Skip to content
2000
image of Development and Exploration of Organic Compounds as AldoseReductase Inhibitors: An Overview

Abstract

Changes in the body's natural glucose levels have been associated with the onset of diabetes mellitus. It is frequently accompanied by a number of long-term consequences, including cardiovascular disease, retinopathy, nephropathy, and cataracts. Aldose reductase (AR), an enzyme belonging to the aldoketo reductase superfamily, plays a crucial role in the polyol pathway of glucose metabolism by converting glucose into sorbitol. Aldose reductase inhibitors (ARIs), a key target for reducing sorbitol flow through the polyol pathway, may be a new target for treating significant diabetic complications. A variety of structural classes of ARIs have been developed. These include: i) derivatives of carboxylic acids (., Epalrestat, Alrestatin, Zopalrestat, Zenarestat, Ponalrestat, Lidorestat, and Tolrestat); ii) derivatives of spirohydantoins and related cyclic amides (., Sorbinil, Minalrestat, and Fidarestat); and iii) phenolic derivatives (., related to Benzopyran-4-one and Chalcone). The current review article provides concise details of the various chemical classes that aldose reductase inhibitors play in the treatment of diabetic complications. This also describes the advancements made in ARI research and possible applications by obtaining the required data. The process involves thoroughly searching multiple databases—such as PubMed, ScienceDirect, and SciFinder—for citations.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266368117250826105101
2025-09-05
2025-11-09
Loading full text...

Full text loading...

References

  1. Report of the expert committee on the diagnosis and classification of Diabetes Mellitus. Diabetes Care 1997 20 7 1183 1197 10.2337/diacare.26.2007.s5 9203460
    [Google Scholar]
  2. Matsumoto T. Ono Y. Kurono M. Kuromiya A. Nakamura K. Bril V. Ranirestat (AS-3201), a potent aldose reductase inhibitor, reduces sorbitol levels and improves motor nerve conduction velocity in streptozotocin-diabetic rats. J. Pharmacol. Sci. 2008 107 3 231 237 18635918
    [Google Scholar]
  3. Bastaki S. Diabetes mellitus and its treatment. Int. J. Diabetes Metab. 2005 13 111 134
    [Google Scholar]
  4. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004 27 Suppl. 1 S5 S10 American Diabetes Association. 10.2337/diacare.27.2007.s5
    [Google Scholar]
  5. Diagnosis and classification of diabetes mellitus. Diabetes Care 2014 37 Suppl. 1 S81 S90 American Diabetes Association. 10.2337/dc14‑S081
    [Google Scholar]
  6. Diabetes Atlas I.D.F. VI International Diabetes Federation. Brussels, Belgium 2013
    [Google Scholar]
  7. Wild S. Roglic G. Green A. Sicree R. King H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care 2004 27 5 1047 1053 10.2337/diacare.27.5.1047 15111519
    [Google Scholar]
  8. Chamnan P. Simmons R.K. Forouhi N.G. Luben R.N. Khaw K.T. Wareham N.J. Griffin S.J. Incidence of type 2 diabetes using proposed HbA1c diagnostic criteria in the european prospective investigation of cancer-norfolk cohort: Implications for preventive strategies. Diabetes Care 2011 34 4 950 956 10.2337/dc09‑2326 20622160
    [Google Scholar]
  9. Olokoba A.B. Obateru O.A. Olokoba L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012 27 4 269 273 10.5001/omj.2012.68 23071876
    [Google Scholar]
  10. Mohan V. Anbalagan V.P. Expanding role of the Madras Diabetes Research Foundation - Indian Diabetes Risk Score in clinical practice. Indian J. Endocrinol. Metab. 2013 17 1 31 36 23776850
    [Google Scholar]
  11. Scheen A.J. Pathophysiology of type 2 diabetes. Acta Clin. Belg. 2003 58 6 335 341 10.1179/acb.2003.58.6.001 15068125
    [Google Scholar]
  12. Stumvoll M. Goldstein B.J. van Haeften T.W. Type 2 diabetes: Principles of pathogenesis and therapy. Lancet 2005 365 9467 1333 1346 15823385
    [Google Scholar]
  13. Stumvoll M. Goldstein B.J. van Haeften T.W. Type 2 diabetes: Pathogenesis and treatment. Lancet, 2008, 371, 2153-2156. [14] Kohei, K. Pathophysiology of type 2 diabetes and its treatment policy. JMA J. 2010 53 41 46
    [Google Scholar]
  14. Hoogwerf B.J. Complications of diabetes mellitus. Int. J. Diabetes Dev. Ctries. 2005 25 63 69
    [Google Scholar]
  15. Cade W.T. Diabetes-related microvascular and macrovascular diseases in the physical therapy setting. Phys. Ther. 2008 88 11 1322 1335 18801863
    [Google Scholar]
  16. Deshpande A.D. Harris-Hayes M. Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys. Ther. 2008 88 11 1254 1264 18801858
    [Google Scholar]
  17. King K.D. Jones J.D. Warthen J. Microvascular and macrovascular complications of diabetes mellitus. Am. J. Pharm. Educ. 2005 69 1 10
    [Google Scholar]
  18. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995 18 2 258 268 7729308
    [Google Scholar]
  19. Fowler M.J. Microvascular and Macrovascular Complications of Diabetes. Clin. Diabetes 2008 26 77 82
    [Google Scholar]
  20. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes 2005 54 6 1615 1625 15919781
    [Google Scholar]
  21. Forbes J.M. Cooper M.E. Mechanisms of diabetic complications. Physiol. Rev. 2013 93 1 137 188 23303908
    [Google Scholar]
  22. Niedowicz D.M. Daleke D.L. The role of oxidative stress in diabetic complications. Cell Biochem. Biophys. 2005 43 2 289 330 16049352
    [Google Scholar]
  23. Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001 414 6865 813 820 10.1038/414813a 11742414
    [Google Scholar]
  24. Oates P. Aldose reductase, still a compelling target for diabetic neuropathy. Curr. Drug Targets 2008 9 1 14 36 10.2174/138945008783431781 18220710
    [Google Scholar]
  25. Zhu C. Diabetes mellitus. Insights and Perspectives Oguntibeju; Tech, I. Tech I. In Tech: Rijeka 2013 17 46
    [Google Scholar]
  26. Obrosova I.G. Chung S.S.M. Kador P.F. Diabetic cataracts: Mechanisms and management. Diabetes Metab. Res. Rev. 2010 26 3 172 180 10.1002/dmrr.1075 20474067
    [Google Scholar]
  27. Lorenzi M. The polyol pathway as a mechanism for diabetic retinopathy: Attractive, elusive, and resilient. J. Diabetes Res. 2007 2007 1 061038 10.1155/2007/61038 18224243
    [Google Scholar]
  28. Dunlop M. Aldose reductase and the role of the polyol pathway in diabetic nephropathy. Kidney Int. 2000 58 S3 S12 10.1046/j.1523‑1755.2000.07702.x 10997684
    [Google Scholar]
  29. Chung S. Chung S. Aldose reductase in diabetic microvascular complications. Curr. Drug Targets 2005 6 4 475 486 10.2174/1389450054021891 16026266
    [Google Scholar]
  30. Li Q. Hwang Y.C. Ananthakrishnan R. Oates P.J. Guberski D. Ramasamy R. Polyol pathway and modulation of ischemia-reperfusion injury in Type 2 diabetic BBZ rat hearts. Cardiovasc. Diabetol. 2008 7 1 33 10.1186/1475‑2840‑7‑33 18957123
    [Google Scholar]
  31. Srivastava S.K. Ramana K.V. Bhatnagar A. Role of aldose reductase and oxidative damage in diabetes and the consequent potential for therapeutic options. Endocr. Rev. 2005 26 3 380 392 10.1210/er.2004‑0028 15814847
    [Google Scholar]
  32. Sangshetti J.N. Chouthe R.S. Sakle N.S. Gonjari I. Shinde D.B. Aldose reductase: A multi-disease target. Curr. Enzym. Inhib. 2014 10 2 12
    [Google Scholar]
  33. Kinoshita J.H. Fukushi S. Kador P. Merola L.O. Tammali R. Mohammad S. Ansari N.H. Bhatnagar A. Kinoshita J.H. Fukushi S. Kador P. Merola L.O. Aldose reductase in diabetic complications of the eye. Metabolism 1979 28 4 462 469 45423
    [Google Scholar]
  34. Lee A.Y. Chung S.S. Contributions of polyol pathway to oxidative stress in diabetic cataract. FASEB J. 1999 13 1 23 30 9872926
    [Google Scholar]
  35. Chung S.S.M. Ho E.C.M. Lam K.S.L. Chung S.K. Contribution of polyol pathway to diabetes-induced oxidative stress. J. Am. Soc. Nephrol. 2003 14 8 S233 S236 10.1097/01.ASN.0000077408.15865.06 12874437
    [Google Scholar]
  36. Chatzopoulou M. Alexiou P. Kotsampasakou E. Demopoulos V.J. Novel aldose reductase inhibitors: A patent survey (2006 – present). Expert Opin. Ther. Pat. 2012 22 11 1303 1323 10.1517/13543776.2012.726615 22998509
    [Google Scholar]
  37. Schade S.Z. Early S.L. Williams T.R. Kézdy F.J. Heinrikson R.L. Grimshaw C.E. Doughty C.C. Sequence analysis of bovine lens aldose reductase. J. Biol. Chem. 1990 265 7 3628 3635 10.1016/S0021‑9258(19)39639‑5 2105951
    [Google Scholar]
  38. Rondeau J.M. Tête-Favier F. Podjarny A. Reymann J.M. Barth P. Biellmann J.F. Moras D. Novel NADPH-binding domain revealed by the crystal structure of aldose reductase. Nature 1992 355 6359 469 472 10.1038/355469a0 1734286
    [Google Scholar]
  39. Wilson D.K. Bohren K.M. Gabbay K.H. Quiocho F.A. An unlikely sugar substrate site in the 1.65 A structure of the human aldose reductase holoenzyme implicated in diabetic complications. Science 1992 257 5066 81 84 10.1126/science.1621098 1621098
    [Google Scholar]
  40. Sotriffer C.A. Krämer O. Klebe G. Probing flexibility and “induced‐fit” phenomena in aldose reductase by comparative crystal structure analysis and molecular dynamics simulations. Proteins 2004 56 1 52 66 10.1002/prot.20021 15162486
    [Google Scholar]
  41. Urzhumtsev A. Tête-Favier F. Mitschler A. Barbanton J. Barth P. Urzhumtseva L. Biellmann J-F. Podjarny A.D. Moras D.A. ‘specificity’ pocket inferred from the crystal structures of the complexes of aldose reductase with the pharmaceutically important inhibitors tolrestat and sorbinil. Structure 1997 5 5 601 612 10.1016/S0969‑2126(97)00216‑5 9195881
    [Google Scholar]
  42. Steuber H. Zentgraf M. Gerlach C. Sotriffer C.A. Heine A. Klebe G. Expect the unexpected or caveat for drug designers: Multiple structure determinations using aldose reductase crystals treated under varying soaking and co-crystallisation conditions. J. Mol. Biol. 2006 363 1 174 187 10.1016/j.jmb.2006.08.011 16952371
    [Google Scholar]
  43. Howard E.I. Sanishvili R. Cachau R.E. Mitschler A. Chevrier B. Barth P. Lamour V. Van Zandt M. Sibley E. Bon C. Moras D. Schneider T.R. Joachimiak A. Podjarny A. Ultrahigh resolution drug design I: Details of interactions in human aldose reductase–inhibitor complex at 0.66 Å. Proteins 2004 55 4 792 804 10.1002/prot.20015 15146478
    [Google Scholar]
  44. El-Kabbani O. Ramsland P. Darmanin C. Chung R.P.T. Podjarny A. Structure of human aldose reductase holoenzyme in complex with Statil: An approach to structure‐based inhibitor design of the enzyme. Proteins 2003 50 2 230 238 10.1002/prot.10278 12486717
    [Google Scholar]
  45. El-Kabbani O. Darmanin C. Schneider T.R. Hazemann I. Ruiz F. Oka M. Joachimiak A. Schulze-Briese C. Tomizaki T. Mitschler A. Podjarny A. Ultrahigh resolution drug design. II. Atomic resolution structures of human aldose reductase holoenzyme complexed with fidarestat and minalrestat: Implications for the binding of cyclic imide inhibitors. Proteins 2004 55 4 805 813 10.1002/prot.20001 15146479
    [Google Scholar]
  46. Kador P.F. Kinoshita J.H. Sharpless N.E. Aldose reductase inhibitors: A potential new class of agents for the pharmacological control of certain diabetic complications. J. Med. Chem. 1985 28 7 841 849 10.1021/jm00145a001 3925146
    [Google Scholar]
  47. a Suzen S. Buyukbingol E. Recent studies of aldose reductase enzyme inhibition for diabetic complications. Curr. Med. Chem. 2022 10 15 1329 1352 10.2174/0929867033457377
    [Google Scholar]
  48. b Hayman S. Kinoshita J.H. Isolation and properties of lens aldose reductase. J. Biol. Chem. 1965 240 2 877 882
    [Google Scholar]
  49. Kikkawa R. Hatanaka I. Yasuda H. Kobayashi N. Shigeta Y. Terashima H. Morimura T. Tsuboshima M. Effect of a new aldose reductase inhibitor, (E)-3-carboxymethyl-5-[(2E)-methyl-3-phenylpropenylidene]rhodanine (ONO-2235) on peripheral nerve disorders in streptozotocin-diabetic rats. Diabetologia 1983 24 4 290 292 10.1007/BF00282716 6407887
    [Google Scholar]
  50. Sestanj K. Bellini F. Fung S. Abraham N. Treasurywala A. Humber L. Simard-Dequesne N. Dvornik D.N. -[[5-(Trifluoromethyl)-6-methoxy-1-naphthalenyl]thioxomethyl]-N-methylglycine (Tolrestat), a potent, orally active aldose reductase inhibitor. J. Med. Chem. 1984 27 3 255 256 10.1021/jm00369a003 6422042
    [Google Scholar]
  51. Ao S. Shingu Y. Kikuchi C. Takano Y. Nomura K. Fujiwara T. Ohkubo Y. Notsu Y. Yamaguchi I. Characterization of a novel aldose reductase inhibitor, FR74366, and its effects on diabetic cataract and neuropathy in the rat. Metabolism 1991 40 1 77 87 10.1016/0026‑0495(91)90196‑4 1898618
    [Google Scholar]
  52. Mylari B.L. Larson E.R. Beyer T.A. Zembrowski W.J. Aldinger C.E. Dee M.F. Siegel T.W. Singleton D.H. Novel, potent aldose reductase inhibitors: 3,4-dihydro-4-oxo-3-[[5-(trifluoromethyl)-2-benzothiazolyl]methyl]-1-phthalazineacetic acid (zopolrestat) and congeners. J. Med. Chem. 1991 34 1 108 122 10.1021/jm00105a018 1899452
    [Google Scholar]
  53. Stribling D. Mirrlees D.J. Harrison H.E. Earl D.C.N. Properties of ICI 128,436, a novel aldose reductase inhibitor, and its effects on diabetic complications in the rat. Metabolism 1985 34 4 336 344 10.1016/0026‑0495(85)90223‑9 3920474
    [Google Scholar]
  54. Zenarestat F.K. 366, FR 74366, FR 901366. Drugs R D. 2002 3 4 235 237 12455199
    [Google Scholar]
  55. Billon F. Delchambre C. Cloarec A. Sartori E. Teulon J.M. Aldose reductase inhibition by 2,4-oxo and thioxo derivatives of 1,2,3,4-tetrahydroquinazoline. Eur. J. Med. Chem. 1990 25 121 126 10.1016/0223‑5234(90)90019‑Y
    [Google Scholar]
  56. Nicolaï E. Güngör T. Goyard J. Cure G. Fouquet A. Teulon J.M. Delchambre C. Cloarec A. Synthesis and aldose reductase inhibitory activity of N-(quinolinyl thiocarbonyl) glycine derivatives. Eur. J. Med. Chem. 1992 27 9 977 984 10.1016/0223‑5234(92)90032‑V
    [Google Scholar]
  57. Howard H.R. Sarges R. Siegel T.W. Beyer T.A. Synthesis and aldose reductase inhibitory activity of substituted 2(1H)-benzimidazolone- and oxindole-1-acetic acids. Eur. J. Med. Chem. 1992 27 8 779 789 10.1016/0223‑5234(92)90112‑E
    [Google Scholar]
  58. Smar M.W. Ares J.J. Nakayama T. Itabe H. Kador P.F. Miller D.D. Selective irreversible inhibitors of aldose reductase. J. Med. Chem. 1992 35 6 1117 1120 10.1021/jm00084a017 1552504
    [Google Scholar]
  59. Ogawva K. Yamawaki I. Matsusita Y.I. Nomura N. Kador P.F. Kinoshita J.H. Syntheses of substituted 2,4-dioxo-thienopyrimidin-1-acetic acids and their evaluation as aldose reductase inhibitors. Eur. J. Med. Chem. 1993 28 10 769 781 10.1016/0223‑5234(93)90112‑R
    [Google Scholar]
  60. Yamawaki I. Matsushita Y. Asaka N. Ohmori K. Nomura N. Ogawa K. Synthesis and aldose reductase inhibitory activity of acetic acid derivatives of pyrrolo[1,2-c]imidazole. Eur. J. Med. Chem. 1993 28 6 481 498 10.1016/0223‑5234(93)90016‑8
    [Google Scholar]
  61. Coudert P. Albuisson E. Boire J.Y. Duroux E. Bastide P. Couquelet J. Synthesis of pyridazine acetic acid derivatives possessing aldose reductase inhibitory activity and antioxidant properties. Eur. J. Med. Chem. 1994 29 6 471 477 10.1016/0223‑5234(94)90074‑4
    [Google Scholar]
  62. Balsamo A. Belfiore M.S. Macchia M. Martini C. Nencetti S. Orlandini E. Rossello A. Synthesis and aldose reductase inhibitory activity of N-(arylsulfonyl)- and N-(aroyl)-N-(arylmethyloxy)glycines. Eur. J. Med. Chem. 1994 29 10 787 794 10.1016/0223‑5234(94)90138‑4
    [Google Scholar]
  63. Lei Y. Zhang X. Zhang X. Xu L. Liu W. Chen H. Zhu, Changjin Design of benzothiazolone‐based carboxylic acid aldose reductase inhibitors. Chem. Sel 2021 6 20 4874 4880 10.1002/slct.202101443
    [Google Scholar]
  64. Akdağ M. Özçelik A.B. Demir Y. Beydemir Ş. Design, synthesis, and aldose reductase inhibitory effect of some novel carboxylic acid derivatives bearing 2-substituted-6-aryloxo-pyridazinone moiety. J. Mol. Struct. 2022 1258 15 132675 10.1016/j.molstruc.2022.132675
    [Google Scholar]
  65. Hasler H. Kaufmann F. Pirson W. Schneider F. Substituted spiro[chroman-4,5′-thiazolidine]-2′,4′-diones as aldose reductase inhibitors. Eur. J. Med. Chem. 1987 22 6 559 567 10.1016/0223‑5234(87)90297‑2
    [Google Scholar]
  66. Bovy P. Lenaers A. Callaert M. Herickx N. Gillet C. Roba J. Dethy J.M. Callaert-Deveen B. Janssens M. Synthesis and aldose reductase inhibition activity of spiro-[9H-fluoren-9,4′-imidazolidine]-2′,5′-dione derivatives. Eur. J. Med. Chem. 1988 23 2 165 172 10.1016/0223‑5234(88)90190‑0
    [Google Scholar]
  67. Malamas M.S. Sestanj K. Millen J. Naphthalenylsulfonyl-hydantoins as aldose reductase inhibitors. Eur. J. Med. Chem. 1991 26 4 369 374 10.1016/0223‑5234(91)90096‑6
    [Google Scholar]
  68. Lee Y.S. Chen Z. Kador P.F. Molecular modeling studies of the binding modes of aldose reductase inhibitors at the active site of human aldose reductase. Bioorg. Med. Chem. 1998 6 10 1811 1819 10.1016/S0968‑0896(98)00139‑4 9839011
    [Google Scholar]
  69. Oka M. Matsumoto Y. Sugiyama S. Tsuruta N. Matsushima M. A potent aldose reductase inhibitor, (2S,4S)-6-fluoro-2′, 5′-dioxospiro[chroman-4,4′-imidazolidine]-2-carboxamide (Fidarestat): Its absolute configuration and interactions with the aldose reductase by X-ray crystallography. J. Med. Chem. 2000 43 12 2479 2483 10.1021/jm990502r 10882376
    [Google Scholar]
  70. Da Settimo F. Primofiore G. La Motta C. Salerno S. Novellino E. Greco G. Lavecchia A. Laneri S. Boldrini E. Spirohydantoin derivatives of thiopyrano[2,3-b]pyridin-4(4H)-one as potent in vitro and in vivo aldose reductase inhibitors. Bioorg. Med. Chem. 2005 13 2 491 499 10.1016/j.bmc.2004.10.019 15598571
    [Google Scholar]
  71. Ramunno A. Cosconati S. Sartini S. Maglio V. Angiuoli S. La Pietra V. Di Maro S. Giustiniano M. La Motta C. Da Settimo F. Marinelli L. Novellino E. Progresses in the pursuit of aldose reductase inhibitors: The structure-based lead optimization step. Eur. J. Med. Chem. 2012 51 216 226 10.1016/j.ejmech.2012.02.045 22436396
    [Google Scholar]
  72. Iqbal Z. Ali S. Iqbal J. Abbas Q. Qureshi I.Z. Hameed S. Dual action spirobicycloimidazolidine-2,4-diones: Antidiabetic agents and inhibitors of aldose reductase-an enzyme involved in diabetic complications. Bioorg. Med. Chem. Lett. 2013 23 2 488 491 10.1016/j.bmcl.2012.11.039 23246355
    [Google Scholar]
  73. Yang S. Qin X. Luo T. Hao X. Novel nitro derivatives of benzothiadiazine 1,1-dioxide as aldose reductase inhibitors. Conference 2015 International Conference on Industrial Technology and Management Science 2015 10.2991/itms‑15.2015.260
    [Google Scholar]
  74. Gören K. Ümit Y. Aldose reductase evaluation against diabetic complications using adme and molecular docking studies and DFT calculations of spiroindoline derivative molecule. J. Nat. Appl. Sci. 2024 28 2 281 292
    [Google Scholar]
  75. Pegklidou K. Koukoulitsa C. Nicolaou I. Demopoulos V.J. Design and synthesis of novel series of pyrrole based chemotypes and their evaluation as selective aldose reductase inhibitors. A case of bioisosterism between a carboxylic acid moiety and that of a tetrazole. Bioorg. Med. Chem. 2010 18 6 2107 2114 10.1016/j.bmc.2010.02.010 20189816
    [Google Scholar]
  76. Kotsampasakou E. Demopoulos V.J. Synthesis of derivatives of the keto-pyrrolyl-difluorophenol scaffold: Some structural aspects for aldose reductase inhibitory activity and selectivity. Bioorg. Med. Chem. 2013 21 4 869 873 10.1016/j.bmc.2012.12.015 23312612
    [Google Scholar]
  77. Haoa X. Novel 2-phenoxypyrido[3,2- b]pyrazin-3(4 H)-one derivatives as potent and selective aldose reductase inhibitors with antioxidant activity. J. Enzyme Inhib. Med. Chem. 2019 34 1 1368 1372 10.1080/14756366.2019.1643336
    [Google Scholar]
  78. Saab N. Phenylsulfonylnitromethanes as potent irreversible inhibitors of aldose reductase. Eur. J. Med. Chem. 1999 34 9 745 751 10.1016/S0223‑5234(99)00219‑6
    [Google Scholar]
  79. Inoue J. Cui Y.S. Sakai O. Nakamura Y. Kogiso H. Kador P.F. Synthesis and aldose reductase inhibitory activities of novel N -nitromethylsulfonanilide derivatives. Bioorg. Med. Chem. 2000 8 8 2167 2173 10.1016/S0968‑0896(00)00158‑9 11003161
    [Google Scholar]
  80. Hussain S. Parveen S. Qin X. Hao X. Zhang S. Chen X. Zhu C. Ma B. Novel synthesis of nitro-quinoxalinone derivatives as aldose reductase inhibitors. Bioorg. Med. Chem. Lett. 2014 24 9 2086 2089 10.1016/j.bmcl.2014.03.053 24726808
    [Google Scholar]
  81. Ovais S. Pushpalatha H. Reddy G.B. Rathore P. Bashir R. Yaseen S. Dheyaa A. Yaseen R. Tanwar O. Akthar M. Samim M. Javed K. Synthesis and biological evaluation of some new pyrazoline substituted benzenesulfonylurea/thiourea derivatives as anti-hyperglycaemic agents and aldose reductase inhibitors. Eur. J. Med. Chem. 2014 80 209 217 10.1016/j.ejmech.2014.04.046 24780598
    [Google Scholar]
  82. Demir Y. Koksal Z. Some sulfonamides as aldose reductase inhibitors: Therapeutic approach in diabetes. Arch. Physiol. Biochem. 2020 128 4 979 984 10.1080/13813455.2020.1742166 32202954
    [Google Scholar]
  83. Yin L. Zhang M. He T. Design and development of novel thiazole-sulfonamide derivatives as a protective agent against diabetic cataract in Wistar rats via inhibition of aldose reductase. Heterocycl. Commun. 2021 27 1 63 70 10.1515/hc‑2020‑0124
    [Google Scholar]
  84. Maccari R. Ottanà R. Ciurleo R. Rakowitz D. Matuszczak B. Laggner C. Langer T. Synthesis, induced-fit docking investigations, and in vitro aldose reductase inhibitory activity of non-carboxylic acid containing 2,4-thiazolidinedione derivatives. Bioorg. Med. Chem. 2008 16 11 5840 5852 18492610
    [Google Scholar]
  85. Maccari R. Ciurleo R. Giglio M. Cappiello M. Moschini R. Corso A.D. Mura U. Ottanà R. Identification of new non-carboxylic acid containing inhibitors of aldose reductase. Bioorg. Med. Chem. 2010 18 11 4049 4055 10.1016/j.bmc.2010.04.016 20452228
    [Google Scholar]
  86. Mylari B.L. Beyer T.A. Scott P.J. Aldinger C.E. Dee M.F. Siegel T.W. Zembrowski W.J. Potent, orally active aldose reductase inhibitors related to zopolrestat: Surrogates for benzothiazole side chain. J. Med. Chem. 1992 35 3 457 465 10.1021/jm00081a006 1738141
    [Google Scholar]
  87. Mylari B.L. Armento S.J. Beebe D.A. Conn E.L. Coutcher J.B. Dina M.S. O’Gorman M.T. Linhares M.C. Martin W.H. Oates P.J. Tess D.A. Withbroe G.J. Zembrowski W.J. A novel series of non-carboxylic acid, non-hydantoin inhibitors of aldose reductase with potent oral activity in diabetic rat models: 6-(5-chloro-3-methylbenzofuran-2-sulfonyl)-2H-pyridazin-3-one and congeners. J. Med. Chem. 2005 48 20 6326 6339 10.1021/jm050462t 16190759
    [Google Scholar]
  88. Richon A.B. Maragoudakis M.E. Wasvary J.S. Isoxazolidine-3,5-diones as lens aldose reductase inhibitors. J. Med. Chem. 1982 25 6 745 747 10.1021/jm00348a026 6808134
    [Google Scholar]
  89. Hall I.H. Izydore R.A. Simlot R. Wong O.T. Potential aldose reductase inhibitors: 1,2,4-triazolidine-3,5-diones and 2-(3,4,5-trimethoxybenzoyl)-4,4-diethyl-3,5-isoxazolidinedione. Experientia 1992 48 4 383 386 1582496
    [Google Scholar]
  90. Negoro T. Murata M. Ueda S. Fujitani B. Ono Y. Kuromiya A. Komiya M. Suzuki K. Matsumoto J. Novel, highly potent aldose reductase inhibitors: (R)-(-)-2-(4-bromo-2-fluorobenzyl)-1,2,3,4- tetrahydropyrrolo[1,2-a]pyrazine -4-spiro-3′-pyrrolidine-1,2′,3,5′-tetrone (AS-3201) and its congeners. J. Med. Chem. 1998 41 21 4118 4129 9767647
    [Google Scholar]
  91. Saito R. Tokita M. Uda K. Ishikawa C. Satoh M. Synthesis and in vitro evaluation of botryllazine B analogues as a new class of inhibitor against human aldose reductase. Tetrahedron 2009 65 3019 3026
    [Google Scholar]
  92. Pozarentzi M. Stephanidou-Stephanatou J. Tsoleridis C.A. Zika C. Demopoulos V.A. combinatorial access to 1,5- benzodiazepine derivatives and their evaluation for aldose reductase inhibition. Tetrahedron 2009 65 7741 7751
    [Google Scholar]
  93. Rao V.R. Muthenna P. Shankaraiah G. Akileshwari C. Babu K.H. Suresh G. Babu K.S. Chandra Kumar R.S. Prasad K.R. Yadav P.A. Petrash J.M. Reddy G.B. Rao J.M. Synthesis and biological evaluation of new piplartine analogues as potent aldose reductase inhibitors (ARIs). Eur. J. Med. Chem. 2012 57 344 361 23124161
    [Google Scholar]
  94. Endo S. Hu D. Suyama M. Matsunaga T. Sugimoto K. Matsuya Y. El-Kabbani O. Kuwata K. Hara A. Kitade Y. Toyooka N. Synthesis and structure-activity relationship of 2-phenyliminochromene derivatives as inhibitors for aldo-keto reductase (AKR) 1B10. Bioorg. Med. Chem. 2013 21 21 6378 6384 24071447
    [Google Scholar]
  95. Soda M. Hu D. Endo S. Takemura M. Li J. Wada R. Ifuku S. Zhao H.T. El-Kabbani O. Ohta S. Yamamura K. Toyooka N. Hara A. Matsunaga T. Design, synthesis and evaluation of caffeic acid phenethyl ester-based inhibitors targeting a selectivity pocket in the active site of human aldo-keto reductase 1B10. Eur. J. Med. Chem. 2012 48 321 329 22236472
    [Google Scholar]
  96. Inoue J. Cui Y-S. Rodriguez L. Chen Z. Kador P.F. Synthesis and aldose reductase inhibitory activities of novel dibenzocycloheptenone derivatives. Eur. J. Med. Chem. 1999 34 399 404
    [Google Scholar]
  97. Rastelli G. Ferrari A.M. Costantino L. Gamberini M.C. Discovery of new inhibitors of aldose reductase from molecular docking and database screening. Bioorg. Med. Chem. 2002 10 5 1437 1450 11886806
    [Google Scholar]
  98. Kadam A. Dawane B. Pawar M. Shegokar H. Patil K. Meshram R. Gacche R. Development of novel pyrazolone derivatives as inhibitors of aldose reductase: An eco-friendly one-pot synthesis, experimental screening and in silico analysis. Bioorg. Chem. 2014 53 67 74 24607578
    [Google Scholar]
  99. Costantino L. Del Corso A. Rastelli G. Petrash J.M. Mura U. 7-Hydroxy-2-substituted-4-H-1-benzopyran-4-one derivatives as aldose reductase inhibitors: A SAR study. Eur. J. Med. Chem. 2001 36 9 697 703 11672879
    [Google Scholar]
  100. Wang Q.Q. Cheng N. Zheng X.W. Peng S.M. Zou X.Q. Synthesis of organic nitrates of luteolin as a novel class of potent aldose reductase inhibitors. Bioorg. Med. Chem. 2013 21 14 4301 4310 23683835
    [Google Scholar]
  101. La Motta C. Sartini S. Mugnaini L. Simorini F. Taliani S. Salerno S. Marini A.M. Da Settimo F. Lavecchia A. Novellino E. Cantore M. Failli P. Ciuffi M. Pyrido[1,2-a]pyrimidin-4-one derivatives as a novel class of selective aldose reductase inhibitors exhibiting antioxidant activity. J. Med. Chem. 2007 50 20 4917 4927 17845019
    [Google Scholar]
  102. de la Fuente J.A. Manzanaro S. Martín M.J. de Quesada T.G. Reymundo I. Luengo S.M. Gago F. Synthesis, activity, and molecular modeling studies of novel human aldose reductase inhibitors based on a marine natural product. J. Med. Chem. 2003 46 24 5208 5221 10.1021/jm030957n 14613323
    [Google Scholar]
  103. Manzanaro S. Salvá J. de la Fuente J.Á. Phenolic marine natural products as aldose reductase inhibitors. J. Nat. Prod. 2006 69 10 1485 1487 10.1021/np0503698 17067167
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266368117250826105101
Loading
/content/journals/ctmc/10.2174/0115680266368117250826105101
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: polyol pathway ; nephropathy ; diabetes ; Aldose reductase inhibitors ; retinopathy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test