]
  105. Nevin R.L. Unexpectedly low rates of neuropsychiatric adverse effects associated with mefloquine repurposed for the treatment of glioblastoma. Cancer 2019 125 8 1384 1385 10.1002/cncr.31961 30707755
    [Google Scholar]
  106. Ying J. Xu Q. Liu B. Zhang G. Chen L. Pan H. The expression of the PI3K/AKT/mTOR pathway in gastric cancer and its role in gastric cancer prognosis. OncoTargets Ther. 2015 8 2427 2433 10.2147/OTT.S88592 26366097
    [Google Scholar]
  107. Tapia O. Riquelme I. Leal P. Sandoval A. Aedo S. Weber H. Letelier P. Bellolio E. Villaseca M. Garcia P. Roa J.C. The PI3K/AKT/mTOR pathway is activated in gastric cancer with potential prognostic and predictive significance. Virchows Arch. 2014 465 1 25 33 10.1007/s00428‑014‑1588‑4 24844205
    [Google Scholar]
  108. Riquelme I. Saavedra K. Espinoza J.A. Weber H. García P. Nervi B. Garrido M. Corvalán A.H. Roa J.C. Bizama C. Molecular classification of gastric cancer: Towards a pathway-driven targeted therapy. Oncotarget 2015 6 28 24750 24779 10.18632/oncotarget.4990 26267324
    [Google Scholar]
  109. Thomé M.P. Pereira L.C. Onzi G.R. Rohden F. Ilha M. Guma F.T. Wink M.R. Lenz G. Dipyridamole impairs autophagic flux and exerts antiproliferative activity on prostate cancer cells. Exp. Cell Res. 2019 382 1 111456 10.1016/j.yexcr.2019.06.001 31194978
    [Google Scholar]
  110. Liu M. Jiang L. Fu X. Wang W. Ma J. Tian T. Nan K. Liang X. Cytoplasmic liver kinase B1 promotes the growth of human lung adenocarcinoma by enhancing autophagy. Cancer Sci. 2018 109 10 3055 3067 10.1111/cas.13746 30033530
    [Google Scholar]
  111. White E. The role for autophagy in cancer. J. Clin. Invest. 2015 125 1 42 46 10.1172/JCI73941 25654549
    [Google Scholar]
  112. Xie Y. Zhang J. Lu B. Bao Z. Zhao J. Lu X. Wei Y. Yao K. Jiang Y. Yuan Q. Zhang X. Li B. Chen X. Dong Z. Liu K. Mefloquine inhibits esophageal squamous cell carcinoma tumor growth by inducing mitochondrial autophagy. Front. Oncol. 2020 10 1217 10.3389/fonc.2020.01217 32850358
    [Google Scholar]
  113. Wang H. Zhang Y. Tan P. Jia L. Chen Y. Zhou B. Mitochondrial respiratory chain dysfunction mediated by ROS is a primary point of fluoride-induced damage in Hepa1-6 cells. Environ. Pollut. 2019 255 Pt 3 113359 10.1016/j.envpol.2019.113359 31614248
    [Google Scholar]
  114. Janeway K.A. Kim S.Y. Lodish M. Nosé V. Rustin P. Gaal J. Dahia P.L.M. Liegl B. Ball E.R. Raygada M. Lai A.H. Kelly L. Hornick J.L. O’Sullivan M. de Krijger R.R. Dinjens W.N.M. Demetri G.D. Antonescu C.R. Fletcher J.A. Helman L. Stratakis C.A. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. Proc. Natl. Acad. Sci. USA 2011 108 1 314 318 10.1073/pnas.1009199108 21173220
    [Google Scholar]
  115. Killian J.K. Kim S.Y. Miettinen M. Smith C. Merino M. Tsokos M. Quezado M. Smith W.I. Jahromi M.S. Xekouki P. Szarek E. Walker R.L. Lasota J. Raffeld M. Klotzle B. Wang Z. Jones L. Zhu Y. Wang Y. Waterfall J.J. O’Sullivan M.J. Bibikova M. Pacak K. Stratakis C. Janeway K.A. Schiffman J.D. Fan J.B. Helman L. Meltzer P.S. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov. 2013 3 6 648 657 10.1158/2159‑8290.CD‑13‑0092 23550148
    [Google Scholar]
  116. Jandova J. Park S.L. Corenblum M.J. Madhavan L. Snell J.A. Rounds L. Wondrak G.T. Mefloquine induces ER stress and apoptosis in BRAFi‐resistant A375‐BRAF V600E/NRAS Q61K malignant melanoma cells targeting intracranial tumors in a bioluminescent murine model. Mol. Carcinog. 2022 61 6 603 614 10.1002/mc.23407 35417045
    [Google Scholar]
  117. Vander Heiden M.G. Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov. 2011 10 9 671 684 10.1038/nrd3504 21878982
    [Google Scholar]
  118. Li H. Jiao S. Li X. Banu H. Hamal S. Wang X. Therapeutic effects of antibiotic drug mefloquine against cervical cancer through impairing mitochondrial function and inhibiting mTOR pathway. Can. J. Physiol. Pharmacol. 2017 95 1 43 50 10.1139/cjpp‑2016‑0124 27831748
    [Google Scholar]
  119. Yan K.H. Yao C.J. Hsiao C.H. Lin K.H. Lin Y.W. Wen Y.C. Liu C.C. Yan M.D. Chuang S.E. Lai G.M. Lee L.M. Mefloquine exerts anticancer activity in prostate cancer cells via ROS-mediated modulation of Akt, ERK, JNK and AMPK signaling. Oncol. Lett. 2013 5 5 1541 1545 10.3892/ol.2013.1211 23760395
    [Google Scholar]
  120. Skulachev V.P. Bioenergetic aspects of apoptosis, necrosis and mitoptosis. Apoptosis 2006 11 4 473 485 10.1007/s10495‑006‑5881‑9 16532373
    [Google Scholar]
  121. Sukhai M.A. Prabha S. Hurren R. Rutledge A.C. Lee A.Y. Sriskanthadevan S. Sun H. Wang X. Skrtic M. Seneviratne A. Cusimano M. Jhas B. Gronda M. MacLean N. Cho E.E. Spagnuolo P.A. Sharmeen S. Gebbia M. Urbanus M. Eppert K. Dissanayake D. Jonet A. Dassonville-Klimpt A. Li X. Datti A. Ohashi P.S. Wrana J. Rogers I. Sonnet P. Ellis W.Y. Corey S.J. Eaves C. Minden M.D. Wang J.C.Y. Dick J.E. Nislow C. Giaever G. Schimmer A.D. Lysosomal disruption preferentially targets acute myeloid leukemia cells and progenitors. J. Clin. Invest. 2013 123 1 315 328 10.1172/JCI64180 23202731
    [Google Scholar]
  122. Xiang W. Lam Y.H. Sng C. Cheong M.A. Than H. Hwang W.Y.K. Chuah C. Mefloquine effectively targets blast phase chronic myeloid leukaemia through inducing oxidative stress and lysosomal disruption. Blood 2016 128 22 5426 10.1182/blood.V128.22.5426.5426
    [Google Scholar]
  123. Lam Yi H. Than H. Sng C. Cheong M.A. Chuah C. Xiang W. Lysosome inhibition by mefloquine preferentially enhances the cytotoxic effects of tyrosine kinase inhibitors in blast phase chronic myeloid leukaemia. Transl. Oncol. 2019 12 9 1221 1228 10.1016/j.tranon.2019.06.001 31276961
    [Google Scholar]
  124. Bermudez L.E. Meek L. Mefloquine and its enantiomers are active against mycobacterium tuberculosis in vitro and in macrophages. Tuberc. Res. Treat. 2014 2014 1 530815 25580293
    [Google Scholar]
  125. Rodrigues-Junior V.S. Villela A.D. Gonçalves R.S.B. Abbadi B.L. Trindade R.V. López-Gavín A. Tudó G. González-Martín J. Basso L.A. de Souza M.V.N. Campos M.M. Santos D.S. Mefloquine and its oxazolidine derivative compound are active against drug-resistant Mycobacterium tuberculosis strains and in a murine model of tuberculosis infection. Int. J. Antimicrob. Agents 2016 48 2 203 207 10.1016/j.ijantimicag.2016.04.029 27364701
    [Google Scholar]
  126. Sachdeva C. Wadhwa A. Kumari A. Hussain F. Jha P. Kaushik N.K. In silico potential of approved antimalarial drugs for repurposing against COVID-19. OMICS 2020 24 10 568 580 10.1089/omi.2020.0071 32757981
    [Google Scholar]
  127. Gendrot M. Andreani J. Boxberger M. Jardot P. Fonta I. Le Bideau M. Duflot I. Mosnier J. Rolland C. Bogreau H. Hutter S. La Scola B. Pradines B. Antimalarial drugs inhibit the replication of SARS-CoV-2: An in vitro evaluation. Travel Med. Infect. Dis. 2020 37 101873 10.1016/j.tmaid.2020.101873 32916297
    [Google Scholar]
  128. Jeon S. Ko M. Lee J. Choi I. Byun S.Y. Park S. Shum D. Kim S. Identification of antiviral drug candidates against SARS-CoV-2 from FDA-approved drugs. Antimicrob. Agents Chemother. 2020 64 7 e00819 e00820 10.1128/AAC.00819‑20 32366720
    [Google Scholar]
  129. Gendrot M. Duflot I. Boxberger M. Delandre O. Jardot P. Le Bideau M. Andreani J. Fonta I. Mosnier J. Rolland C. Hutter S. La Scola B. Pradines B. Antimalarial artemisinin-based combination therapies (ACT) and COVID-19 in Africa: In vitro inhibition of SARS-CoV-2 replication by mefloquine-artesunate. Int. J. Infect. Dis. 2020 99 437 440 10.1016/j.ijid.2020.08.032 32805422
    [Google Scholar]
  130. Sacramento C.Q. Fintelman-Rodrigues N. Dias S.S.G. Temerozo J.R. Da Silva A.P.D. da Silva C.S. Blanco C. Ferreira A.C. Mattos M. Soares V.C. Pereira-Dutra F. Miranda M.D. Barreto-Vieira D.F. da Silva M.A.N. Santos S.S. Torres M. Chaves O.A. Rajoli R.K.R. Paccanaro A. Owen A. Bou-Habib D.C. Bozza P.T. Souza T.M.L. Unlike chloroquine, mefloquine inhibits SARS-CoV-2 infection in physiologically relevant cells. Viruses 2022 14 2 374 10.3390/v14020374 35215969
    [Google Scholar]
  131. Teng J. Tannous B. THER-03. Repurposing mefloquine and analogues for dipg therapy. Neuro-oncol. 2019 21 Suppl. 2 ii114 10.1093/neuonc/noz036.210
    [Google Scholar]
  132. Martins A.C. Paoliello M.M.B. Docea A.O. Santamaria A. Tinkov A.A. Skalny A.V. Aschner M. Review of the mechanism underlying mefloquine-induced neurotoxicity. Crit. Rev. Toxicol. 2021 51 3 209 216 10.1080/10408444.2021.1901258 33905310
    [Google Scholar]
  133. Dietz A. Frölich L. Mefloquine-induced paranoid psychosis and subsequent major depression in a 25-year-old student. Pharmacopsychiatry 2002 35 5 200 202 10.1055/s‑2002‑34114 12237793
    [Google Scholar]
  134. Rendi-Wagner P. Noedl H. Wernsdorfer W.H. Wiedermann G. Mikolasek A. Kollaritsch H. Unexpected frequency, duration and spectrum of adverse events after therapeutic dose of mefloquine in healthy adults. Acta Trop. 2002 81 2 167 173 10.1016/S0001‑706X(01)00210‑8 11801224
    [Google Scholar]
  135. Lee S.J. ter Kuile F.O. Price R.N. Luxemburger C. Nosten F. Adverse effects of mefloquine for the treatment of uncomplicated malaria in Thailand: A pooled analysis of 19, 850 individual patients. PLoS One 2017 12 2 0168780 10.1371/journal.pone.0168780 28192434
    [Google Scholar]
  136. Hood J.E. Jenkins J.W. Milatovic D. Rongzhu L. Aschner M. Mefloquine induces oxidative stress and neurodegeneration in primary rat cortical neurons. Neurotoxicology 2010 31 5 518 523 10.1016/j.neuro.2010.05.005 20562019
    [Google Scholar]
  137. Cruikshank S.J. Hopperstad M. Younger M. Connors B.W. Spray D.C. Srinivas M. Potent block of Cx36 and Cx50 gap junction channels by mefloquine. Proc. Natl. Acad. Sci. USA 2004 101 33 12364 12369 10.1073/pnas.0402044101 15297615
    [Google Scholar]
  138. Dow G.S. Hudson T.H. Vahey M. Koenig M.L. The acute neurotoxicity of mefloquine may be mediated through a disruption of calcium homeostasis and ER function in vitro. Malar. J. 2003 2 1 14 10.1186/1475‑2875‑2‑14 12848898
    [Google Scholar]
  139. Gribble F.M. Davis T.M.E. Higham C.E. Clark A. Ashcroft F.M. The antimalarial agent mefloquine inhibits ATP‐sensitive K‐channels. Br. J. Pharmacol. 2000 131 4 756 760 10.1038/sj.bjp.0703638 11030725
    [Google Scholar]
  140. El Sharazly B.M. Ahmed A. Elsheikha H.M. Carter W.G. An In Silico and In vitro assessment of the neurotoxicity of mefloquine. Biomedicines 2024 12 3 505 10.3390/biomedicines12030505 38540118
    [Google Scholar]
  141. Dow G. Bauman R. Caridha D. Cabezas M. Du F. Gomez-Lobo R. Park M. Smith K. Cannard K. Mefloquine induces dose-related neurological effects in a rat model. Antimicrob. Agents Chemother. 2006 50 3 1045 1053 10.1128/AAC.50.3.1045‑1053.2006 16495267
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266389780250828104634
Loading
/content/journals/ctmc/10.2174/0115680266389780250828104634
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test