Current Topics in Medicinal Chemistry - Online First
Description text for Online First listing goes here...
41 - 60 of 102 results
-
-
Kinase Inhibitors for Targeted Cancer Therapy
Authors: M. Amin Mir, Devalina Ray, Suman Mazumdar and Bimal Krishna BanikAvailable online: 30 July 2025More LessPrecision medicine's quick development has transformed the way cancer is treated, and because small-molecule kinase inhibitors can specifically block the abnormal signaling pathways that cause tumor growth and progression, they are now a key component of targeted therapy. This review explores the most recent advancements in kinase inhibitor design and optimization, with a focus on novel drug scaffolds, improved structure–activity relationships (SARs), and molecular modification techniques meant to improve target selectivity, potency, and pharmacokinetic profiles. Emerging strategies to combat resistance mechanisms are heavily emphasized, such as the use of dual-target inhibitors that block parallel signaling cascades, allosteric modulators that bind to non-ATP sites, and combination therapies that work in concert to increase efficacy while reducing resistance. A thorough summary of the kinase inhibitors that are now FDA-approved for use in treating different forms of cancer is also included in the review, along with information on their safety profiles, clinical effectiveness, and changing indications of usage. Additionally, it examines encouraging results from preclinical research and ongoing clinical studies assessing next-generation kinase inhibitors, which have the potential to further customize cancer treatment. In order to improve patient outcomes, address therapeutic resistance, and broaden the therapeutic scope of kinase-targeted interventions in oncology, the review concludes by highlighting future research directions, such as drug repurposing, computational drug discovery, and advanced precision oncology approaches.
-
-
-
The Vital Role of Long Non-Coding RNA SUMO1P3 in the Regulation of Human Cancer: Current Perspectives and Future Challenges
Authors: Jingjie Yang, Yuzhang Wei, Chengran Gao, Zihang Wang, Yulong Liu, Haodong He, Hao Zhou, Guihua Liao, Gang Zhou and Chengfu YuanAvailable online: 29 July 2025More LessSmall Ubiquitin-like Modifier 1 Pseudogene 3 (SUMO1P3) is a novel long non-coding RNA (lncRNA) located at the 1q23.2 locus of the human chromosome. Recent evidence indicates that SUMO1P3 is aberrantly upregulated in nine types of human cancer and functions as an oncogene. Elevated SUMO1P3 expression is strongly associated with unfavorable clinicopathological features and poor prognosis in eight cancer types. Mechanistically, SUMO1P3 functions as a miRNA sponge, an epigenetic regulator, and directly interacting with proteins. It activates key signaling pathways, such as the Wnt/β-catenin and AKT pathways, and regulates Epithelial-Mesenchymal Transition (EMT), which facilitates cancer progression and therapy resistance. Due to its diverse functional roles, SUMO1P3 emerges as a promising diagnostic and prognostic biomarker, as well as a potential therapeutic target in precision oncology. This review provides a comprehensive summary of current research on SUMO1P3, highlighting its regulatory mechanisms, biological functions, and clinical significance in cancer biology.
-
-
-
Exploring the Carbonic Anhydrase Activation Properties of 4-arylazo-3,5-diamino-1H-pyrazoles against hCA I, II, IV, and VII isoenzymes
Authors: Suleyman Akocak, Nebih Lolak, Andrea Ammara, Özen Özensoy Güler and Claudiu T. SupuranAvailable online: 28 July 2025More LessIntroductionCAs serve as crucial enzymes involved in a variety of physiological processes, including brain metabolism and cognitive function. hCA VII, a brain-associated isoform, plays an important role in modulating cerebral metabolism. Activating hCA VII may provide therapeutic benefits in Alzheimer's disease and other neurodegenerative or age-related illnesses. This study proposes to add to the growing interest in CAAs by developing innovative drugs with selective activation characteristics that target brain-associated CA isoforms.
MethodsA series of 4-arylazo-3,5-diamino-1H-pyrazoles have been produced by reacting aniline and aniline derivatives with a malononitrile solution at 0-5 °C, resulting in compounds 1(a-m). Then, arylazo malononitrile compounds were added with hydrazine monohydrate to obtain 4-arylazo-3,5-diamino-1H-pyrazole derivatives 2(a-m). The activity of the synthesized compounds was examined on human CA isoforms I, II, IV, and VII to determine activation potency and selectivity.
ResultsThe synthesized compounds demonstrated a wide spectrum of strong micromolar activation on human CA isoforms, with particularly encouraging results for hCA VII. The discovered activators showed a high selectivity profile for the brain-associated hCA VII isoform, indicating their potential use in neurological methods of therapy.
DiscussionAmong the most compelling findings of this study is the unprecedented potency of several synthesized derivatives, particularly 2i and 2m, in selectively activating hCA VII far beyond the benchmark histamine, positioning them as promising pharmacological candidates for addressing CA-related neurological disorders.
ConclusionThe research successfully discovered potent and selective CAAs with specific activity against hCA VII, a key enzyme in brain metabolism. These outcomes offer novel possibilities for developing medicinal products for neurological disorders and provide critical molecules for further study into CAAs. Furthermore, the study advances our understanding of enzyme activation kinetics and gives significant insights into the future of enzyme-based treatment research.
-
-
-
Nano-cocrystals as Nanotechnology-based Approach to Modulate Solubility and Bioavailability of Poorly Soluble Drugs
Authors: Deepak Tomar, Mainuddin, Anshika and Amulya JindalAvailable online: 28 July 2025More LessVarious drugs face limitations in their solubility parameters which limits their total oral bioavailability, and such drugs are also categorized under the biopharmaceutical classification system (BCS) Class II. To modulate such limitations there were various novel drug delivery systems (DDS) designed including lipid-based DDS such as liposomes, niosomes, nanostructured lipid carriers (NLCs), nanoemulsion, self-nanoemulsifying DDS (SNEDDS) but the most effective and easily prepared DDS is nano-cocrystals (NCs). This study aims to give a clear emphasis on the NCs, their development and various advantages related to their usage as DDS. NCs are developed to modify the characteristics of dynamic drug adjustments with enhanced dissolvability, disintegration, and bioavailability compared to their naive form. Due to their high surface-to-volume ratio and co-crystal structure, easily converted in the nanosized range, they can further enhance these qualities. Even though NCs have been the subject of numerous studies, drug NC research is still in its early stages. In this review, many methods for organizing NCs have been discussed. A detailed understanding of NCs will be provided by a thorough examination of a few scientific methods and representations. The purpose of this analysis is to provide direction for the development of novel NCs with pharmaceutical industry economic value and proven as an effective approach for enhancement of drug aqueous solubility and ultimately resulted in the modulation of total oral bioavailability of the drug. NCs will be the modern DDS from the futuristic point of view due to their easy development and better physiochemical properties.
-
-
-
Naringin Supplementation Reduces Inflammatory Processes in the Cerebellum in Brain Ischemia of Rats
Available online: 28 July 2025More LessIntroductionDuring cerebral ischemia, brain tissue is damaged in two successive stages: ischemia and reperfusion (I/R). In the ischemic phase, brain tissue undergoes energy failure due to an impaired circulatory system (cerebrovascular), resulting in oxygen and glucose deprivation and consequent brain damage.
ObjectiveThe study aimed to determine the effect of a two-week administration of naringin on caspase-3, IL-17, and NF-κB levels in cerebellar tissue in experimental focal brain ischemia-reperfusion in rats.
MethodsThe research was conducted on 10- to 12-week-old Wistar-type rats obtained from the Selcuk University Experimental Animals Research and Application Center. Experimental brain ischemia-reperfusion in rats was performed under general anesthesia (carotid arteries were exposed to ischemia for 30 minutes). Experimental groups were formed as follows. 1) Control group, 2) Sham, 3) Sham + vehicle, 4) Ischemia-reperfusion, 5) Ischemia-reperfusion + Naringin supplemented group for two weeks (100mg/kg). At the end of the experiments, the levels of IL-17, caspase-3, and NF-κB were determined in the cerebellum tissue of the animals under general anesthesia. First of all, blood was drawn from the heart, and the animals were killed by cervical dislocation.
ResultsExperimental brain ischemia-reperfusion significantly increased caspase-3, IL-17, and NF-κB levels in the brain tissue of rats. In contrast, naringin supplementation for 2 weeks significantly suppressed the ischemia-reperfusion-induced inflammatory process.
DiscussionThe findings obtained from our research generally showed that, as a result of focal brain ischemia-reperfusion in rats, the levels of NF-κB, a key molecule involved in inflammatory pathways, as well as the pro-inflammatory cytokine IL-17 and caspase-3, an indicator of apoptosis, increased significantly in cerebellar tissue. However, intragastric naringin supplementation for two weeks following ischemia-reperfusion led to significant improvements in the adverse effects caused by the ischemic injury.
ConclusionThe study's results demonstrate that naringin treatment effectively mitigates inflammatory activation in the cerebellum following brain ischemia-reperfusion in rats.
-
-
-
Nanotechnological Approaches for Mitochondrial Targeting in Neurodegenerative Diseases
Available online: 28 July 2025More LessObjectivesMitochondria are dynamic organelles essential for energy metabolism and cellular homeostasis, playing critical roles in ATP production, calcium regulation, redox balance, and apoptosis. However, mitochondrial dysfunction is a central factor in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Given the essential role of mitochondria in neuronal survival, targeted therapeutic strategies that restore mitochondrial function have gained significant attention. This review explores the latest advances in mitochondrial-targeted therapies and their potential applications in neurodegenerative diseases.
MethodsA comprehensive literature review was conducted on mitochondrial-targeted therapeutic strategies, with a focus on nanotechnology-based drug delivery systems. The analysis includes various nanoparticle-based approaches, such as liposomes, DQAsomes, and polymeric nanoparticles, which have demonstrated high biocompatibility, controlled drug release, and enhanced mitochondrial targeting efficiency. Additionally, mitochondria-penetrating peptides and delocalized lipophilic cations (DLCs) are discussed for their role in improving drug localization within mitochondria and overcoming biological barriers, including the blood-brain barrier (BBB).
ResultsRecent research shows the potential of mitochondrial-targeted antioxidants, peptides, and biocompatible nanocarriers in arranging mitochondrial dysfunction and protecting neurons from oxidative damage. Various nanoparticle-based drug delivery systems have demonstrated the ability to selectively target mitochondria, improving drug bioavailability, therapeutic efficacy, and neuroprotective outcomes in neurodegenerative diseases.
ConclusionMitochondria-targeted therapies provide promising avenues for disease-modifying treatments aimed at preserving neuronal integrity and delaying disease progression. The unique properties of nanoparticles, such as their ability to enhance drug stability, facilitate controlled release, and achieve precise mitochondrial localization, make them valuable tools for neurodegenerative disease therapy. Future research should focus on optimizing delivery systems, validating clinical applicability, and exploring interdisciplinary approaches to accelerate translation into effective treatments.
-
-
-
Microfluidics-Based Polymeric Micro/Nanocarriers for Drug Delivery in Liver Cancer Treatment: Recent Advances, Outlooks, and Progress
Available online: 25 July 2025More LessMicrofluidics-based polymers are transforming drug delivery systems for liver cancer treatment as they enable precise synthesis of nano- and microparticles suitable for targeted therapy. The manufacture of programmable nanoparticles and tunable sizes is made possible by microfluidic platforms, which are essential for improving the effectiveness of medication administration. A wide range of therapeutic chemicals, including hydrophobic medications like doxorubicin, can be encapsulated in these systems to target liver cancers while reducing systemic toxicity effectively. It has also been demonstrated that combining natural hydrogels and droplet microfluidics can create multicellular tumor spheroids that resemble the tumor microenvironment more closely. This methodology improves screening and drug efficacy research and offers a strong foundation for assessing treatment outcomes. This research also explores novel uses of microfluidic technologies to develop intelligent drug delivery devices that respond to particular stimuli and release medication at the tumor site. It also investigated how artificial cell assemblies made with microfluidics can open new possibilities for individualized cancer treatment. To sum up, microfluidic-based polymers offer advanced tools for developing tailored and efficient drug delivery systems that can enhance patient outcomes, and represent a significant advancement in the treatment of liver cancer. The review paper discusses challenges in liver cancer treatment, including high drug clearance rates, low concentrations, and multidrug resistance. It suggests microfluidic technology can improve drug delivery systems by creating controlled particles and responding to tumor conditions. This could revolutionize liver cancer therapies, enabling better drug testing and treatment prediction, as well as designing tailored therapies.
-
-
-
Impact of IDH Mutations on Ligand Unbinding: Insights from Steered Molecular Dynamics
Authors: Alka Singh, Sonia Kumari and M. Elizabeth SobhiaAvailable online: 24 July 2025More LessAimThis study explores the unbinding dynamics of alpha-ketoglutarate (AKG) from wild-type and mutant IDH1/IDH2 enzymes through steered molecular dynamics (SMD) simulations, examining how mutations influence binding, stability and enzymatic behaviour.
BackgroundIsocitrate dehydrogenase (IDH) enzymes are essential for cellular metabolism, catalyzing the conversion of isocitrate to AKG in the tricarboxylic acid cycle. Mutations in IDH1 and IDH2 lead to the aberrant accumulation of the oncometabolite 2-hydroxyglutarate (2-HG), disrupting normal metabolic processes and contributing to tumorigenesis.
MethodsSMD simulations were employed to investigate AKG unbinding from both wild-type and mutant IDH1/IDH2. External forces were applied to quantify rupture forces and assess differences in stability among enzyme variants.
ResultsWild-type IDH1 exhibited strong and stable AKG interactions, reflected by higher rupture forces and a greater number of hydrogen bonds, consistent with its normal catalytic function. In contrast, the R132H mutation in IDH1 weakened AKG binding, facilitating dissociation and potentially promoting 2-HG formation. Among IDH2 variants, the R140Q mutant demonstrated lower binding stability compared to R172K, while the wild-type enzyme maintained stronger interactions.
ConclusionMutations in IDH1 and IDH2 disrupt AKG binding and alter the stability, which may contribute to the pathological accumulation of 2-HG. These findings provide molecular insights into the oncogenic effects of IDH mutations and may aid in the development of targeted therapeutic strategies to inhibit mutant enzyme activity in cancer.
-
-
-
Harnessing the Potential of Polysaccharide-Derived Biomaterials for Wound Healing Applications
Available online: 24 July 2025More LessIntroductionPolysaccharide-derived biomaterials have emerged as promising candidates for wound healing applications due to their biocompatibility, biodegradability, and ability to mimic the extracellular matrix. These materials play a crucial role in maintaining a moist wound environment, promoting cell proliferation, and exhibiting anti-microbial properties, making them suitable alternatives to traditional wound dressings.
MethodsA systematic literature review was conducted using reputable databases including ScienceDirect, PubMed, Scopus, and Google Scholar. Relevant studies were identified, screened, and analyzed to ensure comprehensive coverage of the topic.
ResultWound healing is aided by essential polysaccharides such as chitosan, alginate, cellulose, and carrageenan, which help to retain moisture, promote cell proliferation, and prevent infections.
DiscussionPolysaccharide-derived biomaterials, including chitosan, alginate, and cellulose, facilitate wound healing by maintaining moisture, promoting cell migration, and exhibiting anti-microbial properties. However, challenges such as weak mechanical strength and rapid degradation limit their clinical use. Recent advancements in composite hydrogels, nanomaterials, and 3D-printed scaffolds have improved stability, drug release, and anti-microbial efficacy. Further research is required to enhance their mechanical properties and long-term applicability for clinical wound care solutions.
ConclusionBiomaterials developed from polysaccharides have the potential to revolutionize wound healing by providing biocompatible, adaptable solutions that promote enhanced tissue regeneration and infection control.
-
-
-
Exploring Therapeutic Potential of Emblica officinalis (Amla) Against Streptozotocin-Induced Diabetic Nephropathy in Wistar Rats
Authors: Umber Younas, Muhammad Issa Khan, Imran Pasha and Beenish IsrarAvailable online: 24 July 2025More LessIntroductionDiabetic nephropathy is a common microvascular complication that affects 20-40% of individuals with diabetes worldwide. This study aimed to evaluate the therapeutic potential of amla fruit against streptozotocin-induced diabetic nephropathy using animal models.
MethodsThe male Wistar rats procured for the study were divided into four groups randomly, G1 (negative control group), G2 (positive control group), G3 (rats receiving amla powder at 5% of their diet), and G4 (rats receiving amla powder at 7% of their diet). Diabetic nephropathy (DN) was induced using streptozotocin at a dose of 65 mg/kg. High-performance liquid chromatography (HPLC) was used to quantify the bioactive constituents of amla. Physical, glycemic, oxidative, inflammatory, and renal biomarkers were assessed periodically.
ResultsHPLC analysis confirmed the presence of high levels of vitamin C, gallic acid, and quercetin in amla. Amla supplementation significantly improved body weight, controlled kidney hypertrophy, reduced blood glucose levels, enhanced antioxidant enzyme activity such as superoxide dismutase (SOD) and catalase (CAT), and suppressed inflammatory cytokines. Renal function markers, including serum creatinine, blood urea nitrogen (BUN), and urine albumin, were significantly improved in the amla-treated groups. The 5% amla diet showed slightly superior effects compared to the 7% amla diet, although the differences were not statistically significant.
DiscussionThe findings suggested that amla mitigates DN progression by targeting key pathological pathways, particularly oxidative stress and inflammation. Its bioactive compounds appear to modulate glucose homeostasis, restore antioxidant defence, and reduce inflammatory responses. The findings also suggested a potential non-linear dose-response relationship, indicating 5% as a more effective dietary inclusion.
ConclusionConclusively, amla fruit effectively alleviated streptozotocin-induced diabetic nephropathy in rats by controlling oxidative stress, inflammation, and hyperglycemia.
-
-
-
Synthetic Approaches and Biological Significance of Four-Membered Heterocyclic Compounds
Authors: Neelottama Kushwaha and Swatantra K.S. KushwahaAvailable online: 23 July 2025More LessA four-membered heterocycle synthesis offers a thorough exploration of these unstable organic compounds, systematically introducing the synthesis and reactions of all standard four-membered heterocycles while showcasing various methods for creating unique variants. Due to their inherent strain, four-membered heterocyclic compounds are classified as unstable organic compounds, which makes them valuable as precursors for synthesizing a wide range of complex heterocyclic molecules. These compounds have become essential frameworks in medicinal chemistry, providing unique properties that enhance drug design and development. The incorporation of heteroatoms like nitrogen, oxygen, and sulfur into four-membered rings (such as azetidines, oxetanes, and thietanes) leads to diverse electronic, steric, and metabolic characteristics that can improve therapeutic efficacy, selectivity, and pharmacokinetics. Despite the challenges posed by their ring strain, recent advancements in chemical synthesis and functionalization techniques have made these compounds more accessible for various therapeutic applications. These strained ring structures offer increased metabolic stability, controlled lipophilicity, and the potential for advantageous binding interactions, making them suitable for multiple therapeutic uses, including oncology, infectious diseases, and CNS disorders. This review examines the key properties of four-membered heterocyclic rings, their role in drug development, recent synthetic advancements, and the potential of these compounds to yield next-generation medications with enhanced efficacy and precision.
-
-
-
Network Pharmacology, Molecular Docking, and In Vitro Validation to Explore the Key Phytochemicals of Da-cheng-qi Decoction Treating Intracerebral Hemorrhage
Authors: Yi-Zhi Yan, Xin-Yi Liu, Sha-Sha Yang, Shan-Shan Zhu, Ke Zhou, Qing Tian, Si-Jie Tan and Peng ZengAvailable online: 23 July 2025More LessBackgroundThe development of secondary brain injury following intracerebral hemorrhage (ICH) involves multiple pathophysiological processes. Da-cheng-qi decoction (DCQD) has a long history of effectiveness in treating ICH and exhibits a variety of pharmacological effects. However, the phytochemicals and targets of DCQD targeting the pathophysiological processes of ICH still require further elucidation. This study aims to investigate the mechanism and key phytochemicals of DCQD in treating ICH based on the pathophysiological processes.
MethodsWe used the UHPLC-MS/MS method to identify the main phytochemicals of DCQD and evaluate their pharmacological and toxicological parameters. We obtained and systematically analyzed the action targets of the main phytochemicals of DCQD and screened the targets related to ICH key pathophysiological processes and the corresponding phytochemicals. The results of molecular docking, molecular dynamic simulations, the GEO database and in vitro validation experiments confirmed the results of network pharmacology.
ResultsThe 20 main phytochemicals of DCQD interact with a total of 186 targets, with 75 targets specifically associated with the treatment of ICH identified through pathophysiological processes. Among them, chrysophanol 1-glucoside, aloe emodin, emodin, hesperidin, tangeritin, rhein and physcion were recognized as the potential phytochemicals of DCQD for the treatment of ICH. Neuroinflammation is a crucial factor in the development of secondary brain injury following ICH. Further analysis results suggest that targeting ferroptosis is one of the mechanisms by which DCQD regulates the pathophysiology processes of ICH to improve ICH. In vitro cell experiment results have demonstrated the regulatory effect of naringin on TNF-α and Cox2. In addition, the phytochemicals in DCQD also contribute to enhancement of cognitive function impaired by ICH.
ConclusionThis study contributes to a better understanding of the underlying mechanisms behind DCQD's medicinal effects in treating ICH, offering insights into potential lead compounds for the development of anti-ICH drugs.
-
-
-
Computer-aided Drug Design for Alzheimer's Disease: Recent Advancements and Future Perspectives
Authors: Suman Rohilla and Garima GoyalAvailable online: 22 July 2025More LessAlzheimer's disease (AD) is a neurodegenerative disorder marked by a decline in cognitive function and memory loss, primarily resulting from cholinergic dysfunction, the accumulation of amyloid plaques, the formation of tau tangles, and the progressive degeneration of neurons. While existing treatments offer limited symptomatic relief, they do not effectively halt or reverse the underlying progression of the disease, presenting a major global challenge in Alzheimer’s research. Developing therapeutic strategies for AD remains complex, largely due to the inability of current medications to significantly slow neurodegeneration. Traditional drug discovery processes are often lengthy, costly, and inefficient, further complicating the search for effective treatments. To overcome these obstacles, researchers have turned to a combination of computational approaches alongside conventional drug design techniques. These integrated methodologies help accelerate the discovery process by significantly reducing both time and costs. This review delves into the underlying physiological and pathological mechanisms of Alzheimer's disease, while identifying potential drug targets such as acetylcholinesterase, butyrylcholinesterase, β-Secretase (BACE-1), A2A adenosine receptor, Dickkopf-1 protein, glycogen synthase kinase-3β, indoleamine 2,3-dioxygenase, monoamine oxidase-B, NMDA receptor, Wnt inhibitory factor, cyclin-dependent kinase-5, glutaminyl cyclase, and cathepsin-B. Furthermore, the review examines various computer-aided drug design (CADD) methodologies, including structure-based and ligand-based approaches, virtual screening, pharmacophore modeling, molecular modelling, and simulation techniques. These computational strategies are playing an increasingly important role in Alzheimer’s research, particularly in drug discovery. By investigating promising drug candidates and lead molecules that target key proteins involved in Alzheimer’s pathogenesis, the review highlights their binding modes with these targets and assesses the chemical properties essential for the development of effective clinical candidates. The aim is to provide researchers with critical insights and tools to design novel compounds with the necessary chemical and physical characteristics required for the successful treatment of Alzheimer’s disease.
-
-
-
Carboxamide: A Privileged Pharmacophore for the Development of Anti-infectious and Anti-cancer Drugs
Authors: Xiaopei Yang, Zirui Jiao, Kasemsiri Chandarajoti, Sai Lv, Xisong Ke and Wen ZhouAvailable online: 22 July 2025More LessCarboxamide is a privileged scaffold that is often used in FDA-approved drugs. Unlike traditional amides, which exhibit properties similar to valence bonds, carboxamide has a more excellent binding mode and thus constructs rich pharmacological activities. According to the different working principles and N-terminus substitution of its specific structures, carboxamide can be further divided into N-unsubstituted carboxamide and N-substituted carboxamide. Both kinds of carboxamides have been widely studied and used in drug design and development. This review starts from the binding style and thus summarizes the excellent carboxamide structures, current research progress, and future challenges in the fields of anti-infection and anti-cancer.
-
-
-
Unveiling Vadadustat: Comprehensive Review of its Chemistry, Pharmacology, Bioanalysis, and Patent Landscape as a Novel HIF-PH Inhibitor
Authors: Firdous Shaikh and Sanjay SharmaAvailable online: 22 July 2025More LessIntroductionThe goal of this study is to provide a comprehensive review of physicochemical and pharmacological properties, including pharmacokinetics and pharmacodynamics parameters, with an overview of preclinical and clinical trial data, chemistry, and multiple routes of synthesis, bioanalytical methods, and patents of the API: Vadadustat
MethodsA review was conducted by compiling data from Science Direct, PubMed, Drug Bank, WIPO patent, Clinicaltrialgov, Wolters Kluwer, and many others to enhance understanding of the topic
ResultsThe FDA approved Vadadustat on March 27, 2024, for treating anemia in adults with CKD on dialysis. Vadadustat effectively increased hemoglobin levels in both non-dialysis and dialysis-dependent CKD patients. It showed comparable efficacy to traditional erythropoiesis-stimulating agents (ESAs) like darbepoetin alfa. Multiple clinical trials, including Phase 2 and Phase 3 studies, demonstrated Vadadustat’s potential as an effective treatment for anemia in CKD patients.
DiscussionVadadustat, as an oral HIF-PH inhibitor, offers significant advantages in the treatment of anemia in CKD. Its oral route of administration improves patient compliance, and its efficacy is comparable to ESAs. Clinical and preclinical data support its safety and therapeutic potential, although long-term cardiovascular effects remain under observation.
ConclusionThis review examines therapeutic, pharmacological, analytical, and regulatory aspects related to Vadadustat.
-
-
-
LINC-PINT: A Distinctive Long Non-Coding RNA Functioning as a Potential Suppressor in Tumorigenesis
Authors: Jiayi Li, Yining Pan, Songqiang Li, Cheng Chen and Chengfu YuanAvailable online: 22 July 2025More LessIntroductionLong noncoding RNAs are essential regulators in numerous biological processes and have been linked to various diseases including cancer. Despite their initial classification as transcriptional byproducts lncRNAs have been shown to modulate chromatin structure transcription RNA processing protein translation and intranuclear transport. LINC-PINT a lncRNA induced by P53 is particularly noteworthy for its role in tumor suppression across multiple cancers
MethodsBy utilizing the PubMed database and applying inclusion criteria based on relevance literature quality and data availability we conducted a comprehensive analysis of 128 studies to provide an overview of the functions of LINC-PINT and its mechanisms of action in cancers
ResultsLINC-PINT was confirmed to function as a tumor suppressor factor in many cancers such as triple-negative breast cancer non-small cell lung cancer gastric cancer glioma melanoma osteosarcoma laryngeal squamous cell carcinoma esophageal cancer colorectal cancer nasopharyngeal carcinoma retinoblastoma ovarian cancer thyroid cancer hepatocellular carcinoma and pancreatic cancer by promoting apoptosis and senescence inhibiting proliferation migration invasion drug resistance cell stemness EMT radioresistance and DNA damage repair
DiscussionLINC-PINT serves as a tumor suppressor with its ability to sponge miRNAs regulate epigenetic modulation DNA damage repair etc. Despite the promising findings the complex and tissue-specific functions of LINC-PINT along with the need for further clinical validation underscore the importance of continued research to fully understand its mechanisms and potential as a therapeutic target
ConclusionLINC-PINT is a potential target in cancer progression and treatment
-
-
-
Advancements and Scientific Partnerships in the Application of Polysaccharides in Oral Formulations: A Bibliometric Analysis and Review
Available online: 18 July 2025More LessIntroduction/ObjectiveThe limitations of conventional drug delivery methods, such as systemic side effects and poor absorption, highlight the need for safer and more effective alternatives. Polysaccharides, due to their biocompatible, biodegradable, and mucoadhesive properties, have shown promise in formulations for the oral cavity, particularly in localized delivery systems and tissue regeneration. This study aims to conduct a bibliometric analysis to characterize the scientific output on the use of polysaccharides in the oral cavity, identifying trends, international collaborations, and research gaps.
MethodsA Web of Science search was conducted in January 2025 using keywords related to polysaccharides and mucosal adhesion. The analysis included original articles published in English between 2015 and 2024. Bibliometric data and study characteristics were extracted and analyzed, focusing on study types, formulation types, and international collaborations.
ResultsThe analysis included 66 articles with 1144 citations. In vitro studies were predominant, while clinical trials were lacking. Chitosan and alginate emerged as the most commonly used polysaccharides, with gels and hydrogels being the most prevalent formulations. International collaborations involved 28 countries, with China, Brazil, and Italy standing out in terms of scientific production.
DiscussionThe results highlight important advancements in the use of polysaccharides for oral cavity formulations, particularly in gels and hydrogels. However, the predominance of in vitro studies and the lack of clinical trials suggest limitations for translating these findings into clinical practice. The strong performance of countries such as China, Brazil, Italy, Spain, and Norway underscores the relevance of international collaborations and the global potential of this topic.
ConclusionThe increasing scientific output reflects the growing interest in the use of polysaccharides for oral health applications. Despite these advancements, critical gaps remain, such as the lack of clinical studies. Future research should prioritize translational studies, personalized therapies, and the sustainable development of biomaterials.
-
-
-
The Use of Virus-like Particles as Immunogens to Treat Infectious Diseases
Authors: Paulo Ricardo da Silva Sanches and Eduardo Maffud CilliAvailable online: 17 July 2025More LessVirus-like particles (VLPs) represent a promising approach to developing vaccines for infectious diseases. These nanostructures mimic the organization and conformation of native viruses but lack viral genetic material, rendering them non-infectious. VLPs can induce potent immune responses, making them ideal immunogens. This review provides an overview of VLP technology, its application in combating infectious diseases, and its potential to shape future vaccine development. Specific emphasis is placed on current clinical applications, emerging infectious disease targets, and the challenges in optimizing VLP-based immunogens.
-
-
-
Barrier Tissue-Resident Macrophages: Natural Compounds as Modulators in Immune Function and Disease
Available online: 17 July 2025More LessTissue-Resident Macrophages (TRMs) are essential cells of the immune system, strategically located in barrier tissues such as the skin, lungs, and intestines. They can originate from progenitor cells in the yolk sac and fetal liver, developing distinct features that enable them to respond effectively to local challenges and maintain tissue homeostasis. The functional plasticity of TRMs allows them to adapt to diverse microenvironments, facilitating their roles in tissue repair, inflammation, and immune surveillance. Recent studies have highlighted the potential of Natural Compounds (NCs) to modulate macrophage function, offering promising therapeutic strategies for managing inflammatory diseases. These compounds have been shown to enhance or suppress specific macrophage activities, influencing immune responses and promoting healing processes. This review highlights the importance of understanding TRMs and the role of natural compounds in modulating TRM activation and function. Deciphering the potential of NCs in macrophages may shed light on the development of innovative treatments for various immune-related diseases.
-
-
-
Potential Indicators for the Development of Hepatocellular Carcinoma: A Diagnostic Strategy
Available online: 16 July 2025More Less: Hepatocellular carcinoma (HCC), a primary malignancy of the liver, ranks among the top five most common cancers globally and is associated with high mortality due to its poor prognosis, late-stage detection, and limited therapeutic success. Early diagnosis is essential to improve treatment outcomes and survival rates. Biomarkers have emerged as vital tools for the early detection, prognosis, and therapeutic monitoring of HCC, with many detectable in serum or urine at quantifiable levels. These biomarkers may be overexpressed, downregulated, or involved in regulatory pathways affecting other proteins and molecules, thereby serving as potential indicators of tumor development. This review aims to provide an updated overview of promising HCC biomarkers, highlighting their diagnostic value and clinical utility. A structured literature search was conducted using PubMed, Scopus, and Web of Science databases for studies published. Eligible studies were selected based on predefined inclusion criteria, evaluated for quality, and thematically categorized according to the type and function of biomarkers. The review emphasizes the translational potential of these indicators in developing more effective diagnostic strategies for HCC.
-