Skip to content
2000
image of Trojan Horses: A Secret Route for Nanomedicines

Abstract

The nanoparticles are widely used in various drug delivery applications due to their versatility to encapsulate cargo loading and transport of therapeutic agents. Numerous studies have explored the use of nanomedicine-based drug delivery systems for treating various diseases. This research provides a smart and precise review of one of the nanoparticles-based drug delivery approaches i.e. the Trojan horse strategy which is employed for delivering the drug to the target efficiently and reliably. Furthermore the applicability of nanomedicines to cancer treatment is discussed with examples drawn from various systematic studies. The use of different nanomedicine platforms such as liposomes nanoparticles spherical nucleic acids extracellular vesicles and immune cells acting as Trojan horses is also explored in the context of cancer therapy. Finally a precise conclusion and future recommendations are provided for future researchers in the field of applied nanotechnology for the pharmaceutical domain.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010388510250515105129
2025-05-16
2025-09-19
Loading full text...

Full text loading...

References

  1. Joseph T. Kar Mahapatra D. Esmaeili A. Piszczyk Ł. Hasanin M. Kattali M. Haponiuk J. Thomas S. Nanoparticles: Taking a unique position in medicine. Nanomaterials 2023 13 3 574 10.3390/nano13030574 36770535
    [Google Scholar]
  2. Amin Z. Fundamentals of Nanotechnology. Cham Springer Nature Switzerland 2024 1 16
    [Google Scholar]
  3. Harun-Ur-Rashid M. Jahan I. Foyez T. Imran A.B. Bio-inspired nanomaterials for micro/nanodevices: a new era in biomedical applications. Micromachines 2023 14 9 1786 10.3390/mi14091786 37763949
    [Google Scholar]
  4. Aghebati-Maleki A. Dolati S. Ahmadi M. Baghbanzhadeh A. Asadi M. Fotouhi A. Yousefi M. Aghebati-Maleki L. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers. J. Cell. Physiol. 2020 235 3 1962 1972 10.1002/jcp.29126 31441032
    [Google Scholar]
  5. Awasthi R. Roseblade A. Hansbro P.M. Rathbone M.J. Dua K. Bebawy M. Nanoparticles in cancer treatment: opportunities and obstacles. Curr. Drug Targets 2018 19 14 1696 1709 10.2174/1389450119666180326122831 29577855
    [Google Scholar]
  6. Bhatia S. Bhatia S. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications. Natural Polymer Drug Delivery Systems Cham Springer 2016 33 93 10.1007/978‑3‑319‑41129‑3_2
    [Google Scholar]
  7. Dang Y. Guan J. Nanoparticle-based drug delivery systems for cancer therapy. Smart Mater. Med. 2020 1 10 19 10.1016/j.smaim.2020.04.001 34553138
    [Google Scholar]
  8. Salem S.S. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications. Biointerface Res. Appl. Chem. 2022 13 1 41 10.33263/BRIAC131.041
    [Google Scholar]
  9. Hasan S. A review on nanoparticles: their synthesis and types. Res. J. Recent Sci. 2015 2277 2502
    [Google Scholar]
  10. Gavas S. Quazi S. Karpiński T.M. Nanoparticles for cancer therapy: current progress and challenges. Nanoscale Res. Lett. 2021 16 1 173 10.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  11. Sarvari P. Sarvari P. Advances in nanoparticle-based drug delivery in cancer treatment. Global Translat. Med. 2023 2 2 0394 10.36922/gtm.0394
    [Google Scholar]
  12. Raj S. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in cancer biology. Elsevier 2021 10.1016/j.semcancer.2019.11.002
    [Google Scholar]
  13. Yao Y. Zhou Y. Liu L. Xu Y. Chen Q. Wang Y. Wu S. Deng Y. Zhang J. Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. Front. Mol. Biosci. 2020 7 193 10.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  14. Fuster M.G. Wang J. Fandiño O. Víllora G. Paredes A.J. Folic acid-decorated nanocrystals as highly loaded trojan horses to target cancer cells. Mol. Pharm. 2024 21 6 2781 2794 10.1021/acs.molpharmaceut.3c01186 38676649
    [Google Scholar]
  15. Pardridge W.M. Delivery of biologics across the blood–brain barrier with molecular trojan horse technology. BioDrugs 2017 31 6 503 519 10.1007/s40259‑017‑0248‑z 29067674
    [Google Scholar]
  16. Cadavid D. Jurgensen S. Lee S. Impact of natalizumab on ambulatory improvement in secondary progressive and disabled relapsing-remitting multiple sclerosis. PLoS One 2013 8 1 53297 10.1371/journal.pone.0053297 23308186
    [Google Scholar]
  17. Shukla S. Pandit V. Trojan microparticles : A composite nanoparticle delivery system. Curr. Drug Ther. 2024 19 4 413 425 10.2174/1574885518666230726142855
    [Google Scholar]
  18. Dassonville-Klimpt A. Sonnet P. Advances in ‘Trojan horse’strategies in antibiotic delivery systems. Oxfordshire, UK 2020 983 986
    [Google Scholar]
  19. Sun W. Qi M. Cheng S. Li C. Dong B. Wang L. Gallium and gallium compounds: New insights into the “Trojan horse” strategy in medical applications. Mater. Des. 2023 227 111704 10.1016/j.matdes.2023.111704
    [Google Scholar]
  20. Abdel-Naser M.B. Human skin cell culture and its impact on dermatology. Egypt. Dermatol. Online J. 2005 1 2 1 25
    [Google Scholar]
  21. Géczi Z. Róth I. Kőhidai Z. Kőhidai L. Mukaddam K. Hermann P. Végh D. Zelles T. The use of Trojan-horse drug delivery system in managing periodontitis. Int. Dent. J. 2023 73 3 346 353 10.1016/j.identj.2022.08.003 36175203
    [Google Scholar]
  22. Möllmann U. Heinisch L. Bauernfeind A. Köhler T. Ankel-Fuchs D. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy. Biometals 2009 22 4 615 624 10.1007/s10534‑009‑9219‑2 19214755
    [Google Scholar]
  23. Liao T. Liu C. Wu X. Liu J. Yu W. Xu Z. Kuang Y. Li C. Degradable mesoporous silica nanoparticle/peptide-based “trojan horse”-like drug delivery system for deep intratumoral penetration and cancer therapy. ACS Appl. Nano Mater. 2024 7 8 9518 9531 10.1021/acsanm.4c00992
    [Google Scholar]
  24. Zhou T. Liu Y. Lei K. Liu J. Hu M. Guo L. Guo Y. Ye Q. A “Trojan Horse” strategy: the preparation of bile acid-modifying irinotecan hydrochloride nanoliposomes for liver-targeted anticancer drug delivery system study. Molecules 2023 28 4 1577 10.3390/molecules28041577 36838565
    [Google Scholar]
  25. Peng H. Wang C. Xu X. Yu C. Wang Q. An intestinal Trojan horse for gene delivery. Nanoscale 2015 7 10 4354 4360 10.1039/C4NR06377E 25619169
    [Google Scholar]
  26. Hejmady S. Pradhan R. Alexander A. Agrawal M. Singhvi G. Gorain B. Tiwari S. Kesharwani P. Dubey S.K. Recent advances in targeted nanomedicine as promising antitumor therapeutics. Drug Discov. Today 2020 25 12 2227 2244 10.1016/j.drudis.2020.09.031 33011342
    [Google Scholar]
  27. Hinge N. Nanomedicine advances in cancer therapy. Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering Amsterdam, Netherlands Elsevier 2020 219 253 10.1016/B978‑0‑12‑818471‑4.00008‑X
    [Google Scholar]
  28. Lammers T. Aime S. Hennink W.E. Storm G. Kiessling F. Theranostic Nanomedicine. Acc. Chem. Res. 2011 44 10 1029 1038 10.1021/ar200019c 21545096
    [Google Scholar]
  29. Gautam L. Nanomedicine for the diagnosis and treatment of cancer. Nanomedicine for the Treatment of Disease. Florida Apple Academic Press 2019 395 422 10.1201/9780429425714‑14
    [Google Scholar]
  30. Kargozar S. Mozafari M. Nanotechnology and nanomedicine: Start small, think big. Mater. Today Proc. 2018 5 7 15492 15500 10.1016/j.matpr.2018.04.155
    [Google Scholar]
  31. Pei Z. Chen S. Ding L. Liu J. Cui X. Li F. Qiu F. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis. J. Control. Release 2022 352 211 241 10.1016/j.jconrel.2022.10.023 36270513
    [Google Scholar]
  32. Cabral H. Kinoh H. Kataoka K. Tumor-targeted nanomedicine for immunotherapy. Acc. Chem. Res. 2020 53 12 2765 2776 10.1021/acs.accounts.0c00518 33161717
    [Google Scholar]
  33. Fang J. EPR effect-based tumor targeted nanomedicine: A promising approach for controlling cancer. Basel, Switzerland MDPI 2022 95
    [Google Scholar]
  34. Hu K. Zhang D. Ma W. Gu Y. Zhao J. Mu X. Polydopamine-based nanoparticles for synergistic chemotherapy of prostate cancer. Int. J. Nanomedicine 2024 19 6717 6730 10.2147/IJN.S468946 38979530
    [Google Scholar]
  35. Abdelhamid M.S. Wadan A.H.S. Saad H.A. El-Dakroury W.A. Hageen A.W. Mohammed D.H. Mourad S. Mohammed O.A. Abdel-Reheim M.A. Doghish A.S. Nanoparticle innovations in targeted cancer therapy: advancements in antibody–drug conjugates. Naunyn Schmiedebergs Arch. Pharmacol. 2025 1 21 10.1007/s00210‑024‑03764‑7 39825965
    [Google Scholar]
  36. Subhan M.A. Yalamarty S.S.K. Filipczak N. Parveen F. Torchilin V.P. Recent advances in tumor targeting via EPR effect for cancer treatment. J. Pers. Med. 2021 11 6 571 10.3390/jpm11060571 34207137
    [Google Scholar]
  37. Hermosillo-Abundis C. Flood-Garibay J.A. Ayala-Nunez V. Méndez-Rojas M.A. Immune cells as trojan horses for cancer nanotherapy. ACS Mater. Lett. 2025 7 1 156 171 10.1021/acsmaterialslett.4c01523
    [Google Scholar]
  38. Mondal S. Basu D. Maiti B. Ghosh O. Ghosh S. Application of nanotechnology in cancer therapy: potential and limitations. J. Curr. Oncol. Trends 2024 1 2 76 89 10.4103/JCOT.JCOT_17_24
    [Google Scholar]
  39. Serzants R. Exploring the limits of epr-driven tumor accumulation with non-opsonizing nanomaterials. bioRxiv 2024 1 7
    [Google Scholar]
  40. Vieira D. Gamarra L. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier. Int. J. Nanomedicine 2016 11 5381 5414 10.2147/IJN.S117210 27799765
    [Google Scholar]
  41. Panda P. Kar S.S. Mohapatra R. DNA polymer conjugates: Revolutionizing neurological disorder treatment through targeted drug delivery. Next Materials 2025 7 100336 10.1016/j.nxmate.2024.100336
    [Google Scholar]
  42. Kashani G.K. Naghib S.M. Soleymani S. Mozafari M.R. A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches. Int. J. Biol. Macromol. 2024 268 Pt 1 131694 10.1016/j.ijbiomac.2024.131694 38642693
    [Google Scholar]
  43. Sahu B. Behera B. Kumar U. Transgene delivery system: viral, nonviral, and other methods for central nervous system. Genome Editing for Neurodegenerative Diseases Amsterdam, Netherlands Elsevier 2025 135 155 10.1016/B978‑0‑443‑23826‑0.00011‑8
    [Google Scholar]
  44. Saito R. Bringas J.R. McKnight T.R. Wendland M.F. Mamot C. Drummond D.C. Kirpotin D.B. Park J.W. Berger M.S. Bankiewicz K.S. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging. Cancer Res. 2004 64 7 2572 2579 10.1158/0008‑5472.CAN‑03‑3631 15059914
    [Google Scholar]
  45. Pardridge W.M. Brain delivery of nanomedicines: trojan horse liposomes for plasmid DNA gene therapy of the brain. Front. Med. Technol. 2020 2 602236 10.3389/fmedt.2020.602236 35047884
    [Google Scholar]
  46. Ross C. Taylor M. Fullwood N. Allsop D. Liposome delivery systems for the treatment of Alzheimer’s disease. Int. J. Nanomedicine 2018 13 8507 8522 10.2147/IJN.S183117 30587974
    [Google Scholar]
  47. Pardridge W.M. Brain gene therapy with Trojan horse lipid nanoparticles. Trends Mol. Med. 2023 29 5 343 353 10.1016/j.molmed.2023.02.004 36907687
    [Google Scholar]
  48. Guan X. Pei Y. Song J. DNA-based nonviral gene therapy— challenging but promising. Mol. Pharm. 2024 21 2 427 453 10.1021/acs.molpharmaceut.3c00907 38198640
    [Google Scholar]
  49. Saha S. Yakati V. Shankar G. Jaggarapu M.M.C.S. Moku G. Madhusudana K. Banerjee R. Ramkrishna S. Srinivas R. Chaudhuri A. Amphetamine decorated cationic lipid nanoparticles cross the blood–brain barrier: therapeutic promise for combating glioblastoma. J. Mater. Chem. B Mater. Biol. Med. 2020 8 19 4318 4330 10.1039/C9TB02700A 32330214
    [Google Scholar]
  50. Carrillo C. Sánchez-Hernández N. García-Montoya E. Pérez-Lozano P. Suñé-Negre J.M. Ticó J.R. Suñé C. Miñarro M. DNA delivery via cationic solid lipid nanoparticles (SLNs). Eur. J. Pharm. Sci. 2013 49 2 157 165 10.1016/j.ejps.2013.02.011 23454134
    [Google Scholar]
  51. Boado R.J. Pardridge W.M. The trojan horse liposome technology for nonviral gene transfer across the blood-brain barrier. J. Drug Deliv. 2011 2011 1 12 10.1155/2011/296151 22175028
    [Google Scholar]
  52. Yan J. Shan C. Liang C. Han J. He B. Sun Y. Luo K. Chang J. Wang X. Liang Y. Smart multistage “trojan horse”-inspired bovine serum albumin-coated liposomes for enhancing tumor penetration and antitumor efficacy. Biomacromolecules 2022 23 12 5202 5212 10.1021/acs.biomac.2c00984 36287618
    [Google Scholar]
  53. Stenzel M.H. The trojan horse goes wild: the effect of drug loading on the behavior of nanoparticles. Angew. Chem. Int. Ed. 2021 60 5 2202 2206 10.1002/anie.202010934 33210812
    [Google Scholar]
  54. Limbach L.K. Wick P. Manser P. Grass R.N. Bruinink A. Stark W.J. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ. Sci. Technol. 2007 41 11 4158 4163 10.1021/es062629t 17612205
    [Google Scholar]
  55. Prajapati A. Rangra S. Patil R. Desai N. Jyothi V.G.S.S. Salave S. Amate P. Benival D. Kommineni N. Receptor-targeted nanomedicine for cancer therapy. Receptors 2024 3 3 323 361 10.3390/receptors3030016
    [Google Scholar]
  56. Park J. Evangelopoulos M. Vasher M.K. Kudruk S. Ramani N. Mayer V. Solivan A.C. Lee A. Mirkin C.A. Enhancing endosomal escape and gene regulation activity for spherical nucleic acids. Small 2024 20 11 2306902 10.1002/smll.202306902 37932003
    [Google Scholar]
  57. Jiang M.C. Fang Z.L. Zhang J.Y. Ma W. Liao L.F. Yu C.Y. Wei H. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation. Acta Biomater. 2024 180 407 422 10.1016/j.actbio.2024.04.013 38614414
    [Google Scholar]
  58. Xia C. Spherical nucleic acids for biomedical applications. Adv. Sens. Ener. Mat. 2024 3 4 100117 10.1016/j.asems.2024.100117
    [Google Scholar]
  59. Narum S. Deal B. Ogasawara H. Mancuso J.N. Zhang J. Salaita K. An endosomal escape trojan horse platform to improve cytosolic delivery of nucleic acids. ACS Nano 2024 18 8 6186 6201 10.1021/acsnano.3c09027 38346399
    [Google Scholar]
  60. Garcia-Guerra A. Ellerington R. Gaitzsch J. Bath J. Kye M. Varela M.A. Battaglia G. Wood M.J.A. Manzano R. Rinaldi C. Turberfield A.J. A modular RNA delivery system comprising spherical nucleic acids built on endosome-escaping polymeric nanoparticles. Nanoscale Adv. 2023 5 11 2941 2949 10.1039/D2NA00846G 37260495
    [Google Scholar]
  61. Li J. Li Y. Pan L. Pan W. Li N. Tang B. Spherical nucleic acids-based biosensors for cancer biomarkers detection. Trends Analyt. Chem. 2022 157 116807 10.1016/j.trac.2022.116807
    [Google Scholar]
  62. Wu K. Li Q. Yao C. Yang D. Liu D. Trojan horse delivery of spherical nucleic acid probes into the cytoplasm for high-fidelity imaging of microRNAs. Anal. Chem. 2022 94 31 10942 10948 10.1021/acs.analchem.2c00675 35854635
    [Google Scholar]
  63. Tang X. Zhao S. Luo J. Wang B. Wu X. Deng R. Chang K. Chen M. Smart stimuli‐responsive spherical nucleic acids: cutting‐edge platforms for biosensing, bioimaging, and therapeutics. Small 2024 20 24 2310732 10.1002/smll.202310732 38299771
    [Google Scholar]
  64. Vader P. Mol E.A. Pasterkamp G. Schiffelers R.M. Extracellular vesicles for drug delivery. Adv. Drug Deliv. Rev. 2016 106 Pt A 148 156 10.1016/j.addr.2016.02.006 26928656
    [Google Scholar]
  65. Elsharkasy O.M. Nordin J.Z. Hagey D.W. de Jong O.G. Schiffelers R.M. Andaloussi S.E.L. Vader P. Extracellular vesicles as drug delivery systems: Why and how? Adv. Drug Deliv. Rev. 2020 159 332 343 10.1016/j.addr.2020.04.004 32305351
    [Google Scholar]
  66. Meng W. He C. Hao Y. Wang L. Li L. Zhu G. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source. Drug Deliv. 2020 27 1 585 598 10.1080/10717544.2020.1748758 32264719
    [Google Scholar]
  67. Balachandran B. Yuana Y. Extracellular vesicles-based drug delivery system for cancer treatment. Cogent Med. 2019 6 1 1635806 10.1080/2331205X.2019.1635806
    [Google Scholar]
  68. Villa F. Quarto R. Tasso R. Extracellular vesicles as natural, safe and efficient drug delivery systems. Pharmaceutics 2019 11 11 557 10.3390/pharmaceutics11110557 31661862
    [Google Scholar]
  69. van der Meel R. Fens M.H.A.M. Vader P. van Solinge W.W. Eniola-Adefeso O. Schiffelers R.M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field. J. Control. Release 2014 195 72 85 10.1016/j.jconrel.2014.07.049 25094032
    [Google Scholar]
  70. Kürtösi B. Kazsoki A. Zelkó R. A systematic review on plant-derived extracellular vesicles as drug delivery systems. Int. J. Mol. Sci. 2024 25 14 7559 10.3390/ijms25147559 39062803
    [Google Scholar]
  71. Zeng B. Li Y. Xia J. Xiao Y. Khan N. Jiang B. Liang Y. Duan L. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery. Bioeng. Transl. Med. 2024 9 2 10623 10.1002/btm2.10623 38435823
    [Google Scholar]
  72. Xia Y. Rao L. Yao H. Wang Z. Ning P. Chen X. Engineering macrophages for cancer immunotherapy and drug delivery. Adv. Mater. 2020 32 40 2002054 10.1002/adma.202002054 32856350
    [Google Scholar]
  73. Zhan C. Jin Y. Xu X. Shao J. Jin C. Antitumor therapy for breast cancer: Focus on tumor‐associated macrophages and nanosized drug delivery systems. Cancer Med. 2023 12 10 11049 11072 10.1002/cam4.5489 36794651
    [Google Scholar]
  74. Qi Y. Yan X. Xia T. Liu S. Use of macrophage as a Trojan horse for cancer nanotheranostics. Mater. Des. 2021 198 109388 10.1016/j.matdes.2020.109388
    [Google Scholar]
  75. Jain N.K. Mishra V. Mehra N.K. Targeted drug delivery to macrophages. Expert Opin. Drug Deliv. 2013 10 3 353 367 10.1517/17425247.2013.751370 23289618
    [Google Scholar]
  76. He W. Kapate N. Shields C.W. IV Mitragotri S. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv. Drug Deliv. Rev. 2020 165-166 15 40 10.1016/j.addr.2019.12.001 31816357
    [Google Scholar]
  77. Zhang Y. Long Y. Wan J. Liu S. Shi A. Li D. Yu S. Li X. Wen J. Deng J. Ma Y. Li N. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy. J. Drug Target. 2023 31 3 229 242 10.1080/1061186X.2022.2071426 35587560
    [Google Scholar]
  78. Rodrigues S. Grenha A. Activation of macrophages: Establishing a role for polysaccharides in drug delivery strategies envisaging antibacterial therapy. Curr. Pharm. Des. 2015 21 33 4869 4887 10.2174/1381612821666150820103910 26290207
    [Google Scholar]
  79. Novak J.S. Jaiswal J.K. Partridge T.A. The macrophage as a Trojan horse for antisense oligonucleotide delivery. Expert Opin. Ther. Targets 2018 22 6 463 466 10.1080/14728222.2018.1482279 29860876
    [Google Scholar]
  80. Guo Q. Qian Z.M. Macrophage based drug delivery: Key challenges and strategies. Bioact. Mater. 2024 38 55 72 10.1016/j.bioactmat.2024.04.004 38699242
    [Google Scholar]
  81. Liang T. Zhang R. Liu X. Ding Q. Wu S. Li C. Lin Y. Ye Y. Zhong Z. Zhou M. Recent advances in macrophage-mediated drug delivery systems. Int. J. Nanomedicine 2021 16 2703 2714 10.2147/IJN.S298159 33854316
    [Google Scholar]
  82. Boado R.J. Blood-brain barrier transport of non-viral gene and RNAi therapeutics. Pharm. Res. 2007 24 9 1772 1787 10.1007/s11095‑007‑9321‑5 17554608
    [Google Scholar]
  83. Wieder M.E. Hone D.C. Cook M.J. Handsley M.M. Gavrilovic J. Russell D.A. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’. Photochem. Photobiol. Sci. 2006 5 8 727 734 10.1039/b602830f 16886087
    [Google Scholar]
  84. Xue X. Huang Y. Bo R. Jia B. Wu H. Yuan Y. Wang Z. Ma Z. Jing D. Xu X. Yu W. Lin T. Li Y. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment. Nat. Commun. 2018 9 1 3653 10.1038/s41467‑018‑06093‑5 30194413
    [Google Scholar]
  85. Chen L. Li G. Wang X. Li J. Zhang Y. Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide. ACS Nano 2021 15 7 11929 11939 10.1021/acsnano.1c03072 34170121
    [Google Scholar]
  86. Sundaram K. Mu J. Kumar A. Behera J. Lei C. Sriwastva M.K. Xu F. Dryden G.W. Zhang L. Chen S. Yan J. Zhang X. Park J.W. Merchant M.L. Tyagi N. Teng Y. Zhang H.G. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis. Theranostics 2022 12 3 1220 1246 10.7150/thno.65427 35154484
    [Google Scholar]
  87. Di Vizio D. Kim J. Hager M.H. Morello M. Yang W. Lafargue C.J. True L.D. Rubin M.A. Adam R.M. Beroukhim R. Demichelis F. Freeman M.R. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 2009 69 13 5601 5609 10.1158/0008‑5472.CAN‑08‑3860 19549916
    [Google Scholar]
  88. An L. Wang Y. Lin J. Tian Q. Xie Y. Hu J. Yang S. Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy. ACS Appl. Mater. Interfaces 2019 11 17 15251 15261 10.1021/acsami.9b00495 30964253
    [Google Scholar]
  89. Wayne E.C. Long C. Haney M.J. Batrakova E.V. Leisner T.M. Parise L.V. Kabanov A.V. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer. Adv. Sci. 2019 6 21 1900582 10.1002/advs.201900582 31728272
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010388510250515105129
Loading
/content/journals/cpb/10.2174/0113892010388510250515105129
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: immune cells ; nanoparticles ; nanomedicine ; cancer ; Trojan Horse
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test