Skip to content
2000
image of Formononetin Mediates α7nAChR to Inhibit Macrophage Polarization and Ameliorate Atherosclerotic Plaque

Abstract

Objective

To explore the molecular mechanism of α7 nicotinic acetylcholine receptor (α7nAChR) mediated by () in inhibiting macrophage inflammatory polarization and stabilizing atherosclerotic plaque.

Methods

SiRNA α7nAChR was transfected into THP-1-induced M0 cells and treated with . Oil Red O staining was used to evaluate macrophage lipid deposition. RT-qPCR was used to detect α7nAChR, COX-2, IL-1β, IL-6, HO-1, and SHIP1 expression in M1 and M2 macrophages. Western blot was used to detect α7nAChR, iNOS, CD206, CD68, p-JAK2, and p-STAT3 protein expression in M1 and M2 macrophages.

Results

Compared with the control group, -mediated α7nAChR reduced lipid deposition in M1 and M2 macrophages. RT-qPCR results showed that intervention significantly downregulated COX-2 and IL-1β expression in M1 ( < 0.05). α7nAChR expression significantly reduced COX-2, IL-6, and IL-1β expression in M2 ( < 0.05) and significantly increased HO-1 and SHIP1 expression ( < 0.05). -mediated α7nAChR significantly decreased the expression of iNOS, CD68, p-JAK2, and p-STAT3 in M1 and M2 macrophages and significantly increased the expression of CD206 protein by Western blot ( < 0.05).

Discussion

This study, for the first time, elucidated the mechanism of FMN regulating macrophage polarization through the α7nAChR/JAK2/STAT3 axis, providing new experimental evidence for the role of the cholinergic anti-inflammatory pathway in cardiovascular diseases. However, there are some limitations, such as the limited applicability of the THP-1 cell line, the need to strengthen the dose correlation study, the bioavailability and solubility limiting clinical translation, and the lack of human toxicological data.

Conclusion

effectively modulates macrophage polarization through inhibition of the JAK/STAT signaling pathway while promoting α7nAChR expression.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctmc/10.2174/0115680266382024250730194614
2025-08-12
2025-11-09
Loading full text...

Full text loading...

/deliver/fulltext/ctmc/10.2174/0115680266382024250730194614/BMS-CTMC-2024-512.html?itemId=/content/journals/ctmc/10.2174/0115680266382024250730194614&mimeType=html&fmt=ahah

References

  1. Mushenkova N.V. Summerhill V.I. Zhang D. Romanenko E.B. Grechko A.V. Orekhov A.N. Current advances in the diagnostic imaging of atherosclerosis: Insights into the pathophysiology of vulnerable plaque. Int. J. Mol. Sci. 2020 21 8 2992 10.3390/ijms21082992 32340284
    [Google Scholar]
  2. Wang J. Wu Q. Wang X. Liu H. Chen M. Xu L. Zhang Z. Li K. Li W. Zhong J. Targeting macrophage phenotypes and metabolism as novel therapeutic approaches in atherosclerosis and related cardiovascular diseases. Curr. Atheroscler. Rep. 2024 26 10 573 588 10.1007/s11883‑024‑01229‑z 39133247
    [Google Scholar]
  3. Venugopal S.K. Anoruo M. Jialal I. Biochemistry, Low Density Lipoprotein. Treasure Island, FL StatPearls Publishing 2023
    [Google Scholar]
  4. Hou P. Fang J. Liu Z. Shi Y. Agostini M. Bernassola F. Bove P. Candi E. Rovella V. Sica G. Sun Q. Wang Y. Scimeca M. Federici M. Mauriello A. Melino G. Macrophage polarization and metabolism in atherosclerosis. Cell Death Dis. 2023 14 10 691 10.1038/s41419‑023‑06206‑z 37863894
    [Google Scholar]
  5. Wu J. He S. Song Z. Chen S. Lin X. Sun H. Zhou P. Peng Q. Du S. Zheng S. Liu X. Macrophage polarization states in atherosclerosis. Front. Immunol. 2023 14 1185587 10.3389/fimmu.2023.1185587 37207214
    [Google Scholar]
  6. Li H. Cao Z. Wang L. Liu C. Lin H. Tang Y. Yao P. Macrophage subsets and death are responsible for atherosclerotic plaque formation. Front. Immunol. 2022 13 843712 10.3389/fimmu.2022.843712 35432323
    [Google Scholar]
  7. Blagov A.V. Markin A.M. Bogatyreva A.I. Tolstik T.V. Sukhorukov V.N. Orekhov A.N. The role of macrophages in the pathogenesis of atherosclerosis. Cells 2023 12 4 522 10.3390/cells12040522 36831189
    [Google Scholar]
  8. Vieira-Alves I. Coimbra-Campos LMC Sancho M. Role of the α7 nicotinic acetylcholine receptor in the pathophysiology of atherosclerosis. Front. Physiol. 2020 11 621769 10.3389/fphys.2020.621769 33424644
    [Google Scholar]
  9. Nakamura Y. Matsumoto H. Wu, CH Alpha 7 nicotinic acetylcholine receptors signaling boosts cell-cell interactions in macrophages effecting anti-inflammatory and organ protection. Commun. Biol. 2023 6 1 666 10.1038/s42003‑023‑05051‑2 37353597
    [Google Scholar]
  10. Roa-Vidal N. Rodríguez-Aponte A.S. Lasalde-Dominicci J.A. Capó-Vélez C.M. Delgado-Vélez M. Cholinergic polarization of human macrophages. Int. J. Mol. Sci. 2023 24 21 15732 10.3390/ijms242115732 37958716
    [Google Scholar]
  11. Gianopoulos I. Daskalopoulou S.S. Macrophage profiling in atherosclerosis: Understanding the unstable plaque. Basic Res. Cardiol. 2024 119 1 35 56 10.1007/s00395‑023‑01023‑z 38244055
    [Google Scholar]
  12. Barilli A. Visigalli R. Ferrari F. Recchia Luciani G. Soli M. Dall’Asta V. Rotoli B.M. The JAK1/2 inhibitor baricitinib mitigates the spike-induced inflammatory response of immune and endothelial cells in vitro. Biomedicines 2022 10 9 2324 10.3390/biomedicines10092324 36140425
    [Google Scholar]
  13. Wang D. Wang X. Diosgenin and its analogs: Potential protective agents against atherosclerosis. Drug Des. Devel. Ther. 2022 16 2305 2323 10.2147/DDDT.S368836 35875677
    [Google Scholar]
  14. Ward N.C. Watts G.F. Eckel R.H. Statin Toxicity. Circ. Res. 2019 124 2 328 350 10.1161/CIRCRESAHA.118.312782 30653440
    [Google Scholar]
  15. Xiang L. Wang Y. Liu S. Ying L. Zhang K. Liang N. Li H. Luo G. Xiao L. Quercetin attenuates KLF4-mediated phenotypic switch of VSMCs to macrophage-like cells in atherosclerosis: A critical role for the JAK2/STAT3 pathway. Int. J. Mol. Sci. 2024 25 14 7755 10.3390/ijms25147755 39062998
    [Google Scholar]
  16. Cao Y. Xie L. Liu K. Liang Y. Dai X. Wang X. Lu J. Zhang X. Li X. The antihypertensive potential of flavonoids from Chinese Herbal Medicine: A review. Pharmacol. Res. 2021 174 105919 10.1016/j.phrs.2021.105919 34601080
    [Google Scholar]
  17. Li T.T. Wang Z.B. Li Y. Cao F. Yang B.Y. Kuang H.X. The mechanisms of traditional Chinese medicine underlying the prevention and treatment of atherosclerosis. Chin. J. Nat. Med. 2019 17 6 401 412 10.1016/S1875‑5364(19)30048‑2 31262453
    [Google Scholar]
  18. Zhi W. Liu Y. Wang X. Zhang H. Recent advances of traditional Chinese medicine for the prevention and treatment of atherosclerosis. J. Ethnopharmacol. 2023 301 115749 10.1016/j.jep.2022.115749 36181983
    [Google Scholar]
  19. Machado Dutra J. Espitia P.J.P. Andrade Batista R. Formononetin: Biological effects and uses – A review. Food Chem. 2021 359 129975 10.1016/j.foodchem.2021.129975 33962193
    [Google Scholar]
  20. Tian J. Wang X.Q. Tian Z. Focusing on formononetin: Recent perspectives for its neuroprotective potentials. Front. Pharmacol. 2022 13 905898 10.3389/fphar.2022.905898 35712702
    [Google Scholar]
  21. Huang M. Lu J.J. Ding J. Natural products in cancer therapy: Past, present and future. Nat. Prod. Bioprospect. 2021 11 1 5 13 10.1007/s13659‑020‑00293‑7 33389713
    [Google Scholar]
  22. Billowria K. Ali R. Rangra N.K. Kumar R. Chawla P.A. Bioactive flavonoids: A comprehensive review on pharmacokinetics and analytical aspects. Crit. Rev. Anal. Chem. 2022 54 5 1 15 10.1080/10408347.2022.2105641 35930461
    [Google Scholar]
  23. Ma C. Xia R. Yang S. Liu L. Zhang J. Feng K. Shang Y. Qu J. Li L. Chen N. Xu S. Zhang W. Mao J. Han J. Chen Y. Yang X. Duan Y. Fan G. Formononetin attenuates atherosclerosis via regulating interaction between KLF4 and SRA in apoE -/- mice. Theranostics 2020 10 3 1090 1106 10.7150/thno.38115 31938053
    [Google Scholar]
  24. Ding M. Bao Y. Liang H. Zhang X. Li B. Yang R. Zeng N. Potential mechanisms of formononetin against inflammation and oxidative stress: A review. Front. Pharmacol. 2024 15 1368765 10.3389/fphar.2024.1368765 38799172
    [Google Scholar]
  25. Yu L. Zhang Y. Chen Q. He Y. Zhou H. Wan H. Yang J. Formononetin protects against inflammation associated with cerebral ischemia-reperfusion injury in rats by targeting the JAK2/STAT3 signaling pathway. Biomed. Pharmacother. 2022 149 112836 10.1016/j.biopha.2022.112836 35339827
    [Google Scholar]
  26. Song X. Li J. Screening of immune-related genes and predicting the immunotherapeutic effects of formononetin in breast cancer: A bioinformatics analysis. Evid. Based Complement. Alternat. Med. 2022 2022 1 12 10.1155/2022/9942373 35463082
    [Google Scholar]
  27. He Y. Cai Y. Wei D. Cao L. He Q. Zhang Y. Elucidating the mechanisms of formononetin in modulating atherosclerotic plaque formation in ApoE-/- mice. BMC Cardiovasc. Disord. 2024 24 1 121 10.1186/s12872‑024‑03774‑6 38388385
    [Google Scholar]
  28. Qian L. Xu H. Yuan R. Yun W. Ma Y. Formononetin ameliorates isoproterenol induced cardiac fibrosis through improving mitochondrial dysfunction. Biomed. Pharmacother. 2024 170 116000 10.1016/j.biopha.2023.116000 38070245
    [Google Scholar]
  29. Zhang L. Wu Q. Huang Y. Zheng J. Guo S. He L. Formononetin ameliorates airway inflammation by suppressing ESR1/NLRP3/Caspase-1 signaling in asthma. Biomed. Pharmacother. 2023 168 115799 10.1016/j.biopha.2023.115799 37922653
    [Google Scholar]
  30. Libby P. Inflammation during the life cycle of the atherosclerotic plaque. Cardiovasc. Res. 2021 117 13 cvab303 10.1093/cvr/cvab303 34550337
    [Google Scholar]
  31. Yang A. Wu C.H. Matsuo S. Umene R. Nakamura Y. Inoue T. Activation of the α7nAChR by GTS-21 mitigates septic tubular cell injury and modulates macrophage infiltration. Int. Immunopharmacol. 2024 138 112555 10.1016/j.intimp.2024.112555 38943973
    [Google Scholar]
  32. Burke S.M. Avstrikova M. Noviello C.M. Mukhtasimova N. Changeux J.P. Thakur G.A. Sine S.M. Cecchini M. Hibbs R.E. Structural mechanisms of α7 nicotinic receptor allosteric modulation and activation. Cell 2024 187 5 1160 1176.e21 10.1016/j.cell.2024.01.032 38382524
    [Google Scholar]
  33. Wu X. Tian Y. Wang H. Chen H. Hou H. Hu Q. Dual regulation of nicotine on NLRP3 inflammasome in macrophages with the involvement of lysosomal destabilization, ROS and α7nAChR. Inflammation 2024 48 1 61 74 10.1007/s10753‑024‑02036‑z 38717634
    [Google Scholar]
  34. Althunibat O.Y. Abukhalil M.H. Aladaileh S.H. Qaralleh H. Al-Amarat W. Alfwuaires M.A. Algefare A.I. Namazi N.I. Melebary S.J. Babalghith A.O. Conte-Junior C.A. Formononetin ameliorates renal dysfunction, oxidative stress, inflammation, and apoptosis and upregulates Nrf2/HO-1 signaling in a rat model of gentamicin-induced nephrotoxicity. Front. Pharmacol. 2022 13 916732 10.3389/fphar.2022.916732 35712704
    [Google Scholar]
  35. Yu X. Li X. Xu Y. Li Y. Zhou Y. Zhang J. Guo L. Resveratrol ameliorates ulcerative colitis by upregulating Nrf2/HO 1 pathway activity: Integrating animal experiments and network pharmacology. Mol. Med. Rep. 2024 29 5 77 10.3892/mmr.2024.13201 38488031
    [Google Scholar]
  36. Bharadwaj U. Kasembeli M.M. Robinson P. Tweardy D.J. Targeting janus kinases and signal transducer and activator of transcription 3 to treat inflammation, fibrosis, and cancer: Rationale, progress, and caution. Pharmacol. Rev. 2020 72 2 486 526 10.1124/pr.119.018440 32198236
    [Google Scholar]
  37. Benucci M. Bernardini P. Coccia C. De Luca R. Levani J. Economou A. Damiani A. Russo E. Amedei A. Guiducci S. Bartoloni E. Manfredi M. Grossi V. Infantino M. Perricone C. JAK inhibitors and autoimmune rheumatic diseases. Autoimmun. Rev. 2023 22 4 103276 10.1016/j.autrev.2023.103276 36649877
    [Google Scholar]
  38. Fu X. Sun Z. Long Q. Tan W. Ding H. Liu X. Wu L. Wang Y. Zhang W. Glycosides from Buyang Huanwu Decoction inhibit atherosclerotic inflammation via JAK/STAT signaling pathway. Phytomedicine 2022 105 154385 10.1016/j.phymed.2022.154385 35987015
    [Google Scholar]
  39. Zhang X. Chen S. Yin G. Liang P. Feng Y. Yu W. Meng D. Liu H. Zhang F. The role of JAK/STAT signaling pathway and its downstream influencing factors in the treatment of atherosclerosis. J. Cardiovasc. Pharmacol. Ther. 2024 29 10742484241248046 10.1177/10742484241248046 38656132
    [Google Scholar]
  40. Krueger J.G. McInnes I.B. Blauvelt A. Tyrosine kinase 2 and Janus kinase‒signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. J. Am. Acad. Dermatol. 2022 86 1 148 157 10.1016/j.jaad.2021.06.869 34224773
    [Google Scholar]
  41. Xu L. Zhou S. Li J. Yu W. Gao W. Luo H. Fang X. The anti-inflammatory effects of formononetin, an active constituent of Pueraria montana Var. Lobata, via modulation of macrophage autophagy and polarization. Molecules 2025 30 1 196 10.3390/molecules30010196 39795251
    [Google Scholar]
  42. Xu H. Zheng Q. Tai Z. Jiang W. Xie S. Luo Y. Fei X. Luo Y. Ma X. Kuai L. Zhang Y. Wang R. Li B. Zhu Q. Song J. Formononetin attenuates psoriasiform inflammation by regulating interferon signaling pathway. Phytomedicine 2024 128 155412 10.1016/j.phymed.2024.155412 38579666
    [Google Scholar]
  43. Park Y. Choo S.P. Jung G.S. Kim S. Lee M.J. Im W. Park H. Lee I. Lee J.H. Cho S. Choi Y.S. Formononetin inhibits progression of endometriosis via regulation of p27, pSTAT3, and progesterone receptor: in vitro and in vivo studies. Nutrients 2023 15 13 3001 10.3390/nu15133001 37447325
    [Google Scholar]
  44. Wang J.Y. Jiang M.W. Li M.Y. Zhang Z.H. Xing Y. Ri M. Jin C.H. Xu G.H. Piao L.X. Jin H.L. Ma J. Jin Y. Zuo H.X. Jin X. Formononetin represses cervical tumorigenesis by interfering with the activation of PD-L1 through MYC and STAT3 downregulation. J. Nutr. Biochem. 2022 100 108899 10.1016/j.jnutbio.2021.108899 34748924
    [Google Scholar]
  45. Chen Y. Zhang Y. Wang J. Li S. Wang Y. Zhang Z. Zhang J. Xin C. Wang Y. Rong P. Anti‐neuroinflammation effects of transcutaneous auricular vagus nerve stimulation against depression‐like behaviors via hypothalamic α7nAchR/JAK2/STAT3/NF‐κB pathway in rats exposed to chronic unpredictable mild stress. CNS Neurosci. Ther. 2023 29 9 2634 2644 10.1111/cns.14207 37032645
    [Google Scholar]
  46. Niu X.H. Liu R.H. Lv X. He R.L. Lv F.Z. Wu S.J. Li X.Q. Li L. Lin J.F. Activating α7nAChR helps post-myocardial infarction healing by regulating macrophage polarization via the STAT3 signaling pathway. Inflamm. Res. 2023 72 4 879 892 10.1007/s00011‑023‑01714‑2 36912917
    [Google Scholar]
  47. Liu M. Liu H. Kang H. Wu J. Xing P. Ding X. Wei Y. Kong X. Anisodamine ameliorates crystalline silica-exposed pulmonary inflammation and fibrosis via the α7nAChR/JAK2/STAT3 signaling pathway. Ecotoxicol. Environ. Saf. 2025 289 117534 10.1016/j.ecoenv.2024.117534 39667322
    [Google Scholar]
  48. Luo P. Wang Y. Zhao C. Guo J. Shi W. Ma H. Liu T. Yan D. Huo S. Wang M. Li C. Lin J. Li S. Lv J. Zhang C. Lin L. Bazedoxifene exhibits anti-inflammation and anti-atherosclerotic effects via inhibition of IL-6/IL-6R/STAT3 signaling. Eur. J. Pharmacol. 2021 893 173822 10.1016/j.ejphar.2020.173822 33347820
    [Google Scholar]
  49. Shen S.Y. Ren L.Q. Chen H.D. Zhu H.F. Zhou D.F. Zhang B. Tan X.Q. Xie Y.H. Geniposide protects pulmonary arterial smooth muscle cells from lipopolysaccharide induced injury via α7nAchR mediated TLR 4/MyD88 signaling. Exp. Ther. Med. 2021 22 5 1234 10.3892/etm.2021.10668 34539830
    [Google Scholar]
  50. Wang J. Zhang Y. Chen Y. Wang Y. Li S. Wang Y. Zhang Z. Zhang J. Rong P. Mechanisms underlying antidepressant effect of transcutaneous auricular vagus nerve stimulation on CUMS model rats based on hippocampal α7nAchR/NF-κB signal pathway. J. Neuroinflammation 2021 18 1 291 10.1186/s12974‑021‑02341‑6 34920740
    [Google Scholar]
  51. EL-Abasy, H.M.; Elsaid, M.E.A.; Abdelkader, E.M.; Shehatou, G.S.G. Metformin’s cardioprotective role in isoprenaline-induced myocardial infarction: Unveiling insights into the AMPK, NF-κB, JAK2/STAT3 pathways, and cholinergic regulation. Life Sci. 2024 357 123115 10.1016/j.lfs.2024.123115 39369846
    [Google Scholar]
  52. Tang X. Chen H. Zhao M. Yang W. Shuang R. Xu S. α7nAChR-mediated astrocytic activation: A novel mechanism of Xiongzhi Dilong decoction in ameliorating chronic migraine. J. Ethnopharmacol. 2024 334 118509 10.1016/j.jep.2024.118509 38971346
    [Google Scholar]
  53. Chen J. Cai Y. Wei D. Cao L. He Q. Zhang Y. Formononetin inhibits neuroinflammation in BV2 microglia induced by glucose and oxygen deprivation reperfusion through TLR4/NF-κB signaling pathway. Brain Res. 2024 1845 149218 10.1016/j.brainres.2024.149218 39218334
    [Google Scholar]
  54. Zhou Z. Zhang P. Formononetin ameliorates the LPS-induced inflammatory response and apoptosis of neuronal cells via NF-κB/NLRP3 signaling pathway. Funct. Integr. Genomics 2023 23 4 321 10.1007/s10142‑023‑01247‑1 37847432
    [Google Scholar]
  55. Aliya S. Alhammadi M. Park U. Tiwari J.N. Lee J.H. Han Y.K. Huh Y.S. The potential role of formononetin in cancer treatment: An updated review. Biomed. Pharmacother. 2023 168 115811 10.1016/j.biopha.2023.115811 37922652
    [Google Scholar]
  56. Kim J.H. Kang D.W. Cho S. Cho H.Y. Parent-metabolite pharmacokinetic modeling of formononetin and its active metabolites in rats after oral administration of formononetin formulations. Pharmaceutics 2022 15 1 45 10.3390/pharmaceutics15010045 36678675
    [Google Scholar]
/content/journals/ctmc/10.2174/0115680266382024250730194614
Loading
/content/journals/ctmc/10.2174/0115680266382024250730194614
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: JAK/STAT ; Formononetin ; atherosclerotic plaque ; M2 ; M1 ; α7nAChR
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test