Skip to content
2000
Volume 26, Issue 14
  • ISSN: 1389-2010
  • E-ISSN: 1873-4316

Abstract

The nanoparticles are widely used in various drug delivery applications due to their versatility to encapsulate, cargo loading, and transport of therapeutic agents. Numerous studies have explored the use of nanomedicine-based drug delivery systems for treating various diseases. This research provides a smart and precise review of one of the nanoparticles-based drug delivery approaches, ., the Trojan horse strategy which is employed for delivering the drug to the target efficiently and reliably. Furthermore, the applicability of nanomedicines to cancer treatment is discussed, with examples drawn from various systematic studies. The use of different nanomedicine platforms such as liposomes, nanoparticles, spherical nucleic acids, extracellular vesicles, and immune cells acting as Trojan horses is also explored in the context of cancer therapy. Finally, a precise conclusion and future recommendations are provided for future researchers in the field of applied nanotechnology for the pharmaceutical domain.

Loading

Article metrics loading...

/content/journals/cpb/10.2174/0113892010388510250515105129
2025-05-16
2025-12-18
Loading full text...

Full text loading...

References

  1. JosephT. Kar MahapatraD. EsmaeiliA. PiszczykŁ. HasaninM. KattaliM. HaponiukJ. ThomasS. Nanoparticles: Taking a unique position in medicine.Nanomaterials202313357410.3390/nano13030574 36770535
    [Google Scholar]
  2. AminZ. Fundamentals of Nanotechnology.Cham2024116
    [Google Scholar]
  3. Harun-Ur-RashidM. JahanI. FoyezT. ImranA.B. Bio-inspired nanomaterials for micro/nanodevices: a new era in biomedical applications.Micromachines2023149178610.3390/mi14091786 37763949
    [Google Scholar]
  4. Aghebati-MalekiA. DolatiS. AhmadiM. BaghbanzhadehA. AsadiM. FotouhiA. YousefiM. Aghebati-MalekiL. Nanoparticles and cancer therapy: Perspectives for application of nanoparticles in the treatment of cancers.J. Cell. Physiol.202023531962197210.1002/jcp.29126 31441032
    [Google Scholar]
  5. AwasthiR. RosebladeA. HansbroP.M. RathboneM.J. DuaK. BebawyM. Nanoparticles in cancer treatment: opportunities and obstacles.Curr. Drug Targets201819141696170910.2174/1389450119666180326122831 29577855
    [Google Scholar]
  6. BhatiaS. BhatiaS. Nanoparticles types, classification, characterization, fabrication methods and drug delivery applications.Natural Polymer Drug Delivery Systems2016339310.1007/978‑3‑319‑41129‑3_2
    [Google Scholar]
  7. DangY. GuanJ. Nanoparticle-based drug delivery systems for cancer therapy.Smart Mater. Med.20201101910.1016/j.smaim.2020.04.001 34553138
    [Google Scholar]
  8. SalemS.S. A comprehensive review of nanomaterials: Types, synthesis, characterization, and applications.Biointerface Res. Appl. Chem.20221314110.33263/BRIAC131.041
    [Google Scholar]
  9. HasanS. A review on nanoparticles: their synthesis and types.Res. J. Recent Sci.201522772502
    [Google Scholar]
  10. GavasS. QuaziS. KarpińskiT.M. Nanoparticles for cancer therapy: current progress and challenges.Nanoscale Res. Lett.202116117310.1186/s11671‑021‑03628‑6 34866166
    [Google Scholar]
  11. SarvariP. SarvariP. Advances in nanoparticle-based drug delivery in cancer treatment.Global Translat Med202322039410.36922/gtm.0394
    [Google Scholar]
  12. RajS. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy. Seminars in cancer biology.Elsevier202110.1016/j.semcancer.2019.11.002
    [Google Scholar]
  13. YaoY. ZhouY. LiuL. XuY. ChenQ. WangY. WuS. DengY. ZhangJ. ShaoA. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance.Front. Mol. Biosci.2020719310.3389/fmolb.2020.00193 32974385
    [Google Scholar]
  14. FusterM.G. WangJ. FandiñoO. VílloraG. ParedesA.J. Folic acid-decorated nanocrystals as highly loaded trojan horses to target cancer cells.Mol. Pharm.20242162781279410.1021/acs.molpharmaceut.3c01186 38676649
    [Google Scholar]
  15. PardridgeW.M. Delivery of biologics across the blood–brain barrier with molecular trojan horse technology.BioDrugs201731650351910.1007/s40259‑017‑0248‑z 29067674
    [Google Scholar]
  16. CadavidD. JurgensenS. LeeS. Impact of natalizumab on ambulatory improvement in secondary progressive and disabled relapsing-remitting multiple sclerosis.PLoS One2013815329710.1371/journal.pone.0053297 23308186
    [Google Scholar]
  17. ShuklaS. PanditV. Trojan microparticles: A composite nanoparticle delivery system.Curr. Drug Ther.202419441342510.2174/1574885518666230726142855
    [Google Scholar]
  18. Dassonville-KlimptA. SonnetP. Advances in ‘Trojan horse’ strategies in antibiotic delivery systems:Oxfordshire, UK2020983986
    [Google Scholar]
  19. SunW. QiM. ChengS. LiC. DongB. WangL. Gallium and gallium compounds: New insights into the “Trojan horse” strategy in medical applications.Mater. Des.202322711170410.1016/j.matdes.2023.111704
    [Google Scholar]
  20. Abdel-NaserM.B. Human skin cell culture and its impact on dermatology.Egypt Dermatol. Online J.200512125
    [Google Scholar]
  21. GécziZ. RóthI. KőhidaiZ. KőhidaiL. MukaddamK. HermannP. VéghD. ZellesT. The use of Trojan-horse drug delivery system in managing periodontitis.Int. Dent. J.202373334635310.1016/j.identj.2022.08.003 36175203
    [Google Scholar]
  22. MöllmannU. HeinischL. BauernfeindA. KöhlerT. Ankel-FuchsD. Siderophores as drug delivery agents: application of the “Trojan Horse” strategy.Biometals200922461562410.1007/s10534‑009‑9219‑2 19214755
    [Google Scholar]
  23. LiaoT. LiuC. WuX. LiuJ. YuW. XuZ. KuangY. LiC. Degradable mesoporous silica nanoparticle/peptide-based “trojan horse”-like drug delivery system for deep intratumoral penetration and cancer therapy.ACS Appl. Nano Mater.2024789518953110.1021/acsanm.4c00992
    [Google Scholar]
  24. ZhouT. LiuY. LeiK. LiuJ. HuM. GuoL. GuoY. YeQ.A. “Trojan Horse” strategy: the preparation of bile acid-modifying irinotecan hydrochloride nanoliposomes for liver-targeted anticancer drug delivery system study.Molecules2023284157710.3390/molecules28041577 36838565
    [Google Scholar]
  25. PengH. WangC. XuX. YuC. WangQ. An intestinal Trojan horse for gene delivery.Nanoscale20157104354436010.1039/C4NR06377E 25619169
    [Google Scholar]
  26. HejmadyS. PradhanR. AlexanderA. AgrawalM. SinghviG. GorainB. TiwariS. KesharwaniP. DubeyS.K. Recent advances in targeted nanomedicine as promising antitumor therapeutics.Drug Discov. Today202025122227224410.1016/j.drudis.2020.09.031 33011342
    [Google Scholar]
  27. HingeN. Nanomedicine advances in cancer therapy. Advanced 3D-Printed Systems and Nanosystems for Drug Delivery and Tissue Engineering.Amsterdam, NetherlandsElsevier202021925310.1016/B978‑0‑12‑818471‑4.00008‑X
    [Google Scholar]
  28. LammersT. AimeS. HenninkW.E. StormG. KiesslingF. Theranostic Nanomedicine.Acc. Chem. Res.201144101029103810.1021/ar200019c 21545096
    [Google Scholar]
  29. GautamL. Nanomedicine for the diagnosis and treatment of cancer.Nanomedicine for the Treatment of Disease.FloridaApple Academic Press201939542210.1201/9780429425714‑14
    [Google Scholar]
  30. KargozarS. MozafariM. Nanotechnology and nanomedicine: Start small, think big.Mater. Today Proc.201857154921550010.1016/j.matpr.2018.04.155
    [Google Scholar]
  31. PeiZ. ChenS. DingL. LiuJ. CuiX. LiF. QiuF. Current perspectives and trend of nanomedicine in cancer: A review and bibliometric analysis.J. Control. Release202235221124110.1016/j.jconrel.2022.10.023 36270513
    [Google Scholar]
  32. CabralH. KinohH. KataokaK. Tumor-targeted nanomedicine for immunotherapy.Acc. Chem. Res.202053122765277610.1021/acs.accounts.0c00518 33161717
    [Google Scholar]
  33. FangJ. EPR effect-based tumor targeted nanomedicine: A promising approach for controlling cancer.Basel, SwitzerlandMDPI202295
    [Google Scholar]
  34. HuK. ZhangD. MaW. GuY. ZhaoJ. MuX. Polydopamine-based nanoparticles for synergistic chemotherapy of prostate cancer.Int. J. Nanomedicine2024196717673010.2147/IJN.S468946 38979530
    [Google Scholar]
  35. AbdelhamidM.S. WadanA.H.S. SaadH.A. El-DakrouryW.A. HageenA.W. MohammedD.H. MouradS. MohammedO.A. Abdel-ReheimM.A. DoghishA.S. Nanoparticle innovations in targeted cancer therapy: advancements in antibody–drug conjugates.Naunyn Schmiedebergs Arch. Pharmacol.202512110.1007/s00210‑024‑03764‑7 39825965
    [Google Scholar]
  36. SubhanM.A. YalamartyS.S.K. FilipczakN. ParveenF. TorchilinV.P. Recent advances in tumor targeting via EPR effect for cancer treatment.J. Pers. Med.202111657110.3390/jpm11060571 34207137
    [Google Scholar]
  37. Hermosillo-AbundisC. Flood-GaribayJ.A. Ayala-NunezV. Méndez-RojasM.A. Immune cells as trojan horses for cancer nanotherapy.ACS Mater. Lett.20257115617110.1021/acsmaterialslett.4c01523
    [Google Scholar]
  38. MondalS. BasuD. MaitiB. GhoshO. GhoshS. Application of nanotechnology in cancer therapy: potential and limitations.J. Curr. Oncol. Trends202412768910.4103/JCOT.JCOT_17_24
    [Google Scholar]
  39. SerzantsR. Exploring the limits of epr-driven tumor accumulation with non-opsonizing nanomaterials.bioRxiv202417
    [Google Scholar]
  40. VieiraD. GamarraL. Getting into the brain: liposome-based strategies for effective drug delivery across the blood–brain barrier.Int. J. Nanomedicine2016115381541410.2147/IJN.S117210 27799765
    [Google Scholar]
  41. PandaP. KarS.S. MohapatraR. DNA polymer conjugates: Revolutionizing neurological disorder treatment through targeted drug delivery.Next Materials2025710033610.1016/j.nxmate.2024.100336
    [Google Scholar]
  42. KashaniG.K. NaghibS.M. SoleymaniS. MozafariM.R. A review of DNA nanoparticles-encapsulated drug/gene/protein for advanced controlled drug release: Current status and future perspective over emerging therapy approaches.Int. J. Biol. Macromol.2024268Pt 113169410.1016/j.ijbiomac.2024.131694 38642693
    [Google Scholar]
  43. SahuB. BeheraB. KumarU. Transgene delivery system: viral, nonviral, and other methods for central nervous system. Genome Editing for Neurodegenerative Diseases.Amsterdam, NetherlandsElsevier202513515510.1016/B978‑0‑443‑23826‑0.00011‑8
    [Google Scholar]
  44. SaitoR. BringasJ.R. McKnightT.R. WendlandM.F. MamotC. DrummondD.C. KirpotinD.B. ParkJ.W. BergerM.S. BankiewiczK.S. Distribution of liposomes into brain and rat brain tumor models by convection-enhanced delivery monitored with magnetic resonance imaging.Cancer Res.20046472572257910.1158/0008‑5472.CAN‑03‑3631 15059914
    [Google Scholar]
  45. PardridgeW.M. Brain delivery of nanomedicines: trojan horse liposomes for plasmid DNA gene therapy of the brain.Front. Med. Technol.2020260223610.3389/fmedt.2020.602236 35047884
    [Google Scholar]
  46. RossC. TaylorM. FullwoodN. AllsopD. Liposome delivery systems for the treatment of Alzheimer’s disease.Int. J. Nanomedicine2018138507852210.2147/IJN.S183117 30587974
    [Google Scholar]
  47. PardridgeW.M. Brain gene therapy with Trojan horse lipid nanoparticles.Trends Mol. Med.202329534335310.1016/j.molmed.2023.02.004 36907687
    [Google Scholar]
  48. GuanX. PeiY. SongJ. DNA-based nonviral gene therapy— challenging but promising.Mol. Pharm.202421242745310.1021/acs.molpharmaceut.3c00907 38198640
    [Google Scholar]
  49. SahaS. YakatiV. ShankarG. JaggarapuM.M.C.S. MokuG. MadhusudanaK. BanerjeeR. RamkrishnaS. SrinivasR. ChaudhuriA. Amphetamine decorated cationic lipid nanoparticles cross the blood–brain barrier: therapeutic promise for combating glioblastoma.J. Mater. Chem. B Mater. Biol. Med.20208194318433010.1039/C9TB02700A 32330214
    [Google Scholar]
  50. CarrilloC. Sánchez-HernándezN. García-MontoyaE. Pérez-LozanoP. Suñé-NegreJ.M. TicóJ.R. SuñéC. MiñarroM. DNA delivery via cationic solid lipid nanoparticles (SLNs).Eur. J. Pharm. Sci.201349215716510.1016/j.ejps.2013.02.011 23454134
    [Google Scholar]
  51. BoadoR.J. PardridgeW.M. The trojan horse liposome technology for nonviral gene transfer across the blood-brain barrier.J. Drug Deliv.2011201111210.1155/2011/296151 22175028
    [Google Scholar]
  52. YanJ. ShanC. LiangC. HanJ. HeB. SunY. LuoK. ChangJ. WangX. LiangY. Smart multistage “trojan horse”-inspired bovine serum albumin-coated liposomes for enhancing tumor penetration and antitumor efficacy.Biomacromolecules202223125202521210.1021/acs.biomac.2c00984 36287618
    [Google Scholar]
  53. StenzelM.H. The trojan horse goes wild: the effect of drug loading on the behavior of nanoparticles.Angew. Chem. Int. Ed.20216052202220610.1002/anie.202010934 33210812
    [Google Scholar]
  54. LimbachL.K. WickP. ManserP. GrassR.N. BruininkA. StarkW.J. Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress.Environ. Sci. Technol.200741114158416310.1021/es062629t 17612205
    [Google Scholar]
  55. PrajapatiA. RangraS. PatilR. DesaiN. JyothiV.G.S.S. SalaveS. AmateP. BenivalD. KommineniN. Receptor-targeted nanomedicine for cancer therapy.Receptors20243332336110.3390/receptors3030016
    [Google Scholar]
  56. ParkJ. EvangelopoulosM. VasherM.K. KudrukS. RamaniN. MayerV. SolivanA.C. LeeA. MirkinC.A. Enhancing endosomal escape and gene regulation activity for spherical nucleic acids.Small20242011230690210.1002/smll.202306902 37932003
    [Google Scholar]
  57. JiangM.C. FangZ.L. ZhangJ.Y. MaW. LiaoL.F. YuC.Y. WeiH. A fully biodegradable spherical nucleic acid nanoplatform for self-codelivery of doxorubicin and miR122 for innate and adaptive immunity activation.Acta Biomater.202418040742210.1016/j.actbio.2024.04.013 38614414
    [Google Scholar]
  58. XiaC. Spherical nucleic acids for biomedical applications.Adv. Sens. Ener Mat20243410011710.1016/j.asems.2024.100117
    [Google Scholar]
  59. NarumS. DealB. OgasawaraH. MancusoJ.N. ZhangJ. SalaitaK. An endosomal escape trojan horse platform to improve cytosolic delivery of nucleic acids.ACS Nano20241886186620110.1021/acsnano.3c09027 38346399
    [Google Scholar]
  60. Garcia-GuerraA. ElleringtonR. GaitzschJ. BathJ. KyeM. VarelaM.A. BattagliaG. WoodM.J.A. ManzanoR. RinaldiC. TurberfieldA.J. A modular RNA delivery system comprising spherical nucleic acids built on endosome-escaping polymeric nanoparticles.Nanoscale Adv.20235112941294910.1039/D2NA00846G 37260495
    [Google Scholar]
  61. LiJ. LiY. PanL. PanW. LiN. TangB. Spherical nucleic acids-based biosensors for cancer biomarkers detection.Trends Analyt. Chem.202215711680710.1016/j.trac.2022.116807
    [Google Scholar]
  62. WuK. LiQ. YaoC. YangD. LiuD. Trojan horse delivery of spherical nucleic acid probes into the cytoplasm for high-fidelity imaging of microRNAs.Anal. Chem.20229431109421094810.1021/acs.analchem.2c00675 35854635
    [Google Scholar]
  63. TangX. ZhaoS. LuoJ. WangB. WuX. DengR. ChangK. ChenM. Smart stimuli‐responsive spherical nucleic acids: cutting‐edge platforms for biosensing, bioimaging, and therapeutics.Small20242024231073210.1002/smll.202310732 38299771
    [Google Scholar]
  64. VaderP MolE.A PasterkampG SchiffelersR.M Extracellular vesicles for drug delivery.Adv Drug Deliv Rev2016106Pt A14815610.1016/j.addr.2016.02.00626928656
    [Google Scholar]
  65. ElsharkasyO.M. NordinJ.Z. HageyD.W. de JongO.G. SchiffelersR.M. AndaloussiS.E.L. VaderP. Extracellular vesicles as drug delivery systems: Why and how?Adv. Drug Deliv. Rev.202015933234310.1016/j.addr.2020.04.004 32305351
    [Google Scholar]
  66. MengW. HeC. HaoY. WangL. LiL. ZhuG. Prospects and challenges of extracellular vesicle-based drug delivery system: considering cell source.Drug Deliv.202027158559810.1080/10717544.2020.1748758 32264719
    [Google Scholar]
  67. BalachandranB. YuanaY. Extracellular vesicles-based drug delivery system for cancer treatment.Cogent Med.201961163580610.1080/2331205X.2019.1635806
    [Google Scholar]
  68. VillaF. QuartoR. TassoR. Extracellular vesicles as natural, safe and efficient drug delivery systems.Pharmaceutics2019111155710.3390/pharmaceutics11110557 31661862
    [Google Scholar]
  69. van der MeelR. FensM.H.A.M. VaderP. van SolingeW.W. Eniola-AdefesoO. SchiffelersR.M. Extracellular vesicles as drug delivery systems: Lessons from the liposome field.J. Control. Release2014195728510.1016/j.jconrel.2014.07.049 25094032
    [Google Scholar]
  70. KürtösiB. KazsokiA. ZelkóR. A systematic review on plant-derived extracellular vesicles as drug delivery systems.Int. J. Mol. Sci.20242514755910.3390/ijms25147559 39062803
    [Google Scholar]
  71. ZengB. LiY. XiaJ. XiaoY. KhanN. JiangB. LiangY. DuanL. Micro Trojan horses: Engineering extracellular vesicles crossing biological barriers for drug delivery.Bioeng. Transl. Med.2024921062310.1002/btm2.10623 38435823
    [Google Scholar]
  72. XiaY. RaoL. YaoH. WangZ. NingP. ChenX. Engineering macrophages for cancer immunotherapy and drug delivery.Adv. Mater.20203240200205410.1002/adma.202002054 32856350
    [Google Scholar]
  73. ZhanC. JinY. XuX. ShaoJ. JinC. Antitumor therapy for breast cancer: Focus on tumor‐associated macrophages and nanosized drug delivery systems.Cancer Med.20231210110491107210.1002/cam4.5489 36794651
    [Google Scholar]
  74. QiY. YanX. XiaT. LiuS. Use of macrophage as a Trojan horse for cancer nanotheranostics.Mater. Des.202119810938810.1016/j.matdes.2020.109388
    [Google Scholar]
  75. JainN.K. MishraV. MehraN.K. Targeted drug delivery to macrophages.Expert Opin. Drug Deliv.201310335336710.1517/17425247.2013.751370 23289618
    [Google Scholar]
  76. HeW. KapateN. ShieldsC.W. MitragotriS. Drug delivery to macrophages: A review of targeting drugs and drug carriers to macrophages for inflammatory diseases.Adv. Drug Deliv. Rev.2020165-166154010.1016/j.addr.2019.12.001 31816357
    [Google Scholar]
  77. ZhangY. LongY. WanJ. LiuS. ShiA. LiD. YuS. LiX. WenJ. DengJ. MaY. LiN. Macrophage membrane biomimetic drug delivery system: for inflammation targeted therapy.J. Drug Target.202331322924210.1080/1061186X.2022.2071426 35587560
    [Google Scholar]
  78. RodriguesS. GrenhaA. Activation of macrophages: Establishing a role for polysaccharides in drug delivery strategies envisaging antibacterial therapy.Curr. Pharm. Des.201521334869488710.2174/1381612821666150820103910 26290207
    [Google Scholar]
  79. NovakJ.S. JaiswalJ.K. PartridgeT.A. The macrophage as a Trojan horse for antisense oligonucleotide delivery.Expert Opin. Ther. Targets201822646346610.1080/14728222.2018.1482279 29860876
    [Google Scholar]
  80. GuoQ. QianZ.M. Macrophage based drug delivery: Key challenges and strategies.Bioact. Mater.202438557210.1016/j.bioactmat.2024.04.004 38699242
    [Google Scholar]
  81. LiangT. ZhangR. LiuX. DingQ. WuS. LiC. LinY. YeY. ZhongZ. ZhouM. Recent advances in macrophage-mediated drug delivery systems.Int. J. Nanomedicine2021162703271410.2147/IJN.S298159 33854316
    [Google Scholar]
  82. BoadoR.J. Blood-brain barrier transport of non-viral gene and RNAi therapeutics.Pharm. Res.20072491772178710.1007/s11095‑007‑9321‑5 17554608
    [Google Scholar]
  83. WiederM.E. HoneD.C. CookM.J. HandsleyM.M. GavrilovicJ. RussellD.A. Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’.Photochem. Photobiol. Sci.20065872773410.1039/b602830f 16886087
    [Google Scholar]
  84. XueX. HuangY. BoR. JiaB. WuH. YuanY. WangZ. MaZ. JingD. XuX. YuW. LinT. LiY. Trojan Horse nanotheranostics with dual transformability and multifunctionality for highly effective cancer treatment.Nat. Commun.201891365310.1038/s41467‑018‑06093‑5 30194413
    [Google Scholar]
  85. ChenL. LiG. WangX. LiJ. ZhangY. Spherical nucleic acids for near-infrared light-responsive self-delivery of small-interfering RNA and antisense oligonucleotide.ACS Nano2021157119291193910.1021/acsnano.1c03072 34170121
    [Google Scholar]
  86. SundaramK. MuJ. KumarA. BeheraJ. LeiC. SriwastvaM.K. XuF. DrydenG.W. ZhangL. ChenS. YanJ. ZhangX. ParkJ.W. MerchantM.L. TyagiN. TengY. ZhangH.G. Garlic exosome-like nanoparticles reverse high-fat diet induced obesity via the gut/brain axis.Theranostics20221231220124610.7150/thno.65427 35154484
    [Google Scholar]
  87. Di VizioD. KimJ. HagerM.H. MorelloM. YangW. LafargueC.J. TrueL.D. RubinM.A. AdamR.M. BeroukhimR. DemichelisF. FreemanM.R. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease.Cancer Res.200969135601560910.1158/0008‑5472.CAN‑08‑3860 19549916
    [Google Scholar]
  88. AnL. WangY. LinJ. TianQ. XieY. HuJ. YangS. Macrophages-mediated delivery of small gold nanorods for tumor hypoxia photoacoustic imaging and enhanced photothermal therapy.ACS Appl. Mater. Interfaces20191117152511526110.1021/acsami.9b00495 30964253
    [Google Scholar]
  89. WayneE.C. LongC. HaneyM.J. BatrakovaE.V. LeisnerT.M. PariseL.V. KabanovA.V. Targeted delivery of siRNA lipoplexes to cancer cells using macrophage transient horizontal gene transfer.Adv. Sci.2019621190058210.1002/advs.201900582 31728272
    [Google Scholar]
/content/journals/cpb/10.2174/0113892010388510250515105129
Loading
/content/journals/cpb/10.2174/0113892010388510250515105129
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keyword(s): cancer; immune cells; nanomedicine; nanoparticles; nanotechnology; Trojan Horse
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test