Skip to content
2000
image of Decoding Dementia Mechanisms: Identification of Key Oligodendrocyte-Associated Genes through Integrative Bioinformatics and MachineLearning

Abstract

Introduction

This study aims to elucidate the mechanisms underlying Dementia using bioinformatics analysis and machine learning algorithms, to identify novel therapeutic targets for its clinical management.

Methods

Gene expression datasets related to dementia were sourced from the GEO database. Differentially expressed genes (DEGs) were identified using R, and key module genes were determined through the Weighted Gene Co-expression Network Analysis (WGCNA) method. Oligodendrocyte (OL) related targets were retrieved from the GeneCards database. The intersecting genes from DEGs, WGCNA, and OL were analyzed using Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes. Subsequently, three machine learning algorithms were employed to pinpoint core genes associated with OL in dementia. The CIBERSORT algorithm was used to evaluate the abundance of 22 immune cell types and their correlation with Dementia-related immune infiltration. Validation was carried out quantitative reverse transcription polymerase chain reaction (RT-qPCR).

Results

Through bioinformatics and machine learning techniques, six core OL genes associated with Dementia were identified, notably C1QA, CD163, and TGFB2, which showed elevated expression in Dementia. Immune cell infiltration analysis indicated that several immune cell types may contribute to Dementia's pathogenesis, and RT-qPCR results corroborated the bioinformatics findings.

Discussion

The discovered genes may contribute to dementia pathogenesis through oligodendrocyte dysfunction and neuroimmune interactions. Notably, TGFB2 and complement-related genes (C1QA, CD163) suggest involvement in both myelination defects and neuroinflammation, highlighting their therapeutic potential.

Conclusion

The six feature genes: TGFB2, C1QA, CD163, ACTG1, WIF1, and OPALIN are significantly linked to Dementia.

Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266384153250804110312
2025-08-13
2025-11-09
Loading full text...

Full text loading...

References

  1. Gale S.A. Acar D. Daffner K.R. Dementia. Am. J. Med. 2018 131 10 1161 1169 10.1016/j.amjmed.2018.01.022 29425707
    [Google Scholar]
  2. Livingston G. Huntley J. Sommerlad A. Ames D. Ballard C. Banerjee S. Brayne C. Burns A. Cohen-Mansfield J. Cooper C. Costafreda S.G. Dias A. Fox N. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Ogunniyi A. Orgeta V. Ritchie K. Rockwood K. Sampson E.L. Samus Q. Schneider L.S. Selbæk G. Teri L. Mukadam N. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020 396 10248 413 446 10.1016/S0140‑6736(20)30367‑6 32738937
    [Google Scholar]
  3. Livingston G. Huntley J. Liu K.Y. Costafreda S.G. Selbæk G. Alladi S. Ames D. Banerjee S. Burns A. Brayne C. Fox N.C. Ferri C.P. Gitlin L.N. Howard R. Kales H.C. Kivimäki M. Larson E.B. Nakasujja N. Rockwood K. Samus Q. Shirai K. Singh-Manoux A. Schneider L.S. Walsh S. Yao Y. Sommerlad A. Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024 404 10452 572 628 10.1016/S0140‑6736(24)01296‑0 39096926
    [Google Scholar]
  4. Braaker P.N. Mi X. Soong D. Bin J.M. Marshall-Phelps K. Bradley S. Benito-Kwiecinski S. Meng J. Arafa D. Richmond C. Keatinge M. Yu G. Almeida R.G. Lyons D.A. Activity-driven myelin sheath growth is mediated by mGluR5. Nat. Neurosci. 2025 28 6 1213 1225 10.1038/s41593‑025‑01956‑9 40369366
    [Google Scholar]
  5. de la Monte S.M. Yang Y. Prabhu A. Tong M. Comparative brain and serum exosome expression of biomarkers in an experimental model of alzheimer-type neurodegeneration: Potential relevance to liquid biopsy diagnostics. Int. J. Mol. Sci. 2025 26 9 4190 10.3390/ijms26094190 40362426
    [Google Scholar]
  6. Elbaz B. Popko B. Molecular control of oligodendrocyte development. Trends Neurosci. 2019 42 4 263 277 10.1016/j.tins.2019.01.002 30770136
    [Google Scholar]
  7. Raz L. Knoefel J. Bhaskar K. The neuropathology and cerebrovascular mechanisms of dementia. J. Cereb. Blood Flow Metab. 2016 36 1 172 186 10.1038/jcbfm.2015.164 26174330
    [Google Scholar]
  8. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  9. Pandey S. Shen K. Lee S.H. Shen Y.A.A. Wang Y. Otero-García M. Kotova N. Vito S.T. Laufer B.I. Newton D.F. Rezzonico M.G. Hanson J.E. Kaminker J.S. Bohlen C.J. Yuen T.J. Friedman B.A. Disease-associated oligodendrocyte responses across neurodegenerative diseases. Cell Rep. 2022 40 8 111189 10.1016/j.celrep.2022.111189 36001972
    [Google Scholar]
  10. Zhang Q. Wang Q. Fu J. Xu X. Guo D. Pan Y. Zhang T. Wang H. Multi targeted therapy for Alzheimer’s disease by guanidinium-modified calixarene and cyclodextrin co-assembly loaded with insulin. ACS Nano 2024 18 48 33032 33041 10.1021/acsnano.4c05693 39499644
    [Google Scholar]
  11. Wang H. Yan Z. Yang W. Liu R. Fan G. Gu Z. Tang Z.J.S. Chemical A.B. A strategy of monitoring acetylcholinesterase and screening of natural inhibitors from Uncaria for Alzheimer’s disease therapy based on near-infrared fluorescence probe. Sens. Actuators B Chem. 2024 424 136895 10.1016/j.snb.2024.136895
    [Google Scholar]
  12. Li H. Tan Y. Cheng X. Zhang Z. Huang J. Hui S. Zhu L. Liu Y. Zhao D. Liu Z. Peng W. Untargeted metabolomics analysis of the hippocampus and cerebral cortex identified the neuroprotective mechanisms of Bushen Tiansui formula in an aβ25-35-induced rat model of Alzheimer’s disease. Front. Pharmacol. 2022 13 990307 10.3389/fphar.2022.990307 36339577
    [Google Scholar]
  13. Rajani R.M. Ellingford R. Hellmuth M. Harris S.S. Taso O.S. Graykowski D. Lam F.K.W. Arber C. Fertan E. Danial J.S.H. Swire M. Lloyd M. Giovannucci T.A. Bourdenx M. Klenerman D. Vassar R. Wray S. Sala Frigerio C. Busche M.A. Selective suppression of oligodendrocyte-derived amyloid beta rescues neuronal dysfunction in Alzheimer’s disease. PLoS Biol. 2024 22 7 3002727 10.1371/journal.pbio.3002727 39042667
    [Google Scholar]
  14. Zou P. Wu C. Liu T.C.Y. Duan R. Yang L. Oligodendrocyte progenitor cells in Alzheimer’s disease: From physiology to pathology. Transl. Neurodegener. 2023 12 1 52 10.1186/s40035‑023‑00385‑7 37964328
    [Google Scholar]
  15. Bhuiyan M.I.H. Habib K. Sultan M.T. Chen F. Jahan I. Weng Z. Rahman M.S. Islam R. Foley L.M. Hitchens T.K. Deng X. Canna S.W. Sun D. Cao G. SPAK inhibitor ZT‐1a attenuates reactive astrogliosis and oligodendrocyte degeneration in a mouse model of vascular dementia. CNS Neurosci. Ther. 2024 30 3 14654 10.1111/cns.14654 38433018
    [Google Scholar]
  16. Wang H. Liu Y. Cui M. Guo Z. Zhao Y. Yang J. Wu C. Pseudoginsenoside-F11 reduces cognitive impairment and white matter injury in vascular dementia by alleviating autophagy-lysosomal pathway deficiency. Phytomedicine 2024 133 155883 10.1016/j.phymed.2024.155883 39059268
    [Google Scholar]
  17. Miedema S.S.M. Mol M.O. Koopmans F.T.W. Hondius D.C. van Nierop P. Menden K. de Veij Mestdagh C.F. van Rooij J. Ganz A.B. Paliukhovich I. Melhem S. Li K.W. Holstege H. Rizzu P. van Kesteren R.E. van Swieten J.C. Heutink P. Smit A.B. Distinct cell type-specific protein signatures in GRN and MAPT genetic subtypes of frontotemporal dementia. Acta. Neuropathol. Commun. 2022 10 1 100 10.1186/s40478‑022‑01387‑8 35799292
    [Google Scholar]
  18. Irwin D.J. McMillan C.T. Suh E. Powers J. Rascovsky K. Wood E.M. Toledo J.B. Arnold S.E. Lee V.M.Y. Van Deerlin V.M. Trojanowski J.Q. Grossman M. Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology 2014 83 6 502 509 10.1212/WNL.0000000000000668 24994843
    [Google Scholar]
  19. Zhou X. Nicholson A.M. Ren Y. Brooks M. Jiang P. Zuberi A. Phuoc H.N. Perkerson R.B. Matchett B. Parsons T.M. Finch N.A. Lin W. Qiao W. Castanedes-Casey M. Phillips V. Librero A.L. Asmann Y. Bu G. Murray M.E. Lutz C. Dickson D.W. Rademakers R. Loss of TMEM106B leads to myelination deficits: Implications for frontotemporal dementia treatment strategies. Brain 2020 143 6 1905 1919 10.1093/brain/awaa141 32504082
    [Google Scholar]
  20. Zhang H. Yang Y. Zhang J. Huang L. Niu Y. Chen H. Liu Q. Wang R. Oligodendrocytes play a critical role in white matter damage of vascular dementia. Neuroscience 2024 538 1 10 10.1016/j.neuroscience.2023.10.018 37913862
    [Google Scholar]
  21. Cho K.H. Choi S.M. Kim B.C. Lee S.H. Park M.S. Kim M.K. Kim J.K. 5‐fluorouracil‐induced oligodendrocyte death and inhibitory effect of cycloheximide, trolox, and Z‐VAD‐FMK in murine cortical culture. Cancer 2004 100 7 1484 1490 10.1002/cncr.20114 15042683
    [Google Scholar]
  22. Jamet M. Dupuis L. Gonzalez De Aguilar J.L. Oligodendrocytes in amyotrophic lateral sclerosis and frontotemporal dementia: The new players on stage. Front. Mol. Neurosci. 2024 17 1375330 10.3389/fnmol.2024.1375330 38585368
    [Google Scholar]
  23. De Marchi F. Tondo G. Corrado L. Menegon F. Aprile D. Anselmi M. D’Alfonso S. Comi C. Mazzini L. Neuroinflammatory pathways in the ALS-FTD continuum: A focus on genetic variants. Genes 2023 14 8 1658 10.3390/genes14081658 37628709
    [Google Scholar]
  24. Wang H.L.V. Xiang J.F. Yuan C. Veire A.M. Gendron T.F. Murray M.E. Tansey M.G. Hu J. Gearing M. Glass J.D. Jin P. Corces V.G. McEachin Z.T. pTDP-43 levels correlate with cell type–specific molecular alterations in the prefrontal cortex of C9orf72 ALS/FTD patients. Proc. Natl. Acad. Sci. USA 2025 122 9 2419818122 10.1073/pnas.2419818122 39999167
    [Google Scholar]
  25. Yang Y. Shi Y. Schweighauser M. Zhang X. Kotecha A. Murzin A.G. Garringer H.J. Cullinane P.W. Saito Y. Foroud T. Warner T.T. Hasegawa K. Vidal R. Murayama S. Revesz T. Ghetti B. Hasegawa M. Lashley T. Scheres S.H.W. Goedert M. Structures of α-synuclein filaments from human brains with Lewy pathology. Nature 2022 610 7933 791 795 10.1038/s41586‑022‑05319‑3 36108674
    [Google Scholar]
  26. Gagyi E. Kormos B. Castellanos K.J. Valyi-Nagy K. Korneff D. LoPresti P. Woltjer R. Valyi-Nagy T. Decreased oligodendrocyte nuclear diameter in Alzheimer’s disease and Lewy body dementia. Brain Pathol. 2012 22 6 803 810 10.1111/j.1750‑3639.2012.00595.x 22429607
    [Google Scholar]
  27. Schoeler T. Pingault J.B. Kutalik Z. Combining cross-sectional and longitudinal genomic approaches to identify determinants of cognitive and physical decline. Nat. Commun. 2025 16 1 4524 10.1038/s41467‑025‑59383‑0 40374629
    [Google Scholar]
  28. Galvin J.E. Sadowsky C.H. Practical guidelines for the recognition and diagnosis of dementia. J. Am. Board Fam. Med. 2012 25 3 367 382 10.3122/jabfm.2012.03.100181 22570400
    [Google Scholar]
  29. Mahalingam S. Chen M.K. Neuroimaging in Dementias. Semin. Neurol. 2019 39 2 188 199 10.1055/s‑0039‑1678580 30925612
    [Google Scholar]
  30. Hermann P. Zerr I. Rapidly progressive dementias — aetiologies, diagnosis and management. Nat. Rev. Neurol. 2022 18 6 363 376 10.1038/s41582‑022‑00659‑0 35508635
    [Google Scholar]
  31. Saviano A. Henderson N.C. Baumert T.F. Single-cell genomics and spatial transcriptomics: Discovery of novel cell states and cellular interactions in liver physiology and disease biology. J. Hepatol. 2020 73 5 1219 1230 10.1016/j.jhep.2020.06.004 32534107
    [Google Scholar]
  32. Miranda A.M.A. Janbandhu V. Maatz H. Kanemaru K. Cranley J. Teichmann S.A. Hübner N. Schneider M.D. Harvey R.P. Noseda M. Single-cell transcriptomics for the assessment of cardiac disease. Nat. Rev. Cardiol. 2023 20 5 289 308 10.1038/s41569‑022‑00805‑7 36539452
    [Google Scholar]
  33. Lei Y. Tang R. Xu J. Wang W. Zhang B. Liu J. Yu X. Shi S. Applications of single-cell sequencing in cancer research: Progress and perspectives. J. Hematol. Oncol. 2021 14 1 91 10.1186/s13045‑021‑01105‑2 34108022
    [Google Scholar]
  34. Vallejo J. Cochain C. Zernecke A. Ley K. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc. Res. 2021 117 13 cvab260 10.1093/cvr/cvab260 34343272
    [Google Scholar]
  35. Wang Z. Gerstein M. Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009 10 1 57 63 10.1038/nrg2484 19015660
    [Google Scholar]
  36. Westermann A.J. Vogel J. Cross-species RNA-seq for deciphering host–microbe interactions. Nat. Rev. Genet. 2021 22 6 361 378 10.1038/s41576‑021‑00326‑y 33597744
    [Google Scholar]
  37. Su M. Pan T. Chen Q.Z. Zhou W.W. Gong Y. Xu G. Yan H.Y. Li S. Shi Q.Z. Zhang Y. He X. Jiang C.J. Fan S.C. Li X. Cairns M.J. Wang X. Li Y.S. Data analysis guidelines for single-cell RNA-seq in biomedical studies and clinical applications. Mil. Med. Res. 2022 9 1 68 10.1186/s40779‑022‑00434‑8 36461064
    [Google Scholar]
  38. Lin T. Barash J.A. Wang S. Li F. Yang Z. Kofke W.A. Sha F. Tang J. Regular use of opioids and dementia, cognitive measures, and neuroimaging outcomes among UK Biobank participants with chronic non‐cancer pain. Alzheimers Dement. 2025 21 5 70177 10.1002/alz.70177 40390206
    [Google Scholar]
  39. Wang Y. Wu X. Ren W. Liu Y. Dai X. Wang S. Huo Q. Sun Y. Protective effects of fisetin in an Aβ1-42-induced rat model of Alzheimer’s disease. Folia Neuropathol. 2023 61 2 196 208 10.5114/fn.2023.126893 37587894
    [Google Scholar]
  40. Stopa E.G. Tanis K.Q. Miller M.C. Nikonova E.V. Podtelezhnikov A.A. Finney E.M. Stone D.J. Camargo L.M. Parker L. Verma A. Baird A. Donahue J.E. Torabi T. Eliceiri B.P. Silverberg G.D. Johanson C.E. Comparative transcriptomics of choroid plexus in Alzheimer’s disease, frontotemporal dementia and Huntington’s disease: Implications for CSF homeostasis. Fluids Barriers CNS 2018 15 1 18 10.1186/s12987‑018‑0102‑9 29848382
    [Google Scholar]
  41. Kant S. Stopa E.G. Johanson C.E. Baird A. Silverberg G.D. Choroid plexus genes for CSF production and brain homeostasis are altered in Alzheimer’s disease. Fluids Barriers CNS 2018 15 1 34 10.1186/s12987‑018‑0120‑7 30541599
    [Google Scholar]
  42. McKay E.C. Beck J.S. Khoo S.K. Dykema K.J. Cottingham S.L. Winn M.E. Paulson H.L. Lieberman A.P. Counts S.E. Peri-infarct upregulation of the oxytocin receptor in vascular dementia. J. Neuropathol. Exp. Neurol. 2019 78 5 436 452 10.1093/jnen/nlz023 30990880
    [Google Scholar]
  43. Low C.Y.B. Lee J.H. Lim F.T.W. Lee C. Ballard C. Francis P.T. Lai M.K.P. Tan M.G.K. Isoform‐specific upregulation of FynT kinase expression is associated with tauopathy and glial activation in Alzheimer’s disease and Lewy body dementias. Brain Pathol. 2021 31 2 253 266 10.1111/bpa.12917 33128789
    [Google Scholar]
  44. Waller R. Hase Y. Simpson J.E. Heath P.R. Wyles M. Kalaria R.N. Wharton S.B. Transcriptomic profiling reveals discrete poststroke dementia neuronal and gliovascular signatures. Transl. Stroke Res. 2023 14 3 383 396 10.1007/s12975‑022‑01038‑z 35639336
    [Google Scholar]
  45. Ramos-Campoy O. Lladó A. Bosch B. Ferrer M. Pérez-Millan A. Vergara M. Molina-Porcel L. Fort-Aznar L. Gonzalo R. Moreno-Izco F. Fernandez-Villullas G. Balasa M. Sánchez-Valle R. Antonell A. Differential gene expression in sporadic and genetic forms of Alzheimer’s disease and frontotemporal dementia in brain tissue and lymphoblastoid cell lines. Mol. Neurobiol. 2022 59 10 6411 6428 10.1007/s12035‑022‑02969‑2 35962298
    [Google Scholar]
  46. Al-Dalahmah O. Lam M. McInvale J.J. Qu W. Nguyen T. Mun J.Y. Kwon S. Ifediora N. Mahajan A. Humala N. Winters T. Angeles E. Jakubiak K.A. Kühn R. Kim Y.A. De Rosa M.C. Doege C.A. Paryani F. Flowers X. Dovas A. Mela A. Lu H. DeTure M.A. Vonsattel J.P. Wszolek Z.K. Dickson D.W. Kuhlmann T. Zaehres H. Schöler H.R. Sproul A.A. Siegelin M.D. De Jager P.L. Goldman J.E. Menon V. Canoll P. Hargus G. Osteopontin drives neuroinflammation and cell loss in MAPT-N279K frontotemporal dementia patient neurons. Cell. Stem Cell. 2024 31 5 676 693.e10 10.1016/j.stem.2024.03.013 38626772
    [Google Scholar]
  47. Li C. Wang H. Wen Y. Yin R. Zeng X. Li K. GenoM7GNet: An efficient N(7)-methylguanosine site prediction approach based on a nucleotide language model. IEEE/ACM Trans Comput. Biol. Bioinform. 2024 21 6 2258 2268 10.1109/tcbb.2024.3459870 39302806
    [Google Scholar]
  48. Xin L. Feng H.C. Zhang Q. Cen X.L. Huang R.R. Tan G.Y. Zhang Q. Exploring the osteogenic effects of simiao wan through activation of the PI3K/AKT pathway in osteoblasts. J. Ethnopharmacol. 2025 338 Pt 1 119023 10.1016/j.jep.2024.119023 39489361
    [Google Scholar]
  49. Lin X.X. Yang P.Q. Li X.J. Xu Z.Z. Wu H.T. Hu S.M. Yang X.L. Ding Y. Yu W.Z. Network pharmacology based analysis and in vitro experimental verification of the inhibitory role of luteoloside on gastric cancer cells via the p53/p21 pathway. Oncol. Lett. 2024 29 2 76 10.3892/ol.2024.14822 39650229
    [Google Scholar]
  50. Feng S. Li S. Wu Z. Li Y. Wu T. Zhou Z. Liu X. Chen J. Fu S. Wang Z. Zhong Z. Zhong Y. Saffron improves the efficacy of immunotherapy for colorectal cancer through the IL-17 signaling pathway. J. Ethnopharmacol. 2025 337 Pt 2 118854 10.1016/j.jep.2024.118854 39326815
    [Google Scholar]
  51. Han X. Zhang Y. Zhang F. Li X. Meng Y. Huo J. Chen M. Liu F. Wang W. Wang N. Network pharmacology and phytochemical composition combined with validation in vivo and in vitro reveal the mechanism of platycodonis radix ameliorating PM2.5-induced acute lung injury. J. Ethnopharmacol. 2025 337 Pt 1 118829 10.1016/j.jep.2024.118829 39278295
    [Google Scholar]
  52. Huang L. Chen J. Yang R. Shi J. Zhou C. Chen T. Feng S. Huang C. Huang J. Xue J. Zhou Z. Zhu J. Wu S. Zhan X. Liu C. Deciphering distinct pathogenic mechanisms of ankylosing spondylitis and systemic sclerosis via shared biomarkers ZSWIM6 and CCL3L3: Insights from an integrative bioinformatics approach. Autoimmunity 2025 58 1 2445557 10.1080/08916934.2024.2445557 39727004
    [Google Scholar]
  53. Wei G. Wang Y. Liu R. Liu L. An integrated machine learning framework for developing and validating a prognostic risk model of gastric cancer based on endoplasmic reticulum stress-associated genes. Biochem. Biophys. Rep. 2025 41 101891 10.1016/j.bbrep.2024.101891 39698734
    [Google Scholar]
  54. Gao S. Sun Y. Jia S. Meng C. Transcriptome analysis unveils PLSCR1 associated with microglial polarization in neuropathic pain. Gene 2025 933 148961 10.1016/j.gene.2024.148961 39312982
    [Google Scholar]
  55. Zhu J. Song T. Li Z. Zheng W. Liu Y. Li H. Wang S. Tang J. Feng S. Wang L. Lu X. Yuan F. Zhu Z. Integration of bioinformatics and multi-layered experimental validation reveals novel functions of acetylation-related genes in intervertebral disc degeneration. Gene 2025 933 148974 10.1016/j.gene.2024.148974 39349110
    [Google Scholar]
  56. Yin M. Feng C. Yu Z. Zhang Y. Li Y. Wang X. Song C. Guo M. Li C. sc2GWAS: A comprehensive platform linking single cell and GWAS traits of human. Nucleic Acids Res. 2025 53 D1 D1151 D1161 10.1093/nar/gkae1008 39565208
    [Google Scholar]
  57. Tian Z. He W. Tang J. Liao X. Yang Q. Wu Y. Wu G. Identification of important modules and biomarkers in breast cancer based on WGCNA. OncoTargets Ther. 2020 13 6805 6817 10.2147/OTT.S258439 32764968
    [Google Scholar]
  58. Trautwig A.N. Fox E.J. Dammer E.B. Shantaraman A. Ping L. Duong D.M. Watson C.M. Wu F. Asress S. Guo Q. Levey A.I. Lah J.J. Verde F. Doretti A. Ratti A. Ticozzi N. Ly C.V. Miller T.M. Garret M.A. Berry J.D. Thomas E.V. Fournier C.N. McEachin Z.T. Seyfried N.T. Glass J.D. Network analysis of the cerebrospinal fluid proteome reveals shared and unique differences between sporadic and familial forms of amyotrophic lateral sclerosis. Mol. Neurodegener. 2025 20 1 58 10.1186/s13024‑025‑00838‑9 40375307
    [Google Scholar]
  59. Zeng J. Tong S. Liu J. Liu S. Mungur R. Chen S. MiR-433 inhibits cell invasion of glioblastoma via direct targeting TRPM8 based on bioinformatic analysis and experimental validation. Gene 2025 936 149121 10.1016/j.gene.2024.149121 39581355
    [Google Scholar]
  60. Wang W. Hong J. Cao T. Ye F. Gao J. Qin S. Identification of key chondrocyte apoptosis-related genes in osteoarthritis based on weighted gene co-expression network analysis and experimental verification. Crit. Rev. Immunol. 2025 45 1 15 29 10.1615/CritRevImmunol.2024051935 39612274
    [Google Scholar]
  61. Ding Y. Deng A. Yu H. Zhang H. Qi T. He J. He C. Jie H. Wang Z. Wu L. Integrative multi-omics analysis of Crohn’s disease and metabolic syndrome: Unveiling the underlying molecular mechanisms of comorbidity. Comput. Biol. Med. 2025 184 109365 10.1016/j.compbiomed.2024.109365 39541897
    [Google Scholar]
  62. Shriwash N. Aiman A. Singh P. Basir S.F. Shamsi A. Shahid M. Dohare R. Islam A. Understanding the role of potential biomarkers in attenuating multiple sclerosis progression via multiomics and network-based approach. PLoS One 2024 19 12 0314428 10.1371/journal.pone.0314428 39700118
    [Google Scholar]
  63. Go C. Zhong A. Linaburg T. Briceño C.A. The impact of primary tumor site on survival in mycosis fungoides. Cutis 2024 113 4 177 182 10.12788/cutis.0991 38820109
    [Google Scholar]
  64. Zhou Y. Dang L. Ruan C. Cai H. Jin Q. Kang L. Guo Z. Identification of potential genes in endobronchial tuberculosis after bronchoscopic cryotherapy by transcriptome sequencing. Infect. Genet. Evol. 2022 100 105269 10.1016/j.meegid.2022.105269 35301169
    [Google Scholar]
  65. Gurung R. Masood M. Singh P. Jha P. Sinha A. Ajmeriya S. Sharma M. Dohare R. Haque M.M. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach. J. Appl. Genet. 2024 65 4 839 851 10.1007/s13353‑024‑00843‑6 38358594
    [Google Scholar]
  66. Gu H. Zhang Y. Sun J. Liu L. Liu Z. Exploring the effect and mechanism of action of Jinlida granules (JLD) in the treatment of diabetes-associated cognitive impairment based on network pharmacology with experimental validation. Ann. Med. 2025 57 1 2445181 10.1080/07853890.2024.2445181 39723533
    [Google Scholar]
  67. Li M. Wang C. Zhou H. Chen J. Wang L. Xiong Y. Tian Y. Yan H. Liang X. Liu Q. Wang X. Wang Y. Fu C. Effects of temperature to the liver transcriptome in the hybrid puffer fish (Takifugu rubripes ♀ × Takifugu obscurus ♂). Comp. Biochem. Physiol. Part D Genomics Proteomics 2025 53 101360 10.1016/j.cbd.2024.101360 39608187
    [Google Scholar]
  68. Haishen Y. Jiang F. Si X. Sun D. Fei H. Wang D. Li K. Du S. Hu W. Wang Z. Expression of ALG8 in hepatocellular carcinoma and its diagnostic and prognostic significance. Scand. J. Gastroenterol. 2024 1 11 10.1080/00365521.2024.2433562 39648870
    [Google Scholar]
  69. Yan C. Chen L. Yinhui Y. Yazhen S. Identifying the role of oligodendrocyte genes in the diagnosis of Alzheimer’s disease through machine learning and bioinformatics analysis. Curr. Alzheimer Res. 2024 21 6 437 455 10.2174/0115672050338777241028071955 39506420
    [Google Scholar]
  70. Lawry Aguila A. Lorenzini L. Janahi M. Barkhof F. Altmann A. Deep normative modelling reveals insights into early-stage Alzheimer’s disease using multi-modal neuroimaging data. Alzheimers Res. Ther. 2025 17 1 107 10.1186/s13195‑025‑01753‑3 40375339
    [Google Scholar]
  71. Xiao X. Li Y. Wu Q. Liu X. Cao X. Li M. Liu J. Gong L. Dai X. Development and validation of a novel predictive model for dementia risk in middle-aged and elderly depression individuals: A large and longitudinal machine learning cohort study. Alzheimers Res. Ther. 2025 17 1 103 10.1186/s13195‑025‑01750‑6 40361211
    [Google Scholar]
  72. Li Q. Wei X. Wu F. Qin C. Dong J. Chen C. Lin Y. Development and validation of preeclampsia predictive models using key genes from bioinformatics and machine learning approaches. Front. Immunol. 2024 15 1416297 10.3389/fimmu.2024.1416297 39544937
    [Google Scholar]
  73. He J. Zhu X. Yang X. Wang H. Predictive efficacy of machine-learning algorithms on intrahepatic cholestasis of pregnancy based on clinical and laboratory indicators. J. Matern. Fetal Neonatal Med. 2025 38 1 2413854 10.1080/14767058.2024.2413854 39626970
    [Google Scholar]
  74. Gao P. Li W. Hashim S.B.H. Liang J. Xu J. Huang X. Zou X. Shi J. Distributional uniformity quantification in heterogeneous prepared dishes combined the hyperspectral imaging technology with Moran’s I: A case study of pizza. Food. Chem. 2025 466 141511 10.1016/j.foodchem.2024.141511 39608109
    [Google Scholar]
  75. Mmadumbu A.C. Saeed F. Ghaleb F. Qasem S.N. Early detection of Alzheimer’s disease using deep learning methods. Alzheimers Dement. 2025 21 5 70175 10.1002/alz.70175 40356024
    [Google Scholar]
  76. Guan S. Xu Z. Yang T. Zhang Y. Zheng Y. Chen T. Liu H. Zhou J. Identifying potential targets for preventing cancer progression through the PLA2G1B recombinant protein using bioinformatics and machine learning methods. Int. J. Biol. Macromol. 2024 276 Pt 1 133918 10.1016/j.ijbiomac.2024.133918 39019365
    [Google Scholar]
  77. Zhang T. Chen Y. Xiang Z. Machine learning-based integration develops a disulfidptosis-related lncRNA signature for improving outcomes in gastric cancer. Artif. Cells Nanomed. Biotechnol. 2025 53 1 1 13 10.1080/21691401.2024.2440415 39701937
    [Google Scholar]
  78. Ye K. Zhang L. Zhou H. Mo X. Shi C. Machine learning-based radiomic features of perivascular adipose tissue in coronary computed tomography angiography predicting inflammation status around atherosclerotic plaque: A retrospective cohort study. Ann. Med. 2025 57 1 2431606 10.1080/07853890.2024.2431606 39665384
    [Google Scholar]
  79. Liang Z. Wen W. Guan L. Zhang X. Zou L. Gu Q. Liu J. Yu X. Wu K. Huang Y. Latent class analysis of loneliness and the influencing factors among school-age children: A cross-sectional survey. J. Affect. Disord. 2025 371 72 81 10.1016/j.jad.2024.11.048 39557304
    [Google Scholar]
  80. Wu Z. Mo S. Huang Z. Zheng B. Identification of diagnostically relevant biomarkers in patients with coronary artery disease by comprehensive analysis. J. Inflamm. Res. 2024 17 10495 10513 10.2147/JIR.S494438 39654862
    [Google Scholar]
  81. Wang Y. Yao Y. Hu J. Lin Y. Cai C. Zhao Y. Development of a predictive nomogram for estimating medication nonadherence in hemodialysis patients. Med. Sci. Monit. 2022 28 934482 10.12659/MSM.934482 35290293
    [Google Scholar]
  82. Wang X. Zhang Y. Multi-omics joint screening of biomarkers related to M2 macrophages in gastric cancer. Discov Oncol. 2024 15 1 738 10.1007/s12672‑024‑01623‑8 39623254
    [Google Scholar]
  83. Zou M. Dong S. Liu S. Du C. Sun Y. Dong J. Xu H. Yan J. Influencing factors of prognosis in children with pulmonary atresia with intact ventricle septum after transthoracic balloon dilation of pulmonary valve and construction of a nomograph prediction model. Biotechnol. Genet. Eng. Rev. 2024 40 4 4328 4340 10.1080/02648725.2023.2210448 37154016
    [Google Scholar]
  84. Yan J. Liu Y. Liu T. Zhu Q. A predictive and prognostic model for metastasis risk and prognostic factors in gastrointestinal signet ring cell carcinoma. Eur. J. Med. Res. 2024 29 1 545 10.1186/s40001‑024‑02135‑5 39538294
    [Google Scholar]
  85. Le T. Aronow R.A. Kirshtein A. Shahriyari L. A review of digital cytometry methods: Estimating the relative abundance of cell types in a bulk of cells. Brief. Bioinform. 2021 22 4 bbaa219 10.1093/bib/bbaa219 33003193
    [Google Scholar]
  86. Cai H. Shen J. Peng W. Zhang X. Wen T. Identification of SOX9-related prognostic DEGs and a prediction model for hepatitis C-induced early-stage fibrosis. Gene 2025 937 149133 10.1016/j.gene.2024.149133 39622395
    [Google Scholar]
  87. Jing R. Wu N. Zhang Q. Liu J. Zhao Y. Zeng S. Wu S. Wu Y. Yi S. DPP4 promotes an immunoenhancing tumor microenvironment through exhausted CD8+ T cells with activating IL13-IL13RA2 axis in papillary thyroid cancer. Int. Immunopharmacol. 2025 145 113760 10.1016/j.intimp.2024.113760 39662266
    [Google Scholar]
  88. Li X. Zhang L. Liu C. He Y. Li X. Xu Y. Gu C. Wang X. Wang S. Zhang J. Liu J. Construction of mitochondrial quality regulation genes‐related prognostic model based on bulk‐ RNA ‐seq analysis in multiple myeloma. Biofactors 2025 51 1 2135 10.1002/biof.2135 39446019
    [Google Scholar]
  89. Song T. Chen Y. Li C. Yao Y. Ma S. Shang Y. Cheng J. Identification of molecular correlations of GSDMD with pyroptosis in Alzheimer’s disease. Comb. Chem. High Throughput Screen. 2024 27 14 2125 2139 10.2174/0113862073285497240226061936 39099451
    [Google Scholar]
  90. Wang D. Zhang X. Huang Z. Li Y. Wang X. Wang J. Zhao Y. Lv Q. Wu M. Zha M. Yuan K. Zhu W. Xu G. Xie Y. Theta-burst transcranial magnetic stimulation attenuates chronic ischemic demyelination and vascular cognitive impairment in mice. Exp. Neurol. 2025 383 115022 10.1016/j.expneurol.2024.115022 39442857
    [Google Scholar]
  91. Duan W.W. Yang L.T. Liu J. Dai Z.Y. Wang Z.Y. Zhang H. Zhang X. Liang X.S. Luo P. Zhang J. Liu Z.Q. Zhang N. Mo H.Y. Qu C.R. Xia Z.W. Cheng Q. A TGF ‐β signaling‐related lncRNA signature for prediction of glioma prognosis, immune microenvironment, and immunotherapy response. CNS Neurosci. Ther. 2024 30 4 14489 10.1111/cns.14489 37850692
    [Google Scholar]
  92. Wang H. Dey K.K. Chen P.C. Li Y. Niu M. Cho J.H. Wang X. Bai B. Jiao Y. Chepyala S.R. Haroutunian V. Zhang B. Beach T.G. Peng J. Integrated analysis of ultra-deep proteomes in cortex, cerebrospinal fluid and serum reveals a mitochondrial signature in Alzheimer’s disease. Mol. Neurodegener. 2020 15 1 43 10.1186/s13024‑020‑00384‑6 32711556
    [Google Scholar]
  93. Wu Z. Dong L. Tian Z. Yu C. Shu Q. Chen W. Li H. Integrative analysis of the age-related dysregulated genes reveals an inflammation and immunity-associated regulatory network in alzheimer’s disease. Mol. Neurobiol. 2024 61 8 5353 5368 10.1007/s12035‑023‑03900‑z 38190023
    [Google Scholar]
  94. Alami M. Boumezough K. Zerif E. Zoubdane N. Khalil A. Bunt T. Laurent B. Witkowski J. Ramassamy C. Boulbaroud S. Fulop T. Berrougui H. In vitro assessment of the neuroprotective effects of pomegranate (Punica granatum L.) polyphenols against tau phosphorylation, neuroinflammation, and oxidative stress. Nutrients 2024 16 21 3667 10.3390/nu16213667 39519499
    [Google Scholar]
  95. Xue J. Liu J. Geng M. Yue J. He H. Fan J. Identification of potential hub genes of Alzheimer’s disease by weighted gene co-expression network analysis. Nan Fang Yi Ke Da Xue Xue Bao 2021 41 12 1752 1762 10.12122/j.issn.1673‑4254.2021.12.01 35012905
    [Google Scholar]
  96. Atef M.M. Mostafa Y.M. Ahmed A.A.M. El-Sayed N.M. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/SMAD2 and GSK3β/β-catenin signalling pathways. Environ. Toxicol. Pharmacol. 2023 102 104220 10.1016/j.etap.2023.104220 37454825
    [Google Scholar]
  97. Muraleva N.A. Stefanova N.A. Kolosova N.G. SkQ1 suppresses the p38 MAPK signaling pathway involved in Alzheimer’s disease-like pathology in OXYS rats. Antioxidants 2020 9 8 676 10.3390/antiox9080676 32731533
    [Google Scholar]
  98. Liu Y. Fu Y. Zhang Y. Liu F. Rose G.M. He X. Yi X. Ren R. Li Y. Zhang Y. Wu H. Lv C. Zhang H. Butein attenuates the cytotoxic effects of LPS-stimulated microglia on the SH-SY5Y neuronal cell line. Eur. J. Pharmacol. 2020 868 172858 10.1016/j.ejphar.2019.172858 31837307
    [Google Scholar]
  99. McKhann G.M. Knopman D.S. Chertkow H. Hyman B.T. Jack C.R. Kawas C.H. Klunk W.E. Koroshetz W.J. Manly J.J. Mayeux R. Mohs R.C. Morris J.C. Rossor M.N. Scheltens P. Carrillo M.C. Thies B. Weintraub S. Phelps C.H. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging‐Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011 7 3 263 269 10.1016/j.jalz.2011.03.005 21514250
    [Google Scholar]
  100. Swift I.J. Sogorb-Esteve A. Heller C. Synofzik M. Otto M. Graff C. Galimberti D. Todd E. Heslegrave A.J. van der Ende E.L. Van Swieten J.C. Zetterberg H. Rohrer J.D. Fluid biomarkers in frontotemporal dementia: Past, present and future. J. Neurol. Neurosurg. Psychiatry 2021 92 2 204 215 10.1136/jnnp‑2020‑323520 33188134
    [Google Scholar]
  101. Nguyen A.T. Wang K. Hu G. Wang X. Miao Z. Azevedo J.A. Suh E. Van Deerlin V.M. Choi D. Roeder K. Li M. Lee E.B. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta. Neuropathol. 2020 140 4 477 493 10.1007/s00401‑020‑02200‑3 32840654
    [Google Scholar]
  102. Farrell C. Buhidma Y. Mumford P. Heywood W.E. Hällqvist J. Flores-Aguilar L. Andrews E.J. Rahimzadah N. Taso O.S. Doran E. Swarup V. Head E. Lashley T. Mills K. Toomey C.E. Wiseman F.K. Apolipoprotein E abundance is elevated in the brains of individuals with Down syndrome–Alzheimer’s disease. Acta. Neuropathol. 2025 149 1 49 10.1007/s00401‑025‑02889‑0 40387921
    [Google Scholar]
  103. Cao Z. Tan Q. Yang H. Xu C. Shared genetic architecture between leukocyte telomere length and Alzheimer’s disease. Alzheimers Res. Ther. 2025 17 1 108 10.1186/s13195‑025‑01757‑z 40382655
    [Google Scholar]
  104. Shrestha S. Zhu X. Griswold M.E. Palta P. Sullivan K.J. Chen H. Schneider A.L.C. Moghekar A. Grove M.L. Thyagarajan B. Pike J.R. Gottesman R.F. Windham B.G. Mosley T.H. Deal J.A. Kamath V. Olfaction and plasma biomarkers of Alzheimer disease and neurodegeneration in the atherosclerosis risk in communities study. Neurology 2025 104 11 213706 10.1212/WNL.0000000000213706 40373252
    [Google Scholar]
  105. Ashwini P. Subhash B. Amol M. Kumar D. Atmaram P. Ravindra K. Comprehensive investigation of multiple targets in the development of newer drugs for the Alzheimer’s disease. Acta. Pharm. Sin. B 2025 15 3 1281 1310 10.1016/j.apsb.2024.11.016 40370532
    [Google Scholar]
  106. Messenger E.J. Baar S.A. Bedford L.M. Tsai A.P. Lin P.B.C. Ferguson C.A. Xu G. Wallace A. Landreth G.E. Lamb B.T. Bissel S.J. PLCG2 modulates TREM2 expression and signaling in response to Alzheimer’s disease pathology. Alzheimers Dement. 2025 21 5 70231 10.1002/alz.70231 40346446
    [Google Scholar]
  107. Lan Z. Tan F. He J. Liu J. Lu M. Hu Z. Zhuo Y. Liu J. Tang X. Jiang Z. Lian A. Chen Y. Huang Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. Phytomedicine 2024 129 155635 10.1016/j.phymed.2024.155635 38701541
    [Google Scholar]
  108. Chen D. Wang C. Chen X. Li J. Chen S. Li Y. Ma F. Li T. Zou M. Li X. Huang X. Zhang Y. Zhao Y. Bu G. Zheng H. Chen X.F. Zhang J. Zhong L. Brain-wide microglia replacement using a nonconditioning strategy ameliorates pathology in mouse models of neurological disorders. Sci. Transl. Med. 2025 17 796 eads6111 10.1126/scitranslmed.ads6111 40305572
    [Google Scholar]
  109. Martiskainen H. Willman R.M. Harju P. Heikkinen S. Heiskanen M. Müller S.A. Sinisalo R. Takalo M. Mäkinen P. Kuulasmaa T. Pekkala V. Galván del Rey A. Juopperi S.P. Jeskanen H. Kervinen I. Saastamoinen K. Palotie A. Daly M. Riley-Gills B. Jacob H. Viollet C. Petrovski S. Chen C-Y. John S. Okafo G. Plenge R. Maranville J. McCarthy M. Pendergrass R. Davitte J. Auro K. Longerich S. Mälarstig A. Vlahiotis A. Klinger K. Chatelain C. Gossel M. Estrada K. Graham R. Waterworth D. O’Donnell C. Renaud N. Mäkelä T.P. Kaprio J. Ruddock M. Virolainen P. Hakanen A. Kilpi T. Perola M. Partanen J. Raivio T. Tikkanen J. Serpi R. Kristiansson K. Kosma V-M. Laukkanen J. Hautalahti M. Tuovila O. Waring J. Riley-Gillis B. Rahimov F. Tachmazidou I. Ding Z. Jung M. Tuoken H. Biswas S. Raghavan N. Huertas-Vazquez A. Sul J-H. Hu X. Hedman Å. Obeidat M´. Chung J. Zierer J. Niemi M. Ripatti S. Schleutker J. Arvas M. Carpén O. Hinttala R. Kettunen J. Mannermaa A. Aalto-Setälä K. Kähönen M. Mäkelä J. Kälviäinen R. Julkunen V. Remes A. Peltola J. Raivio M. Tienari P. Kallionpää R. Partanen J. Ziemann A. Smaoui N. Lehtonen A. Eaton S. Runz H. Lahdenperä S. Bowers N. Teng E. Xu F. Addis L. Eicher J. Li Q.S. He K. Khramtsova E. Färkkilä M. Koskela J. Pikkarainen S. Jussila A. Kaukinen K. Blomster T. Kiviniemi M. Voutilainen M. Lu T. McCarthy L. Hart A. Guan M. Miller J. Kalpala K. Miller M. Eklund K. Palomäki A. Isomäki P. Pirilä L. Kaipiainen-Seppänen O. Huhtakangas J. Mars N. Lertratanakul A. Hochfeld M. Gordillo J.E. Farias F. Bing N. Laitinen T. Pelkonen M. Kauppi P. Kankaanranta H. Harju T. Lahesmaa R. Chen H. Betts J. Mishra R. Mouded M. Ngo D. Niiranen T. Vaura F. Salomaa V. Metsärinne K. Aittokallio J. Hernesniemi J. Gordin D. Sinisalo J. Taskinen M-R. Tuomi T. Hiltunen T. Elliott A. Reeve M.P. Ruotsalainen S. Paul D. Chu A. Reilly D. Mendelson M. Parkkinen J. Meretoja T. Joensuu H. Mattson J. Salminen E. Auranen A. Karihtala P. Auvinen P. Elenius K. Pitkänen E. Popovic R. Fabre M. Schutzman J. Kulkarni D. Porello A. Loboda A. Lehtonen H. McDonough S. Vuoti S. Kaarniranta K. Turunen J.A. Ollila T. Uusitalo H. Karjalainen J. Liu M. Loomis S. Strauss E. Chen H. Tasanen K. Huilaja L. Hannula-Jouppi K. Salmi T. Peltonen S. Koulu L. Choy D. Wu Y. Pussinen P. Salminen A. Salo T. Rice D. Nieminen P. Palotie U. Siponen M. Suominen L. Mäntylä P. Gursoy U. Anttonen V. Sipilä K. Pendergrass R. Laivuori H. Kurra V. Kotaniemi-Talonen L. Heikinheimo O. Kalliala I. Aaltonen L. Jokimaa V. Vääräsmäki M. Uimari O. Morin-Papunen L. Niinimäki M. Piltonen T. Kivinen K. Widen E. Tukiainen T. Välimäki N. Laakkonen E. Tyrmi J. Silven H. Sliz E. Arffman R. Savukoski S. Laisk T. Pujol N. Kumar J. Hovatta I. Isometsä E. Ollila H. Suvisaari J. Mäkitie A. Bizaki-Vallaskangas A. Toppila-Salmi S. Willberg T. Saarentaus E. Aarnisalo A. Rahikkala E. Aittomäki K. Åberg F. Kurki M. Havulinna A. Mehtonen J. Palta P. Hassan S. Parolo P.D.B. Zhou W. Maasha M. Lemmelä S. Rivas M. Liu A. Lehisto A. Ganna A. Llorens V. Heyne H. Rämö J. Rodosthenous R. Strausz S. Palotie T. Palin K. Garcia-Tabuenca J. Siirtola H. Kiiskinen T. Lee J. Tsuo K. Hyvärinen K. Ritari J. Pylkäs K. Karjalainen M. Mantere T. Kangasniemi E. Pitkänen N. Lessard S. Chatelain C. Kallio L. Wahlfors T. Punkka E. Siltanen S. Kuopio T. Jalanko A. Shen H-Y. Kajanne R. Aavikko M. Cooper H. Öller D. Leinonen R. Palin H. Linna M-M. Kanai M. Zheng Z. Lahtela L.E. Kaunisto M. Kilpeläinen E. Sipilä T.P. Dada O.A. Ghazal A. Kytölä A. Weldatsadik R. Donner K. Loukola A. Laiho P. Sistonen T. Kaiharju E. Laukkanen M. Järvensivu E. Lähteenmäki S. Männikkö L. Wong R. Toivola A. Brunfeldt M. Mattsson H. Koskelainen S. Hiekkalinna T. Paajanen T. Luo S. Padmanabhuni S.S. Niemi M. Gracia-Tabuenca J. Helminen M. Luukkaala T. Vähätalo I. Tammerluoto J. Smith S. Southerington T. Lehto P. Niiranen M. Heikkinen S.V. Kurki M.I. Marttila J. Mäkinen P.I. Rostalski H. Hietanen T. Ngandu T. Lehtisalo J. Bellenguez C. Lambert J-C. Haass C. Rinne J. Hakumäki J. Rauramaa T. Krüger J. Soininen H. Haapasalo A. Lichtenthaler S.F. Leinonen V. Solje E. Hiltunen M. Monoallelic TYROBP deletion is a novel risk factor for Alzheimer’s disease. Mol. Neurodegener. 2025 20 1 50 10.1186/s13024‑025‑00830‑3 40301889
    [Google Scholar]
  110. Pichet Binette A. Smith R. Salvadó G. Tideman P. Glans I. van Westen D. Groot C. Ossenkoppele R. Stomrud E. Parchi P. Zetterberg H. Blennow K. Mattsson-Carlgren N. Janelidze S. Palmqvist S. Hansson O. Adegoke O. Adem Hussen K. Aisen P. Ajayi A. Amaza H. Apostolova L.G. Ashford M. Ayo O. Barnes L. Beckett L. Bernard M. Bernhardt H. Boatwright V. Borowski B. Brylska M. Buckholtz N. Cabrera Y. Cairns N.J. Carrillo M. Choe M. Clanton T. Conti C. Craft H. Crawford K. Das S. DeCarli C. Di Benedetto J. Diaz A. Donohue M. Drake E. Erickson C. Faber K. Felmlee J. Fidell A. Flenniken D. Fletcher E. Fockler J. Forghanian- Arani A. Foroud T.M. Fox N.C. Frank R. Franklin E. Glittenberg M. González H. Green R.C. Grill J. Gunter J. Guzman V. Harkins K. Harvey D. Hedberg C. Hergesheimer L. Ho C. Hoang I. Hsiao J.K. Jack C.R. Jackson J. Jagust W. Jahanshad N. Jenkins C. Jimenez G. Jin C. Jo T. Kachaturian Z. Kaddurah-Daouk R. Kantarci K. Karlawish J. Khachaturian Z. Knaack A. Koeppe R.A. Korecka M. Kormos A. Kubo Germano K. Kwang W. Lacy K. Landau S. Largent E. Lee E.B. Lee V.M.Y. LoPresti B. Magana F. Mahboubi P. Malone I. Masliah E. Masterman D. Matoush L. Miller M.J. Molchan S. Montine T. Moore-Weiss J. Morris J. Neu S. Nho K. Nir T.M. Nosheny R. Nudelman K. Ogwang S. Okonkwo O. Parkins S. Perrin R. Petersen R. Pizzola J. Potter Z. Potter W. Rabinovici G. Rafii M. Raman R. Reid R. Reyes C. Reyes D. Risacher S.L. Rivera-Mindt M. Robison J. Rossi Chen S. Ryan L. Sachdev P. Saito N. Salazar J. Saykin A.J. Schwarz C. Seng Thao M. Senjem M. Shaffer E. Shaw L.M. Shen L. Silverberg N. Smith S. Snyder P.J. Strong J. Talavera S. Taylor-Reinwald L. Thal L. Thomas L. Thomopoulos S.I. Thompson P. Toga A.W. Tosun D. Trojanowki J.Q. Truran Sacrey D. Vemuri P. Villemagne V. Walter S. Wan Y. Ward C. Webb C. Weiner M. Weisensel T. Yushkevich P.A. Zimmerman C. Evaluation of the revised criteria for biological and clinical staging of Alzheimer disease. JAMA Neurol. 2025 251100 10.1001/jamaneurol.2025.1100 40388185
    [Google Scholar]
  111. Saloner R. Staffaroni A.M. Dammer E.B. Johnson E.C.B. Paolillo E.W. Wise A. Heuer H.W. Forsberg L.K. Lario-Lago A. Webb J.D. Vogel J.W. Santillo A.F. Hansson O. Kramer J.H. Miller B.L. Li J. Loureiro J. Sivasankaran R. Worringer K.A. Seyfried N.T. Yokoyama J.S. Spina S. Grinberg L.T. Seeley W.W. VandeVrede L. Ljubenkov P.A. Bayram E. Bozoki A. Brushaber D. Considine C.M. Day G.S. Dickerson B.C. Domoto-Reilly K. Faber K. Galasko D.R. Gendron T. Geschwind D.H. Ghoshal N. Graff-Radford N. Hales C.M. Honig L.S. Hsiung G.Y.R. Huey E.D. Kornak J. Kremers W. Lapid M.I. Lee S.E. Litvan I. McMillan C.T. Mendez M.F. Miyagawa T. Pantelyat A. Pascual B. Masdeu J. Paulson H.L. Petrucelli L. Pressman P. Rademakers R. Ramos E.M. Rascovsky K. Roberson E.D. Savica R. Snyder A. Sullivan A.C. Tartaglia M.C. Vandebergh M. Boeve B.F. Rosen H.J. Rojas J.C. Boxer A.L. Casaletto K.B. Large-scale network analysis of the cerebrospinal fluid proteome identifies molecular signatures of frontotemporal lobar degeneration. Nat. Aging 2025 5 6 1143 1158 10.1038/s43587‑025‑00878‑2 40380000
    [Google Scholar]
  112. Gonzalez-Ortiz F. Kirsebom B.E. Yakoub Y. Gundersen J.K. Pålhaugen L. Waterloo K. Selnes P. Jarholm J.A. Gísladóttir B. Rongve A. Skogseth R.E. Bråthen G. Aarsland D. Turton M. Harrison P. Zetterberg H. Villeneuve S. Fladby T. Blennow K. Associations between changes in levels of phosphorylated tau and severity of cognitive impairment in early Alzheimer disease. Neurology 2025 104 11 213676 10.1212/WNL.0000000000213676 40373247
    [Google Scholar]
  113. Carter-Cusack D. Huang S. Keshvari S. Patkar O. Sehgal A. Allavena R. Byrne R.A.J. Morgan B.P. Bush S.J. Summers K.M. Irvine K.M. Hume D.A. Wild-type bone marrow cells repopulate tissue resident macrophages and reverse the impacts of homozygous CSF1R mutation. PLoS Genet. 2025 21 1 1011525 10.1371/journal.pgen.1011525 39869647
    [Google Scholar]
  114. Chae S. Lee H. Lee H.E. Kim J. Jeong Y.J. Lin Y. Kim H.Y. Leriche G. Ehrlich R.S. Lingl S.C. Seo M.D. Lee Y.H. Yang J. Kim J.I. Hoe H.S. The dopamine analogue CA140 alleviates AD pathology, neuroinflammation, and rescues synaptic/cognitive functions by modulating DRD1 signaling or directly binding to Abeta. J. Neuroinflammation 2024 21 1 200 10.1186/s12974‑024‑03180‑x 39129007
    [Google Scholar]
  115. Tamvaka N. Soto-Beasley A.I. Gavrielatos M. Heckman M.G. Ren Y. Udine E. Quicksall Z.S. Liskey D. Castanedes-Casey M. Wszolek Z.K. Boeve B.F. Josephs K.A. Graff-Radford N. van Blitterswijk M. Murray M.E. Roemer S.F. Dickson D.W. Ross O.A. Characterizing the expression profile of 3R tau pathology in Pick’s disease. Sci. Adv. 2025 11 18 eadt6105 10.1126/sciadv.adt6105 40315309
    [Google Scholar]
  116. Jaladanki S.K. Elmas A. Malave G.S. Huang K. Genetic dependency of Alzheimer’s disease-associated genes across cells and tissue types. Sci. Rep. 2021 11 1 12107 10.1038/s41598‑021‑91713‑2 34103633
    [Google Scholar]
  117. Teng X.Y. Hu P. Zhang C.M. Zhang Q.X. Yang G. Zang Y.Y. Liu Z.X. Chen G. Shi Y.S. OPALIN is an LGI1 receptor promoting oligodendrocyte differentiation. Proc. Natl. Acad. Sci. USA 2024 121 32 2403652121 10.1073/pnas.2403652121 39083419
    [Google Scholar]
  118. Fixemer S. Miranda de la Maza M. Hammer G.P. Jeannelle F. Schreiner S. Gérardy J.J. Boluda S. Mirault D. Mechawar N. Mittelbronn M. Bouvier D.S. Microglia aggregates define distinct immune and neurodegenerative niches in Alzheimer’s disease hippocampus. Acta. Neuropathol. 2025 149 1 19 10.1007/s00401‑025‑02857‑8 39954093
    [Google Scholar]
  119. Garland E.F. Antony H. Kulagowska L. Scott T. Rogien C. Bottlaender M. Nicoll J.A.R. Boche D. The microglial translocator protein (TSPO) in Alzheimer’s disease reflects a phagocytic phenotype. Acta. Neuropathol. 2024 148 1 62 10.1007/s00401‑024‑02822‑x 39540994
    [Google Scholar]
  120. Wang Z. Zhao Y. Xu N. Zhang S. Wang S. Mao Y. Zhu Y. Li B. Jiang Y. Tan Y. Xie W. Yang B.B. Zhang Y. NEAT1 regulates neuroglial cell mediating Aβ clearance via the epigenetic regulation of endocytosis-related genes expression. Cell. Mol. Life. Sci. 2019 76 15 3005 3018 10.1007/s00018‑019‑03074‑9 31006037
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266384153250804110312
Loading
/content/journals/ctmc/10.2174/0115680266384153250804110312
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test