Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 108 results
-
-
Synthetic Approaches and Biological Significance of Four-Membered Heterocyclic Compounds
Authors: Neelottama Kushwaha and Swatantra K.S. KushwahaAvailable online: 23 July 2025More LessA four-membered heterocycle synthesis offers a thorough exploration of these unstable organic compounds, systematically introducing the synthesis and reactions of all standard four-membered heterocycles while showcasing various methods for creating unique variants. Due to their inherent strain, four-membered heterocyclic compounds are classified as unstable organic compounds, which makes them valuable as precursors for synthesizing a wide range of complex heterocyclic molecules. These compounds have become essential frameworks in medicinal chemistry, providing unique properties that enhance drug design and development. The incorporation of heteroatoms like nitrogen, oxygen, and sulfur into four-membered rings (such as azetidines, oxetanes, and thietanes) leads to diverse electronic, steric, and metabolic characteristics that can improve therapeutic efficacy, selectivity, and pharmacokinetics. Despite the challenges posed by their ring strain, recent advancements in chemical synthesis and functionalization techniques have made these compounds more accessible for various therapeutic applications. These strained ring structures offer increased metabolic stability, controlled lipophilicity, and the potential for advantageous binding interactions, making them suitable for multiple therapeutic uses, including oncology, infectious diseases, and CNS disorders. This review examines the key properties of four-membered heterocyclic rings, their role in drug development, recent synthetic advancements, and the potential of these compounds to yield next-generation medications with enhanced efficacy and precision.
-
-
-
Network Pharmacology, Molecular Docking, and In Vitro Validation to Explore the Key Phytochemicals of Da-cheng-qi Decoction Treating Intracerebral Hemorrhage
Authors: Yi-Zhi Yan, Xin-Yi Liu, Sha-Sha Yang, Shan-Shan Zhu, Ke Zhou, Qing Tian, Si-Jie Tan and Peng ZengAvailable online: 23 July 2025More LessBackgroundThe development of secondary brain injury following intracerebral hemorrhage (ICH) involves multiple pathophysiological processes. Da-cheng-qi decoction (DCQD) has a long history of effectiveness in treating ICH and exhibits a variety of pharmacological effects. However, the phytochemicals and targets of DCQD targeting the pathophysiological processes of ICH still require further elucidation. This study aims to investigate the mechanism and key phytochemicals of DCQD in treating ICH based on the pathophysiological processes.
MethodsWe used the UHPLC-MS/MS method to identify the main phytochemicals of DCQD and evaluate their pharmacological and toxicological parameters. We obtained and systematically analyzed the action targets of the main phytochemicals of DCQD and screened the targets related to ICH key pathophysiological processes and the corresponding phytochemicals. The results of molecular docking, molecular dynamic simulations, the GEO database and in vitro validation experiments confirmed the results of network pharmacology.
ResultsThe 20 main phytochemicals of DCQD interact with a total of 186 targets, with 75 targets specifically associated with the treatment of ICH identified through pathophysiological processes. Among them, chrysophanol 1-glucoside, aloe emodin, emodin, hesperidin, tangeritin, rhein and physcion were recognized as the potential phytochemicals of DCQD for the treatment of ICH. Neuroinflammation is a crucial factor in the development of secondary brain injury following ICH. Further analysis results suggest that targeting ferroptosis is one of the mechanisms by which DCQD regulates the pathophysiology processes of ICH to improve ICH. In vitro cell experiment results have demonstrated the regulatory effect of naringin on TNF-α and Cox2. In addition, the phytochemicals in DCQD also contribute to enhancement of cognitive function impaired by ICH.
ConclusionThis study contributes to a better understanding of the underlying mechanisms behind DCQD's medicinal effects in treating ICH, offering insights into potential lead compounds for the development of anti-ICH drugs.
-
-
-
Computer-aided Drug Design for Alzheimer's Disease: Recent Advancements and Future Perspectives
Authors: Suman Rohilla and Garima GoyalAvailable online: 22 July 2025More LessAlzheimer's disease (AD) is a neurodegenerative disorder marked by a decline in cognitive function and memory loss, primarily resulting from cholinergic dysfunction, the accumulation of amyloid plaques, the formation of tau tangles, and the progressive degeneration of neurons. While existing treatments offer limited symptomatic relief, they do not effectively halt or reverse the underlying progression of the disease, presenting a major global challenge in Alzheimer’s research. Developing therapeutic strategies for AD remains complex, largely due to the inability of current medications to significantly slow neurodegeneration. Traditional drug discovery processes are often lengthy, costly, and inefficient, further complicating the search for effective treatments. To overcome these obstacles, researchers have turned to a combination of computational approaches alongside conventional drug design techniques. These integrated methodologies help accelerate the discovery process by significantly reducing both time and costs. This review delves into the underlying physiological and pathological mechanisms of Alzheimer's disease, while identifying potential drug targets such as acetylcholinesterase, butyrylcholinesterase, β-Secretase (BACE-1), A2A adenosine receptor, Dickkopf-1 protein, glycogen synthase kinase-3β, indoleamine 2,3-dioxygenase, monoamine oxidase-B, NMDA receptor, Wnt inhibitory factor, cyclin-dependent kinase-5, glutaminyl cyclase, and cathepsin-B. Furthermore, the review examines various computer-aided drug design (CADD) methodologies, including structure-based and ligand-based approaches, virtual screening, pharmacophore modeling, molecular modelling, and simulation techniques. These computational strategies are playing an increasingly important role in Alzheimer’s research, particularly in drug discovery. By investigating promising drug candidates and lead molecules that target key proteins involved in Alzheimer’s pathogenesis, the review highlights their binding modes with these targets and assesses the chemical properties essential for the development of effective clinical candidates. The aim is to provide researchers with critical insights and tools to design novel compounds with the necessary chemical and physical characteristics required for the successful treatment of Alzheimer’s disease.
-
-
-
Carboxamide: A Privileged Pharmacophore for the Development of Anti-infectious and Anti-cancer Drugs
Authors: Xiaopei Yang, Zirui Jiao, Kasemsiri Chandarajoti, Sai Lv, Xisong Ke and Wen ZhouAvailable online: 22 July 2025More LessCarboxamide is a privileged scaffold that is often used in FDA-approved drugs. Unlike traditional amides, which exhibit properties similar to valence bonds, carboxamide has a more excellent binding mode and thus constructs rich pharmacological activities. According to the different working principles and N-terminus substitution of its specific structures, carboxamide can be further divided into N-unsubstituted carboxamide and N-substituted carboxamide. Both kinds of carboxamides have been widely studied and used in drug design and development. This review starts from the binding style and thus summarizes the excellent carboxamide structures, current research progress, and future challenges in the fields of anti-infection and anti-cancer.
-
-
-
Unveiling Vadadustat: Comprehensive Review of its Chemistry, Pharmacology, Bioanalysis, and Patent Landscape as a Novel HIF-PH Inhibitor
Authors: Firdous Shaikh and Sanjay SharmaAvailable online: 22 July 2025More LessIntroductionThe goal of this study is to provide a comprehensive review of physicochemical and pharmacological properties, including pharmacokinetics and pharmacodynamics parameters, with an overview of preclinical and clinical trial data, chemistry, and multiple routes of synthesis, bioanalytical methods, and patents of the API: Vadadustat
MethodsA review was conducted by compiling data from Science Direct, PubMed, Drug Bank, WIPO patent, Clinicaltrialgov, Wolters Kluwer, and many others to enhance understanding of the topic
ResultsThe FDA approved Vadadustat on March 27, 2024, for treating anemia in adults with CKD on dialysis. Vadadustat effectively increased hemoglobin levels in both non-dialysis and dialysis-dependent CKD patients. It showed comparable efficacy to traditional erythropoiesis-stimulating agents (ESAs) like darbepoetin alfa. Multiple clinical trials, including Phase 2 and Phase 3 studies, demonstrated Vadadustat’s potential as an effective treatment for anemia in CKD patients.
DiscussionVadadustat, as an oral HIF-PH inhibitor, offers significant advantages in the treatment of anemia in CKD. Its oral route of administration improves patient compliance, and its efficacy is comparable to ESAs. Clinical and preclinical data support its safety and therapeutic potential, although long-term cardiovascular effects remain under observation.
ConclusionThis review examines therapeutic, pharmacological, analytical, and regulatory aspects related to Vadadustat.
-
-
-
LINC-PINT: A Distinctive Long Non-Coding RNA Functioning as a Potential Suppressor in Tumorigenesis
Authors: Jiayi Li, Yining Pan, Songqiang Li, Cheng Chen and Chengfu YuanAvailable online: 22 July 2025More LessIntroductionLong noncoding RNAs are essential regulators in numerous biological processes and have been linked to various diseases including cancer. Despite their initial classification as transcriptional byproducts lncRNAs have been shown to modulate chromatin structure transcription RNA processing protein translation and intranuclear transport. LINC-PINT a lncRNA induced by P53 is particularly noteworthy for its role in tumor suppression across multiple cancers
MethodsBy utilizing the PubMed database and applying inclusion criteria based on relevance literature quality and data availability we conducted a comprehensive analysis of 128 studies to provide an overview of the functions of LINC-PINT and its mechanisms of action in cancers
ResultsLINC-PINT was confirmed to function as a tumor suppressor factor in many cancers such as triple-negative breast cancer non-small cell lung cancer gastric cancer glioma melanoma osteosarcoma laryngeal squamous cell carcinoma esophageal cancer colorectal cancer nasopharyngeal carcinoma retinoblastoma ovarian cancer thyroid cancer hepatocellular carcinoma and pancreatic cancer by promoting apoptosis and senescence inhibiting proliferation migration invasion drug resistance cell stemness EMT radioresistance and DNA damage repair
DiscussionLINC-PINT serves as a tumor suppressor with its ability to sponge miRNAs regulate epigenetic modulation DNA damage repair etc. Despite the promising findings the complex and tissue-specific functions of LINC-PINT along with the need for further clinical validation underscore the importance of continued research to fully understand its mechanisms and potential as a therapeutic target
ConclusionLINC-PINT is a potential target in cancer progression and treatment
-
-
-
Advancements and Scientific Partnerships in the Application of Polysaccharides in Oral Formulations: A Bibliometric Analysis and Review
Available online: 18 July 2025More LessIntroduction/ObjectiveThe limitations of conventional drug delivery methods, such as systemic side effects and poor absorption, highlight the need for safer and more effective alternatives. Polysaccharides, due to their biocompatible, biodegradable, and mucoadhesive properties, have shown promise in formulations for the oral cavity, particularly in localized delivery systems and tissue regeneration. This study aims to conduct a bibliometric analysis to characterize the scientific output on the use of polysaccharides in the oral cavity, identifying trends, international collaborations, and research gaps.
MethodsA Web of Science search was conducted in January 2025 using keywords related to polysaccharides and mucosal adhesion. The analysis included original articles published in English between 2015 and 2024. Bibliometric data and study characteristics were extracted and analyzed, focusing on study types, formulation types, and international collaborations.
ResultsThe analysis included 66 articles with 1144 citations. In vitro studies were predominant, while clinical trials were lacking. Chitosan and alginate emerged as the most commonly used polysaccharides, with gels and hydrogels being the most prevalent formulations. International collaborations involved 28 countries, with China, Brazil, and Italy standing out in terms of scientific production.
DiscussionThe results highlight important advancements in the use of polysaccharides for oral cavity formulations, particularly in gels and hydrogels. However, the predominance of in vitro studies and the lack of clinical trials suggest limitations for translating these findings into clinical practice. The strong performance of countries such as China, Brazil, Italy, Spain, and Norway underscores the relevance of international collaborations and the global potential of this topic.
ConclusionThe increasing scientific output reflects the growing interest in the use of polysaccharides for oral health applications. Despite these advancements, critical gaps remain, such as the lack of clinical studies. Future research should prioritize translational studies, personalized therapies, and the sustainable development of biomaterials.
-
-
-
The Use of Virus-like Particles as Immunogens to Treat Infectious Diseases
Authors: Paulo Ricardo da Silva Sanches and Eduardo Maffud CilliAvailable online: 17 July 2025More LessVirus-like particles (VLPs) represent a promising approach to developing vaccines for infectious diseases. These nanostructures mimic the organization and conformation of native viruses but lack viral genetic material, rendering them non-infectious. VLPs can induce potent immune responses, making them ideal immunogens. This review provides an overview of VLP technology, its application in combating infectious diseases, and its potential to shape future vaccine development. Specific emphasis is placed on current clinical applications, emerging infectious disease targets, and the challenges in optimizing VLP-based immunogens.
-
-
-
Barrier Tissue-Resident Macrophages: Natural Compounds as Modulators in Immune Function and Disease
Available online: 17 July 2025More LessTissue-Resident Macrophages (TRMs) are essential cells of the immune system, strategically located in barrier tissues such as the skin, lungs, and intestines. They can originate from progenitor cells in the yolk sac and fetal liver, developing distinct features that enable them to respond effectively to local challenges and maintain tissue homeostasis. The functional plasticity of TRMs allows them to adapt to diverse microenvironments, facilitating their roles in tissue repair, inflammation, and immune surveillance. Recent studies have highlighted the potential of Natural Compounds (NCs) to modulate macrophage function, offering promising therapeutic strategies for managing inflammatory diseases. These compounds have been shown to enhance or suppress specific macrophage activities, influencing immune responses and promoting healing processes. This review highlights the importance of understanding TRMs and the role of natural compounds in modulating TRM activation and function. Deciphering the potential of NCs in macrophages may shed light on the development of innovative treatments for various immune-related diseases.
-
-
-
Potential Indicators for the Development of Hepatocellular Carcinoma: A Diagnostic Strategy
Available online: 16 July 2025More Less: Hepatocellular carcinoma (HCC), a primary malignancy of the liver, ranks among the top five most common cancers globally and is associated with high mortality due to its poor prognosis, late-stage detection, and limited therapeutic success. Early diagnosis is essential to improve treatment outcomes and survival rates. Biomarkers have emerged as vital tools for the early detection, prognosis, and therapeutic monitoring of HCC, with many detectable in serum or urine at quantifiable levels. These biomarkers may be overexpressed, downregulated, or involved in regulatory pathways affecting other proteins and molecules, thereby serving as potential indicators of tumor development. This review aims to provide an updated overview of promising HCC biomarkers, highlighting their diagnostic value and clinical utility. A structured literature search was conducted using PubMed, Scopus, and Web of Science databases for studies published. Eligible studies were selected based on predefined inclusion criteria, evaluated for quality, and thematically categorized according to the type and function of biomarkers. The review emphasizes the translational potential of these indicators in developing more effective diagnostic strategies for HCC.
-
-
-
The Diagnostic Role and Potential Pharmacological Value of DDR1 in Pan-Cancer
Authors: Yi Yu, Yonggang Tian and Dekui ZhangAvailable online: 16 July 2025More LessIntroductionCancer remains a devastating global health burden. Despite the identification of numerous biological targets, effective therapeutic agents remain limited. As a highly promising novel target, the role of Discoid Domain Receptors (DDRs) in pan-cancer biology is still poorly characterized. Thus, this study aims to elucidate the regulatory mechanisms and diagnostic potential of DDR1 across different cancer types.
MethodsHerein, we used UCSC, SangerBox, GEPIA, GSCA, and GeneMANIA online databases to analyze the expression and role of DDR1 in pan-cancer.
ResultsThe expression levels of DDR1 showed significant differences in some tumour T, N, and M stages. Importantly, DDR1 expression was associated with clinical prognosis in five cancers. In addition, DDR1 was inversely correlated with most immune checkpoint pathways, immunomodulatory genes, and immune cell infiltration in a few cancers. Furthermore, in most cancers, DDR1 promotes cancer progression by promoting apoptosis, inhibiting cell cycle and EMT, activating hormone AR activity, activating PI3K/AKT pathway, RASMAPK pathway, and RTK pathway. Finally, we also found that the DDR1 gene was positively associated with stemness scores in most tumors.
ConclusionOur findings demonstrate that DDR1 exhibits diagnostic utility and holds promising translational potential as a therapeutic target across multiple cancer types.
-
-
-
Clinical Evidence of Traditional Medicines in Modulating the Immune Response and Diabetic Wound Healing
Available online: 16 July 2025More LessBackgroundDiabetes affects over 537 million people, with 20% developing chronic wounds. These wounds are made worse by inflammation, stress, immune problems, and poor blood vessel growth. Plants like Aloe barbadensis, Nigella sativa, and Moringa oleifera contain compounds that help heal wounds by reducing inflammation, stress, and boosting tissue growth.
ObjectiveThis review explains why diabetic wounds heal slowly, focusing on factors like ROS, NO, and immune problems. It also looks at natural compounds that help healing and how traditional medicines can work with modern treatments for better wound care.
MethodologyA systematic literature review was conducted using Scopus, Elsevier, PubMed, ScienceDirect, and Web of Science for studies published between 2000 and 2024. Inclusion criteria comprised clinical trials, preclinical studies, and ethnopharmacological research related to diabetic wound healing, pathophysiology, herbal medicine, active constituents, and mechanisms of action. Studies lacking diabetic wound specificity or methodological clarity were excluded. PRISMA guidelines were followed for study selection and synthesis.
ResultsNumerous studies demonstrated that traditional medicines enhance diabetic wound healing by regulating cytokine levels, promoting macrophage polarization, reducing oxidative damage, and remodelling the extracellular matrix. Flavonoids and polyphenols notably improved angiogenesis and tissue repair, while alkaloids and saponins exhibited antimicrobial and anti-inflammatory effects.
ConclusionTraditional medicinal plants, through their diverse bioactive constituents, offer significant therapeutic potential for diabetic wound care. By targeting key molecular pathways involved in immune regulation and tissue repair, they present a viable adjunct to conventional therapies, potentially improving clinical outcomes in diabetic wound management.
-
-
-
Marine Species, Metabolites and Macromolecules as Potential Therapeutics Against Obesity and Metabolic Dysfunction Associated Steatotic Liver Disease (MASLD): A Comprehensive Review
Available online: 16 July 2025More LessIntroductionMany metabolic diseases, such as Metabolic dysfunction-Associated Steatotic Liver Disease (MASLD), are largely caused by obesity, a complicated ailment characterized by excessive fat buildup. By 2030, obesity is expected to have increased in prevalence, affecting over 1 billion people worldwide. MASLD, formerly known as NAFLD, is a broad category of liver illnesses caused by metabolic dysfunction and frequently linked to obesity. Drugs are available for obesity, but long-term use causes serious adverse effects, as reported. Currently, there are no FDA-approved therapies for MASLD. Interest in marine animals and their metabolites for their potential as therapeutics is growing, given the shortcomings of traditional medicines. This review emphasizes different marine species and metabolites, and macromolecules and tabulates all the pre-clinical studies targeting obesity and MASLD.
MethodologyFor this review, the authors have gone through a vast number of article sources from different scientific databases like PubMed, Google Scholar and ScienceDirect.
ResultsAlgae, fungi, and bacteria found in the ocean are abundant in bioactive chemicals that have anti-obesity and anti-MASLD properties. A variety of studies have reported the anti-obesity and anti-MASLD effects of marine species such as Spirulina platensis, Chlorella vulgaris, Caulerpa okamurae, and bioactive macromolecules like dieckol, fucosterol, fucoxanthin, sodium alginate and paramylon.
ConclusionThese marine-derived substances have a variety of pharmacological characteristics, including lipid-modulating, anti-adipogenic, antioxidant, and anti-inflammatory activities. These qualities are crucial for treating the underlying mechanisms that underlie obesity and MASLD. These marine species may be useful as natural supplements or therapeutic agents in the management and treatment of metabolic diseases associated with obesity. Some of these bioactive phytoconstituents have been identified for their potential against obesity and MASLD; however, more investigation is necessary to identify the precise bioactive substances causing these advantageous effects and assess their safety and effectiveness in clinical trials.
-
-
-
Telomere Maintenance Characteristics Predict Prognosis and Therapeutic Response in Colorectal Cancer
Authors: Yanpin Ma, Xiangjie Fang and Penghui LiAvailable online: 15 July 2025More LessIntroductionThe link between telomere length and Colorectal Cancer (CRC) risk and survival has been established. This study aims to investigate Telomere Maintenance-related Genes (TMGs) for predicting immunotherapy response and prognosis in CRC patients.
MethodsIn this study, gene expression data and clinical information of CRC patients were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and TMG-related scores were calculated for the samples. Subsequently, Weighted Gene Co-Expression Network Analysis (WGCNA) was used to identify gene modules that were highly correlated with the TMG score and intersected with differentially expressed genes to screen for potential functionally relevant candidate genes. The key genes significantly associated with prognosis were further analyzed using Cox regression analysis, from which the key genes were identified, and a risk score model was constructed. Finally, the survival prediction ability of the model was evaluated across multiple cohorts, and differences in immune cell infiltration characteristics and drug sensitivity were analyzed within different risk groups.
ResultsA higher TMG score was noticed in CRC, and the TMG score was negatively correlated with the StromalScore, ImmuneScore, and ESTIMATEScore. Gene modules significantly associated with the TMG score were identified using WGCNA. Two key genes, CDC25C and USP39, which were closely associated with prognosis, were screened through differential expression analysis, and a risk score model was constructed. The model showed good survival prediction in both TCGA and GSE17537 independent cohorts. The scores of activated CD4 T cells, Type 17 T helper cells, Type 2 T helper cells, and neutrophils in high-risk patients were lower, while that of macrophages was higher in high-risk patients. Additionally, a negative correlation was observed between the risk score and the IC50 values of most drugs, as well as the enriched pathways of patients at high risk, which included epithelial-mesenchymal transition, angiogenesis, and myogenesis.
DiscussionThis study unveiled a TMG-related signature that predicts prognosis and immunotherapy in CRC. Based on the 2 prognostically relevant genes CDC25C and USP39, a reliable risk score model was established for the prognostic prediction, and the correlation between the drug sensitivity and the risk score was also explored.
ConclusionThis study reveals the significant value of TMGs in CRC prognostic assessment and immunotherapy response prediction, providing a new molecular basis for the development of individualized treatment strategies.
-
-
-
Lipopolysaccharide-induced M1-type Macrophages Enhance T Cell Activity and Promote the Apoptosis of Hepatocellular Carcinoma Cells
Authors: Mengchen Song, Tian Yang, Manzhen He and Guohong CaoAvailable online: 11 July 2025More LessIntroductionHepatocellular carcinoma (HCC) is the most common type of liver cancer. M1 macrophages exhibit dual roles in the tumor microenvironment (TME), but the specific mechanisms underlying their involvement in HCC remain unclear.
MethodsM1-polarized macrophages were differentiated from THP-1 monocytes employing Phorbol 12-Myristate 13-Acetate (PMA) and lipopolysaccharide (LPS). Then, macrophage activity was determined based on Mean Fluorescence Intensity (MFI), and their metabolic capacity was assessed according to extracellular acidification rate (ECAR) and Oxygen Consumption Rate (OCR). Quantitative Real-Time PCR (qRT-PCR) was performed to assess the expression of polarization-related genes.
ResultsThe results showed that LPS at a concentration higher than 10 ng/mL significantly affected the viability of macrophages differentiated from THP-1 monocytes but promoted the MFI of CD86. At the same time, LPS treatment notably enhanced the M1 polarization of macrophages, as evidenced by the upregulated expression of markers related to the M1 phenotype. Moreover, the mitochondrial oxidative metabolism of M1 macrophages shifted toward aerobic glycolysis under LPS treatment. When T-cells and HCC cells were co-cultured with M1 macrophages, the reactivity of T cells was enhanced, and the level of Bax (an apoptosis-enhancer) was increased. At the same time, the expression of Bcl-2 (an apoptosis-suppressor) was suppressed.
DiscussionLPS-induced M1 macrophages exert antitumor effects through metabolic reprogramming and immune modulation, though further mechanistic studies are needed.
ConclusionsM1 macrophages inhibit HCC progression by activating T cells and inducing tumor cell apoptosis, offering novel insights for HCC immunotherapy.
-
-
-
Exosome-Mediated Strategies for Melanoma Eradication: A Comprehensive Review
Authors: Lalit Kumar, Ritesh Rana, Isha Singh, Sumit Kumar, Vikas Aggarwal, Komal Komal and Vuluchala JyothiradityaAvailable online: 09 July 2025More LessIntroductionExosomes, which are vesicles that are naturally derived and contain a biomolecular payload, are promising vehicles for melanoma therapy because of their biocompatibility, targeting capabilities, and stability. This review emphasizes their capacity to circumvent the constraints of conventional treatments.
MethodsWe carried out a comprehensive search of PubMed, ScienceDirect, and Google Scholar for peer-reviewed articles published between 2015 and 2024 utilizing terms such as “exosomes,” “melanoma,” and “chemotherapy.” Studies on exosome characterization or non-melanoma malignancies were excluded from the inclusion criteria, which centered on exosome-based therapeutics.
ResultsDrugs delivered via exosomes, such as small interfering RNA (siRNA) and chemotherapeutics, demonstrated enhanced tumor accumulation, achieving 2.5 times greater bioavailability and resulting in a tumor reduction of 60 to 90% when compared to their free counterparts. Surface modifications, such as cRGD peptides, have been shown to enhance targeting capabilities, whereas exosome-mediated photodynamic therapy has been effective in augmenting reactive oxygen species generation and promoting apoptosis.
DiscussionExosomes tackle significant challenges such as drug resistance and systemic toxicity; however, they encounter obstacles related to scalability and immunogenicity. Their dual function in tumor advancement and treatment highlights the necessity for standardized protocols.
ConclusionExosome-based therapies signify a groundbreaking advancement in the treatment of melanoma. Future endeavors should refine engineering methodologies, enhance production capabilities, and substantiate effectiveness through rigorous clinical trials.
-
-
-
Therapeutic Perspective of Prodrugs of Non-Steroidal Anti-Inflammatory Drugs and Antioxidants: An Approach to Reduce Toxicity and Enhance Efficacy
Available online: 08 July 2025More LessBackgroundNon-Steroidal Anti-Inflammatory Drugs (NSAIDs) are one of the most widely prescribed medications in the world, yet their applications as anti-inflammatory, analgesic, and anti-pyretic drugs remain principally restricted by their detrimental effects on the gastrointestinal tract (GIT) systems. The prodrug approaches have substantially combated the drawbacks of currently available marketed NSAIDs and also showed increased activity.
ObjectiveIn the present study, an extensive literature review on mutual prodrugs of NSAIDs with natural antioxidants has been presented.
MethodsDifferent databases like ScienceDirect, Elsevier, PubMed, Google Scholar, etc. were used for an extensive search of articles related to NSAIDs, prodrug concepts, as well as research based on all of the NSAIDs-prodrug molecules prepared to date.
ResultsRecent developments in prodrug design have been explored that utilize naturally occurring antioxidants, including Thymol, Guaiacol, Menthol, Eugenol, Sesamol, Vanillin, and Umbelliferon, for the synthesis of mutual prodrugs by esterification methods. Many studies have shown that these prodrugs have significant stability in acidic pH while hydrolyzing in neutral and alkaline pH environments. This indicates their potential as advantageous therapeutic agents with enhanced safety profiles.
ConclusionThe mutual prodrug strategy offers a chance in medicinal chemistry to enhance the therapeutic and clinical efficiency of a drug that has certain unfavorable qualities that limit its clinical utility. This review enlightens mutual prodrugs of NSAIDs and antioxidants that are less harmful and beneficial to mankind, respectively.
-
-
-
An Updated Insight on Phyto-therapeutics and Their Novel Approaches in the Management of Brain Cancer
Authors: Zulfa Nooreen, Vivek Kumar Gupta, Kanchan Singh, Ankita Wal, Awani Kumar Rai, and and Sudeep TandonAvailable online: 07 July 2025More LessBrain cancer patients may experience a wide range of excruciating and debilitating sensations as the tumours enlarge. This is frequently because the tumours press against the brain or obstruct normal brain and nerve impulses. While it is unusual for brain cancer to spread to other regions of the body, the majority of cases are quite aggressive. Particularly in older people, the majority of glioblastomas (around 80–90%) develop de novo, without any preceding clinical or histologic symptoms. Phytomolecules may possess anticancer effects by controlling many signalling pathways. They may enable cells to regenerate and offer a suitable environment for maintaining cells. Numerous plants were researched recently to find potent extracts and molecules. Berberine, muscone, schisandrin B, dioscin, naringenin and many others are used in the management of brain cancer. Recent developments in the treatment of brain cancer include the use of paclitaxel, temozolomide, and irinotecan. New medications, including thalidomide, suramin, and marimastat, can be used to treat brain tumour invasion and neoplastic angiogenesis. The databases PubMed, Scifinder, Google Scholar, Science Direct, and Scopus were examined for empirical research up to the end of March 2023. Here in the present comprehensive review article, we compiled extracts, phytomolecules and novel approaches like nanoparticle, liposomes and micelle reported in the management of brain cancer. Phytochemicals themselves may be functionalized into a portion of the micron-sized particles to help them pass across the blood-brain barrier and, once released into the brain microenvironment, use their therapeutic properties for therapy. Additionally, liposomes are useful to encapsulate chemotherapy medications and enable focused distribution via the blood-brain barrier.
-
-
-
MEF2C: A Novel Transcription Factor Implicated in Human Malignant Tumors
Authors: Yining Pan, Jiayi Li, Haoran Liu, Jiayi Ma, Dongshuo Wang, Xiaolan Li and Chengfu YuanAvailable online: 02 July 2025More LessBackgroundMyocyte enhancer factor 2C (MEF2C) is a pivotal transcription factor that is responsible for maintaining myocyte differentiation. MEF2C is multifunctional, participating in diverse biological processes, including cardiac morphogenesis, angiogenesis, neurogenesis, and cortical development. Emerging evidence has identified MEF2C as a novel oncogene with dual regulatory functions in tumorigenesis. However, the mechanisms by which MEF2C regulates the progression of various malignant tumors are unknown. Therefore, it is crucial to further investigate the multiple signaling pathways under different expression levels of MEF2C. In this review, the expression level of MEF2C in various malignant tumors and its specific pathways are described.
MethodsThis review systematically summarizes and critically analyzes the current studies on MEF2C’s biological function in malignant tumors by comprehensively searching them in PubMed databases.
ResultsMEF2C demonstrates aberrant expression patterns across multiple tumor types, spanning both solid tumors (e.g., glioma, breast cancer, hepatocellular carcinoma) and hematological malignancies (e.g., leukemia). MEF2C orchestrates multiple oncogenic processes, including tumor cell proliferation, migration, and invasion, while also modulating cancer drug resistance and systemic manifestations, like cachexia and apoptosis resistance.
ConclusionGiven its multifaceted roles in tumor initiation, progression, and clinical aspects, MEF2C has the potential to serve as both a diagnostic biomarker and a therapeutic target for various malignancies.
-
-
-
Leveraging Tubulin Isotype Structural Differences to Design Less Hematotoxic β5 Selective Covalent Inhibitors for NSCLC
Authors: Sonia Kumari, Vruksha Arvind Raut and Masilamani Elizabeth SobhiaAvailable online: 02 July 2025More LessAimThis study aims to discover and design β-5 tubulin-specific covalent inhibitors for non-small cell lung cancer (NSCLC) that can minimize hematotoxicity, a major side effect of current microtubule-targeting agents (MTAs).
BackgroundCurrent microtubule-targeting drugs cause toxicities such as hematotoxicity and multidrug resistance (MDR). The colchicine binding site in β-5 has Cys-239, whereas β-1 has Ser-239, allowing selective inhibition based on the reactivity differences for covalent reactions.
Methodsβ-5 and β-1 tubulin models were developed, and covalent docking and virtual screening were conducted to identify selective inhibitors targeting the β-5 tubulin colchicine binding site. Twenty hits were selected, and a comparative study was carried out between β-5 and β-1 to evaluate the selectivity and binding potential of the inhibitors.
ResultsAmong the 20 identified hits, four compounds demonstrated selective inhibition of β-5 tubulin, exhibiting stronger binding affinity for β-5 over β-1 tubulin. Molecular dynamics studies further confirmed their stability and enhanced binding, highlighting their potential as promising candidates for further drug development.
ConclusionThe study identified four novel β-5 tubulin-specific covalent inhibitors that may act as potential therapeutic agents for NSCLC, with the possibility of reduced hematotoxicity. These findings suggest that selective inhibition could help minimize side effects, addressing a critical need in cancer treatment.
-