Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
21 - 40 of 108 results
-
-
Research Progress in Chemical Synthesis and Biosynthesis of Bioactive Pyridine Alkaloids
Available online: 11 August 2025More LessPyridine alkaloids possess important biological activities and are widely used in fields such as medicine and pesticides. This paper comprehensively reviews the research progress in the chemical synthesis and biosynthesis of pyridine alkaloids. In terms of chemical synthesis, there are diverse synthesis methods for arylpyridine compounds. For example, 2,4,6-triarylpyridine can be synthesized by using iron-organic framework materials or other reagents. The 3-ethylsulfone pyridine compounds with aryltriazole structures can be synthesized through specific reactions. And 2-arylpyridine can also be synthesized in this way. Heterocyclic pyridine compounds can be prepared into their corresponding derivatives through multiple approaches. The synthesis of polysubstituted pyridine adopts reactions such as cycloaddition, Diels-Alder, condensation, cyclization, and aromatization. The synthesis of polypyridine focuses on the construction of new complexes. Other synthesis methods such as ultrasound-assisted synthesis are also introduced. The main biosynthesis pathways include the co-synthesis of polyketide synthase and non-ribosomal peptide synthase, the origin of lysine, the participation of aspartate, and the synthesis of thiopeptide antibiotics. Meanwhile, the biosynthesis pathways of pyridomycin, pyridine pigment compounds in functional red yeast rice, and vitamin B6 were also discussed, which provides a theoretical basis for further research and application of pyridine alkaloids.
-
-
-
Macrophage-Related GBP4 as a Novel Biomarker for Crohn’s Disease: Insights from WGCNA, Mendelian Randomization, and Immunohistochemical Validation
Available online: 06 August 2025More LessIntroductionCrohn's disease (CD) is a complex inflammatory bowel disorder with incompletely understood mechanisms. This study aimed to identify novel biomarkers and elucidate macrophage-related pathogenesis in CD.
MethodsUsing gene expression data (GSE17928522) from the Gene Expression Omnibus (GEO) database, we compared 1135 CD patients with 180 healthy controls to identify altered gene expression profiles. Immune infiltration analysis was conducted to evaluate changes in immune cell subpopulations. Weighted Gene Co-expression Network Analysis (WGCNA) was employed to construct gene co-expression networks and identify macrophage-associated modules. Mendelian randomization was used to validate the causal role of macrophages. For ex vivo validation, immunohistochemical staining of GBP4 protein expression was performed in colonic tissue samples from 6 CD patients (with ileal or colonic lesions). Non-lesional tissues from the same patients served as intra-individual controls to minimize inter-patient variability.
ResultsOur analysis revealed significant changes in immune cell subpopulations, particularly macrophages, within the CD microenvironment. A macrophage-associated module was identified, with GBP4 emerging as a critical gene. Immunohistochemical staining confirmed differential expression of GBP4 in CD tissue samples compared to controls.
DiscussionThis multi-modal study establishes GBP4 as a novel macrophage-associated biomarker for CD, supported by causal Mendelian randomization and immunohistochemical validation. The integration of WGCNA and genetic evidence strengthens the role of macrophage dysregulation in CD pathogenesis. Limitations include population bias in genomic data and small validation cohorts, but the consistency across methodologies underscores GBP4's potential as a therapeutic target.
ConclusionOur findings highlight GBP4 as a novel potential biomarker and therapeutic target in CD, providing insights into the immune-mediated mechanisms underlying the disease. These results contribute to a better understanding of CD pathogenesis and may lead to new therapeutic strategies.
-
-
-
Comprehensive Analysis of TSPAN11: A Potential Prognostic and Immunotherapy Biomarker in Colorectal Cancer
Authors: Pengjun Sun, Dongbing Li and Jiajia YanAvailable online: 06 August 2025More LessIntroductionColorectal cancer (CRC) remains a significant global health challenge due to its high incidence and mortality rates. The disease's complexity and heterogeneity impede early diagnosis and effective treatment. The study aims to investigate the role of Tetraspanin 11 (TSPAN11) in CRC, exploring its potential as a prognostic biomarker and immunotherapy target through bioinformatics analysis and experimental validation.
MethodsPan-cancer patient data were obtained from The Cancer Genome Atlas (TCGA) and the GSE71187 dataset, including 672 CRC tissues and 51 adjacent normal tissues. Differential expression analysis, Kaplan-Meier survival analysis, gene set enrichment analysis (GSEA), and immune infiltration assessment were performed. TSPAN11 expression was validated in CRC cell lines using quantitative reverse transcription PCR (qRT-PCR).
ResultsTSPAN11 was significantly downregulated in CRC tissues compared to normal tissues (p < 0.001), with lower expression associated with poorer overall survival (OS; p = 0.011) and disease-specific survival (DSS; p = 0.038). Multivariate analysis identified TSPAN11 as an independent prognostic factor (p = 0.045). TSPAN11 expression was linked to key pathways such as ECM receptor interaction and TGF-β signaling, and correlated with immune infiltration, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), and drug sensitivity.
DiscussionThe findings suggest that TSPAN11 may influence CRC progression through multiple biological pathways and immune-related mechanisms. Its downregulation is associated with poorer prognosis and immune evasion, highlighting its potential as a biomarker and therapeutic target. However, validation in larger cohorts and elucidation of underlying mechanisms are needed to confirm these results and translate them into clinical practice.
ConclusionTSPAN11 may serve as a promising prognostic biomarker and immunotherapy target in CRC. Its associations with clinical outcomes, immune features, and drug sensitivity underscore its potential for improving CRC diagnosis and treatment strategies.
-
-
-
A Comprehensive Review on Discovery, Development, the Chemistry of Quinolones, and Their Antimicrobial Resistance
Authors: Gayatri S Patil, Kiran N Gaikwad, Shailendra S. Suryawanshi and Parixit BhandurgeAvailable online: 05 August 2025More LessQuinolones, discovered in the 1970s, have played a critical role in revolutionizing the treatment of bacterial infections due to their broad-spectrum antimicrobial activity. Over the decades, these compounds have been extensively studied, resulting in the development of numerous new derivatives. This review explores the history and development of quinolones, focusing on their Structure-Activity Relationship (SAR), mechanisms of action, and the challenges posed by antimicrobial resistance. The key resistance mechanisms include mutations in DNA gyrase and topoisomerase IV, which reduce drug binding, plasma-mediated mechanisms, and chromosomal changes that decrease drug uptake or retention. These mechanisms highlight the need for innovative approaches to design quinolones to overcome these resistance pathways. This review also provides an understanding of the SAR of quinolones and, by integrating historical advancements and current challenges, it provides a foundation for the development of next-generation quinolone derivatives with improved efficacy and minimized resistance.
-
-
-
Natural Oil and Polycystic Ovary Syndrome: A Comprehensive Review of Therapeutic Benefits
Authors: Punam Kumari, Pervej Alom Barbhuiya, Ireenia Warjri and Manash Pratim PathakAvailable online: 05 August 2025More LessIntroductionPolycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder affecting 70-75% of women. This condition is frequently linked with large and dysfunctional ovaries, high levels of androgens, and insulin resistance. A variety of conventional treatments, including metformin, oral contraceptives, and anti-androgen agents, have been used to treat PCOS and its complications, but they have been linked to several negative side effects, including hyperkalemia, weight gain, cardiovascular and hepatic toxicity, vitamin B12 and folic acid deficiency. As a result, there is growing interest in natural methods as complementary or alternative approaches to mitigate these side effects. According to several studies, traditionally used Natural oils (NOs) from various sources have been utilized to identify their ameliorating characteristics against PCOS. The paper aims to study pre-clinical investigations and clinical studies of NOs from different sources against PCOS and gives a comprehensive overview of controlling PCOS. Also, it highlights and tabulates the prominent bioactive phytoconstituents from the reported NOs and their mechanism of action.
MethodsFor this review purpose, the authors have gone through a vast number of scientific literature from different scientific databases like Google Scholar, ScienceDirect, Web of Science, and PubMed.
ResultMentha spicata L., Foeniculum vulgare Mill., Linum usitatissimum L., Nigella sativa L., Bambusa bambos (L.) Voss, Thuja occidentalis L., Syzygium aromaticum L., Pimpinella anisum L., Rosa canina L., Cocos nucifera L., Oenothera biennis L., Corylus avellana L., and fish oil have been reported to have anti-PCOS activity by maintaining body weight, testosterone, LH, FSH levels, and improving ovarian cysts.
DiscussionNOs derived from plant and animal sources show promise in treating PCOS by balancing hormone levels, enhancing ovarian morphology, and alleviating metabolic symptoms. However, significant clinical trials and molecular research are required to evaluate their therapeutic potential, identify suitable dosages, investigate their precise mechanisms of action, and ensure long-term safety and efficacy in PCOS management.
ConclusionFurther research is needed to understand the molecular mechanisms of NOs responsible for anti-PCOS activity. Studies are needed to concentrate on their mechanisms of action, routes of impact, safe dosage, and potential side effects to ensure their efficacy and safety in treating PCOS.
-
-
-
Elucidating the Role of Galectin-3 in the Recurrence of Primary Sclerosing Cholangitis Post-Liver Transplantation as a Potential Therapeutic Target
Available online: 05 August 2025More LessPrimary sclerosing cholangitis (PSC) occurs in approximately 25% of patients post-liver transplantation (LT) and is associated with significant morbidity and mortality. Hepatic duct cholestasis following recurrent PSC may lead to the development of liver cirrhosis and the need for liver retransplantation. To date, the exact etiology of the recurrence of PSC post-LT remains unknown, and it is not currently possible to predict which patients are at risk for recurrence of PSC. Extracellular Galectin-3 (Gal-3) acts as a damage-associated molecular pattern (DAMP) when released into the extracellular matrix (ECM) by injured liver cells. Gal-3 plays a crucial role in immune responses and inflammation by binding and cross-linking surface proteins of neutrophils and macrophages, facilitating the chemotaxis of immune cells to the site of injury, and activating the macrophage inflammasome complex. In addition, Gal-3, by activation of hepatic satellite cells (HSC) to myofibroblast phenotype, induces profibrotic molecules, such as transforming growth factor beta (TGF-β) and increases the expression of collagens in the ECM, leading to liver fibrogenesis. According to the evidence, targeting Gal-3 may have important therapeutic potential in preventing the progression of recurrence in PSC and cholestatic progression post-LT.
-
-
-
Total Synthesis of Biologically Potent Peptides and their In Silico Studies: A TAG Approach
Available online: 04 August 2025More LessIntroductionCurrent trends in peptide synthesis protocols have emerged as the most attractive domain in the field of pharma and medicine. Since most of the peptide/peptidomimetic-based molecules serve as potential candidates for many diseases, as they are bioavailable molecules.
MethodsWe present the synthesis of bioactive peptides through TAGGING approach with the help of TAG-OH as a linker to the Nα-protected amino acid.
ResultsFRDEHKK and NKDRG are two peptides that possess antioxidant and antiproliferative activity, and their in-silico investigations reveal that they exhibit anticancer properties when bound to the AXL kinase and EGFR proteins.
DiscussionThis TAG method enables the easy isolation of peptides at each step as solids, and all the impurities were washed off by simple filtration. The method allows a bulk-scale preparation of the peptides without any difficulty, and hence the protocol is highly efficient for the production of peptides of therapeutic importance.
ConclusionThe two peptides FRDEHKK and NKDRG were isolated as fine solids with 82% and 85% yield and were characterized by NMR and MASS spectroscopy. In-silico studies reveal FRDEHKK and NKDRG peptides exhibit good affinity towards EGFR and AXL kinase.
-
-
-
Pharmaceutical Sciences Encompass A Wide Range of Techniques and Methodologies
Authors: Uma Agarwal, Swati Paliwal and Rajiv Kumar TonkAvailable online: 01 August 2025More LessPharmaceutical research and development encompass a series of interconnected steps that are crucial for creating safe and effective drug candidates targeting specific diseases. This process involves rigorous testing and evaluation to ensure that the drugs developed meet safety standards and therapeutic efficacy. The significance of this systematic approach lies in its ability to address the complications of various diseases, ultimately leading to advancements in medical treatment and patient care. The successful development of a drug candidate is contingent upon thorough research, which includes preclinical studies and clinical trials, ensuring that the final product is both reliable and beneficial for patients. The review emphasizes the importance of a systematic approach in the pharmaceutical research and development sector. It highlights the interconnected steps necessary for the successful development of drugs, underscoring the critical need for safety and efficacy in pharmaceutical products. The primary objective is to ensure that the drugs developed meet the standards required for public use, thereby enhancing public health outcomes. Overall, the review serves as a guide for stakeholders in the pharmaceutical industry to prioritize safety and effectiveness throughout the drug development process. With an emphasis on the interrelated processes in the drug development process and the significance of new and advanced approaches, this article highlights the evidence based on the importance of a systematic and structured approach in drug development. It points out that a systematic approach is crucial in pharmaceutical Research and Development (R&D) to ensure successful outcomes. It is essential to continuously update and understand these steps to keep pace with advancements in the field. Additionally, staying informed about the development of new and advanced techniques at each stage of drug R&D is vital for enhancing efficiency and effectiveness. This comprehensive literature review was conducted using databases such as PubMed and Scopus, focusing on research published up to January 2025. Continuous upgrades in awareness about R&D and innovative procedures within the industry are essential. It highlights the importance of following systematic methods to ensure that R&D practices remain relevant and practical. Moreover, this understanding is necessary for the safe and effective creation of pharmaceuticals. Ultimately, enhancing this awareness is likely to improve the overall effectiveness of R&D processes.
-
-
-
Preliminary Study on GZMA- and GSDMB-Associated Pyroptosis and CD8+ T Cell-Mediated Immune Evasion in Skin Cutaneous Melanoma
Authors: Jianqin Chen, Zhirong Huang, Fengfeng Xie, Jing Liu, Wen Sun, Jingli Xu and Wenfang XieAvailable online: 31 July 2025More LessBackgroundSkin cutaneous melanoma (SKCM) is a life-threatening malignancy, and pyroptosis-mediated inflammatory response is associated with SKCM progression. We aimed to uncover the underlying pathogenesis of SKCM based on pyroptosis features.
MethodThe single-cell and bulk RNA-seq data and clinical information of SKCM patients were downloaded from the TCGA and GEO databases, and the REACTOME_PYROPTOSIS.v2024.1.Hs.gmt from the MSigDB database was used for Gene Set Enrichment Analysis (GSEA). Differentially expressed gene (DEG) analysis was performed utilizing the “limma” R package, and the “GSVA” R package was used for the analysis of pyroptosis pathway activation. In addition, scRNA-seq analysis and cell communication analysis were carried out by employing the “Seurat” R package and “CellChat” R package, respectively. Gene expression was measured using quantitative reverse transcription polymerase chain reaction (qRT-PCR), while cell counting kit-8 (CCK-8), wound healing, and Transwell assays were carried out to assess cell proliferation, migration, and invasion, respectively.
ResultsDEGs analysis detected no significant pyroptosis-related DEGs. Analysis of the expression of two representative pyroptosis genes (GZMA and GSDMB) revealed that GZMA was significantly upregulated in the SKCM tissues, but the expression of GSDMB was downregulated. The pyroptosis pathway was not activated in the tumor group. In addition, we observed that high expression of GZMA and GSDMB was closely associated with a favorable outcome in SKCM. The two genes were downregulated in SKCM cells, while the overexpression of GZMA significantly impaired the proliferation, migration, and invasion ability of SKCM cells. Nine main cell subpopulations were identified, and GZMA was specifically overexpressed in CD8+ T cells. Gene function analysis revealed that specific genes of CD8+ T cells were enriched in cell death-related and inflammation activation pathways. Cell communication demonstrated that CD8+ T cells interacted with melanocytes through the CD99-CD99 and HLA-C-KIR2DL3 ligand-receptor pairs.
ConclusionBased on the pyroptosis features in SKCM, this study found that blocking GZMA protein in CD8+ T cells within melanocytes may be the potential underlying pathogenesis for tumor immune escape in cancer.
-
-
-
INHBA: A Protein-coding Gene Closely Related to Tumour Diseases
Authors: Jiayi Ma, Yining Pan, Cheng Chen, Dongshuo Wang, Xiaolan Li and Chengfu YuanAvailable online: 30 July 2025More LessIntroductionAt present, malignant tumors are still under development with an increasing trend, and their prevention, treatment, and prognosis are also difficult. The INHBA gene, also known as inhibin β, has a wide range of roles to play in this context. Through studies, several researchers have confirmed that an abnormal expression of the INHBA gene affects the development and prognosis of several malignant tumors (cervical, colorectal, breast, gastric, etc.). This study aims to investigate the relationship between INHBA and the occurrence, development, treatment, and prognosis of malignant tumors.
MethodsThis review, which involved scanning of pertinent literature, describes and evaluates recent research on the biological functions and mechanisms of INHBA in malignancies.
ResultsAn aberrant expression of INHBA can lead to a variety of tumors, including cervical, esophageal, breast, colorectal, squamous cell, bladder, nasopharyngeal, gastric, and ovarian cancers.
DiscussionINHBA, as a protein-coding gene, can affect the development of various tumors and the prognosis of tumor patients, suggesting that INHBA can be a target for tumor therapy. However, the research on targeted therapy is still immature and has certain safety risks.
ConclusionResearch findings indicate that the INHBA gene plays a role in both carcinogenesis and prognosis. As such, it may have the potential utility as a biomarker or therapeutic target in the treatment of malignant tumors.
-
-
-
Kinase Inhibitors for Targeted Cancer Therapy
Authors: M. Amin Mir, Devalina Ray, Suman Mazumdar and Bimal Krishna BanikAvailable online: 30 July 2025More LessPrecision medicine's quick development has transformed the way cancer is treated, and because small-molecule kinase inhibitors can specifically block the abnormal signaling pathways that cause tumor growth and progression, they are now a key component of targeted therapy. This review explores the most recent advancements in kinase inhibitor design and optimization, with a focus on novel drug scaffolds, improved structure–activity relationships (SARs), and molecular modification techniques meant to improve target selectivity, potency, and pharmacokinetic profiles. Emerging strategies to combat resistance mechanisms are heavily emphasized, such as the use of dual-target inhibitors that block parallel signaling cascades, allosteric modulators that bind to non-ATP sites, and combination therapies that work in concert to increase efficacy while reducing resistance. A thorough summary of the kinase inhibitors that are now FDA-approved for use in treating different forms of cancer is also included in the review, along with information on their safety profiles, clinical effectiveness, and changing indications of usage. Additionally, it examines encouraging results from preclinical research and ongoing clinical studies assessing next-generation kinase inhibitors, which have the potential to further customize cancer treatment. In order to improve patient outcomes, address therapeutic resistance, and broaden the therapeutic scope of kinase-targeted interventions in oncology, the review concludes by highlighting future research directions, such as drug repurposing, computational drug discovery, and advanced precision oncology approaches.
-
-
-
The Vital Role of Long Non-Coding RNA SUMO1P3 in the Regulation of Human Cancer: Current Perspectives and Future Challenges
Authors: Jingjie Yang, Yuzhang Wei, Chengran Gao, Zihang Wang, Yulong Liu, Haodong He, Hao Zhou, Guihua Liao, Gang Zhou and Chengfu YuanAvailable online: 29 July 2025More LessSmall Ubiquitin-like Modifier 1 Pseudogene 3 (SUMO1P3) is a novel long non-coding RNA (lncRNA) located at the 1q23.2 locus of the human chromosome. Recent evidence indicates that SUMO1P3 is aberrantly upregulated in nine types of human cancer and functions as an oncogene. Elevated SUMO1P3 expression is strongly associated with unfavorable clinicopathological features and poor prognosis in eight cancer types. Mechanistically, SUMO1P3 functions as a miRNA sponge, an epigenetic regulator, and directly interacting with proteins. It activates key signaling pathways, such as the Wnt/β-catenin and AKT pathways, and regulates Epithelial-Mesenchymal Transition (EMT), which facilitates cancer progression and therapy resistance. Due to its diverse functional roles, SUMO1P3 emerges as a promising diagnostic and prognostic biomarker, as well as a potential therapeutic target in precision oncology. This review provides a comprehensive summary of current research on SUMO1P3, highlighting its regulatory mechanisms, biological functions, and clinical significance in cancer biology.
-
-
-
Exploring the Carbonic Anhydrase Activation Properties of 4-arylazo-3,5-diamino-1H-pyrazoles against hCA I, II, IV, and VII isoenzymes
Authors: Suleyman Akocak, Nebih Lolak, Andrea Ammara, Özen Özensoy Güler and Claudiu T. SupuranAvailable online: 28 July 2025More LessIntroductionCAs serve as crucial enzymes involved in a variety of physiological processes, including brain metabolism and cognitive function. hCA VII, a brain-associated isoform, plays an important role in modulating cerebral metabolism. Activating hCA VII may provide therapeutic benefits in Alzheimer's disease and other neurodegenerative or age-related illnesses. This study proposes to add to the growing interest in CAAs by developing innovative drugs with selective activation characteristics that target brain-associated CA isoforms.
MethodsA series of 4-arylazo-3,5-diamino-1H-pyrazoles have been produced by reacting aniline and aniline derivatives with a malononitrile solution at 0-5 °C, resulting in compounds 1(a-m). Then, arylazo malononitrile compounds were added with hydrazine monohydrate to obtain 4-arylazo-3,5-diamino-1H-pyrazole derivatives 2(a-m). The activity of the synthesized compounds was examined on human CA isoforms I, II, IV, and VII to determine activation potency and selectivity.
ResultsThe synthesized compounds demonstrated a wide spectrum of strong micromolar activation on human CA isoforms, with particularly encouraging results for hCA VII. The discovered activators showed a high selectivity profile for the brain-associated hCA VII isoform, indicating their potential use in neurological methods of therapy.
DiscussionAmong the most compelling findings of this study is the unprecedented potency of several synthesized derivatives, particularly 2i and 2m, in selectively activating hCA VII far beyond the benchmark histamine, positioning them as promising pharmacological candidates for addressing CA-related neurological disorders.
ConclusionThe research successfully discovered potent and selective CAAs with specific activity against hCA VII, a key enzyme in brain metabolism. These outcomes offer novel possibilities for developing medicinal products for neurological disorders and provide critical molecules for further study into CAAs. Furthermore, the study advances our understanding of enzyme activation kinetics and gives significant insights into the future of enzyme-based treatment research.
-
-
-
Nano-cocrystals as Nanotechnology-based Approach to Modulate Solubility and Bioavailability of Poorly Soluble Drugs
Authors: Deepak Tomar, Mainuddin, Anshika and Amulya JindalAvailable online: 28 July 2025More LessVarious drugs face limitations in their solubility parameters which limits their total oral bioavailability, and such drugs are also categorized under the biopharmaceutical classification system (BCS) Class II. To modulate such limitations there were various novel drug delivery systems (DDS) designed including lipid-based DDS such as liposomes, niosomes, nanostructured lipid carriers (NLCs), nanoemulsion, self-nanoemulsifying DDS (SNEDDS) but the most effective and easily prepared DDS is nano-cocrystals (NCs). This study aims to give a clear emphasis on the NCs, their development and various advantages related to their usage as DDS. NCs are developed to modify the characteristics of dynamic drug adjustments with enhanced dissolvability, disintegration, and bioavailability compared to their naive form. Due to their high surface-to-volume ratio and co-crystal structure, easily converted in the nanosized range, they can further enhance these qualities. Even though NCs have been the subject of numerous studies, drug NC research is still in its early stages. In this review, many methods for organizing NCs have been discussed. A detailed understanding of NCs will be provided by a thorough examination of a few scientific methods and representations. The purpose of this analysis is to provide direction for the development of novel NCs with pharmaceutical industry economic value and proven as an effective approach for enhancement of drug aqueous solubility and ultimately resulted in the modulation of total oral bioavailability of the drug. NCs will be the modern DDS from the futuristic point of view due to their easy development and better physiochemical properties.
-
-
-
Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats
Available online: 28 July 2025More LessIntroductionDuring cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.
ObjectiveThe study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemia-reperfusion in rats.
MethodsThe research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.
ResultsExperimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.
DiscussionThe findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.
ConclusionThe study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.
-
-
-
Nanotechnological Approaches for Mitochondrial Targeting in Neurodegenerative Diseases
Available online: 28 July 2025More LessObjectivesMitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.
MethodsA comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).
ResultsRecent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.
ConclusionMitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.
-
-
-
Microfluidics-Based Polymeric Micro/Nanocarriers for Drug Delivery in Liver Cancer Treatment: Recent Advances, Outlooks, and Progress
Available online: 25 July 2025More LessMicrofluidics-based polymers are transforming drug delivery systems for liver cancer treatment as they enable precise synthesis of nano- and microparticles suitable for targeted therapy. The manufacture of programmable nanoparticles and tunable sizes is made possible by microfluidic platforms, which are essential for improving the effectiveness of medication administration. A wide range of therapeutic chemicals, including hydrophobic medications like doxorubicin, can be encapsulated in these systems to target liver cancers while reducing systemic toxicity effectively. It has also been demonstrated that combining natural hydrogels and droplet microfluidics can create multicellular tumor spheroids that resemble the tumor microenvironment more closely. This methodology improves screening and drug efficacy research and offers a strong foundation for assessing treatment outcomes. This research also explores novel uses of microfluidic technologies to develop intelligent drug delivery devices that respond to particular stimuli and release medication at the tumor site. It also investigated how artificial cell assemblies made with microfluidics can open new possibilities for individualized cancer treatment. To sum up, microfluidic-based polymers offer advanced tools for developing tailored and efficient drug delivery systems that can enhance patient outcomes, and represent a significant advancement in the treatment of liver cancer. The review paper discusses challenges in liver cancer treatment, including high drug clearance rates, low concentrations, and multidrug resistance. It suggests microfluidic technology can improve drug delivery systems by creating controlled particles and responding to tumor conditions. This could revolutionize liver cancer therapies, enabling better drug testing and treatment prediction, as well as designing tailored therapies.
-
-
-
Impact of IDH Mutations on Ligand Unbinding: Insights from Steered Molecular Dynamics
Authors: Alka Singh, Sonia Kumari and M. Elizabeth SobhiaAvailable online: 24 July 2025More LessAimThis study explores the unbinding dynamics of alpha-ketoglutarate (AKG) from wild-type and mutant IDH1/IDH2 enzymes through steered molecular dynamics (SMD) simulations, examining how mutations influence binding, stability and enzymatic behaviour.
BackgroundIsocitrate dehydrogenase (IDH) enzymes are essential for cellular metabolism, catalyzing the conversion of isocitrate to AKG in the tricarboxylic acid cycle. Mutations in IDH1 and IDH2 lead to the aberrant accumulation of the oncometabolite 2-hydroxyglutarate (2-HG), disrupting normal metabolic processes and contributing to tumorigenesis.
MethodsSMD simulations were employed to investigate AKG unbinding from both wild-type and mutant IDH1/IDH2. External forces were applied to quantify rupture forces and assess differences in stability among enzyme variants.
ResultsWild-type IDH1 exhibited strong and stable AKG interactions, reflected by higher rupture forces and a greater number of hydrogen bonds, consistent with its normal catalytic function. In contrast, the R132H mutation in IDH1 weakened AKG binding, facilitating dissociation and potentially promoting 2-HG formation. Among IDH2 variants, the R140Q mutant demonstrated lower binding stability compared to R172K, while the wild-type enzyme maintained stronger interactions.
ConclusionMutations in IDH1 and IDH2 disrupt AKG binding and alter the stability, which may contribute to the pathological accumulation of 2-HG. These findings provide molecular insights into the oncogenic effects of IDH mutations and may aid in the development of targeted therapeutic strategies to inhibit mutant enzyme activity in cancer.
-
-
-
Harnessing the Potential of Polysaccharide-Derived Biomaterials for Wound Healing Applications
Available online: 24 July 2025More LessIntroductionPolysaccharide-derived biomaterials have emerged as promising candidates for wound healing applications due to their biocompatibility, biodegradability, and ability to mimic the extracellular matrix. These materials play a crucial role in maintaining a moist wound environment, promoting cell proliferation, and exhibiting anti-microbial properties, making them suitable alternatives to traditional wound dressings.
MethodsA systematic literature review was conducted using reputable databases including ScienceDirect, PubMed, Scopus, and Google Scholar. Relevant studies were identified, screened, and analyzed to ensure comprehensive coverage of the topic.
ResultWound healing is aided by essential polysaccharides such as chitosan, alginate, cellulose, and carrageenan, which help to retain moisture, promote cell proliferation, and prevent infections.
DiscussionPolysaccharide-derived biomaterials, including chitosan, alginate, and cellulose, facilitate wound healing by maintaining moisture, promoting cell migration, and exhibiting anti-microbial properties. However, challenges such as weak mechanical strength and rapid degradation limit their clinical use. Recent advancements in composite hydrogels, nanomaterials, and 3D-printed scaffolds have improved stability, drug release, and anti-microbial efficacy. Further research is required to enhance their mechanical properties and long-term applicability for clinical wound care solutions.
ConclusionBiomaterials developed from polysaccharides have the potential to revolutionize wound healing by providing biocompatible, adaptable solutions that promote enhanced tissue regeneration and infection control.
-
-
-
Exploring Therapeutic Potential of Emblica officinalis (Amla) Against Streptozotocin-Induced Diabetic Nephropathy in Wistar Rats
Authors: Umber Younas, Muhammad Issa Khan, Imran Pasha and Beenish IsrarAvailable online: 24 July 2025More LessIntroductionDiabetic nephropathy is a common microvascular complication that affects 20-40% of individuals with diabetes worldwide. This study aimed to evaluate the therapeutic potential of amla fruit against streptozotocin-induced diabetic nephropathy using animal models.
MethodsThe male Wistar rats procured for the study were divided into four groups randomly, G1 (negative control group), G2 (positive control group), G3 (rats receiving amla powder at 5% of their diet), and G4 (rats receiving amla powder at 7% of their diet). Diabetic nephropathy (DN) was induced using streptozotocin at a dose of 65 mg/kg. High-performance liquid chromatography (HPLC) was used to quantify the bioactive constituents of amla. Physical, glycemic, oxidative, inflammatory, and renal biomarkers were assessed periodically.
ResultsHPLC analysis confirmed the presence of high levels of vitamin C, gallic acid, and quercetin in amla. Amla supplementation significantly improved body weight, controlled kidney hypertrophy, reduced blood glucose levels, enhanced antioxidant enzyme activity such as superoxide dismutase (SOD) and catalase (CAT), and suppressed inflammatory cytokines. Renal function markers, including serum creatinine, blood urea nitrogen (BUN), and urine albumin, were significantly improved in the amla-treated groups. The 5% amla diet showed slightly superior effects compared to the 7% amla diet, although the differences were not statistically significant.
DiscussionThe findings suggested that amla mitigates DN progression by targeting key pathological pathways, particularly oxidative stress and inflammation. Its bioactive compounds appear to modulate glucose homeostasis, restore antioxidant defence, and reduce inflammatory responses. The findings also suggested a potential non-linear dose-response relationship, indicating 5% as a more effective dietary inclusion.
ConclusionConclusively, amla fruit effectively alleviated streptozotocin-induced diabetic nephropathy in rats by controlling oxidative stress, inflammation, and hyperglycemia.
-