Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
81 - 100 of 227 results
-
-
Melittin Inhibits Ovarian Cancer Cell Growth by Downregulating MMP9 Expression via the JAK2-STAT3 Signaling Pathway
Authors: Hongyi Sun, Jie Ding, Yujia Jiang, Danying Zhang, Jin Yu, Shuai Sun, Jing Zhou and Chaoqin YuAvailable online: 29 April 2025More LessObjectiveThis study aimed to investigate the target sites, core pathways, and mechanisms of action of melittin in treating ovarian cancer through network pharmacology, molecular docking, and experimental verification.
MethodsPotential targets for melittin in ovarian cancer treatment were predicted using databases, followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. The binding of the drug to these targets was confirmed through molecular docking. The core targets and pathways were experimentally validated. A tumor-bearing nude mouse model was established, with the mice randomly divided into treatment and control groups. The treatment group received 5 mg/kg of melittin by intraperitoneal injection, whereas the control group received saline injections. Changes in mouse weight and tumor volume were monitored, and protein expression in mouse tumor tissues was assessed via immunohistochemistry and Western blotting at the end of the experiment.
ResultsFifty-three common targets between melittin and ovarian cancer were identified in the SEA and GeneCards databases. The Protein-Protein Interaction (PPI) analysis highlighted core targets, including MMP9, STAT3, MMP2, STAT6, FURIN, and BRCA1. The GO enrichment results were related mainly to the metabolic processes of collagen degradation, extracellular matrix disassembly, external encapsulating structures, and phospholipase C-activated G-protein-coupled receptor signaling pathways. The KEGG pathway analysis revealed the enrichment of genes related to estrogen signaling, necroptotic apoptosis, the FoxO signaling pathway, microRNAs in cancer, the JAK-STAT signaling pathway, proteoglycans in cancer, and receptor-mediated carcinogenesis. Cell Counting Kit-8 (CCK8) assays, scratch wound healing tests, and Transwell invasion assays demonstrated that melittin significantly inhibited the proliferation, migration, and invasion of ovarian cancer cells. The Western blot results indicated that melittin downregulated the levels of p-JAK2, p-STAT3, and MMP9 in ovarian cancer cells. Molecular docking demonstrated that melittin bound stably to MMP9 and STAT3. The results of animal experiments indicated that melittin suppressed the growth of ovarian tumors in nude mice and significantly downregulated the expression of MMP9, p-JAK2, and p-STAT3 in tumor tissues (p<0.05).
ConclusionMelittin may inhibit the growth of ovarian cancer cells by downregulating MMP9 expression via the JAK2-STAT3 signaling pathway, thus exerting a therapeutic effect.
-
-
-
Integrating Transcriptomic Data and Mendelian Randomization Analyses Reveals Potentially Novel Sepsis-related Targets
Authors: Wenting Tao and Liang ChenAvailable online: 29 April 2025More LessBackgroundSepsis remains a leading cause of global morbidity and mortality.
ObjectiveTo identify candidate biomarkers that may be mechanistically related to the pathogenesis of sepsis.
MethodsThe Gene Expression Omnibus database was leveraged to identify differentially expressed genes (DEGs) between the healthy control and septicemia groups. Genes causally related to sepsis were probed through the integration of GWAS and expression quantitative trait loci (eQTL) data in a two-sample Mendelian randomization (MR) analysis. A set of key sepsis-related genes was then selected based on the overlap between these putative causal genes and the DEGs. These genes were then subjected to enrichment analyses, testing set validation, and analyses of their expression dynamics in clinical samples.
ResultsAn examination of the overlap between 228 sepsis-related DEGs identified in the training dataset and 275 candidate causal genes linked to sepsis derived from the MR analysis led to the selection of four overlapping (SLC22A15, IL5RA, HDC, and SLC46A2) that may play a key role in sepsis. Enrichment analyses indicated that these genes were involved in the regulation of histidine metabolism and immune/inflammatory responses. In immune cell infiltration analyses, these genes were positively correlated with inflammatory response activation and the suppression of adaptive immunity. Consistent findings were obtained through qPCR verification in clinical samples.
ConclusionThese results offer potential insight into the mechanisms that govern septicemia and thus suggest a promising series of candidates that may be amenable to targeting to prevent or treat sepsis more effectively.
-
-
-
Sulfur and Selenium Modifications at Phosphorus Atom in Nucleoside Monophosphates, Activity and Potential Applications
Available online: 28 April 2025More LessNucleotides and nucleosides play an essential role in many cellular processes but have low physiological stability, which limits their usefulness. Nucleosides modified with chalcogen at the phosphorus atom are more stable in body fluids and tissues. They can act as activators or inhibitors in many processes, including signal transduction through receptors and intracellular signaling. Some of them are also used as drugs or prodrugs that can serve as potential therapeutics in cancer and other diseases. This review focuses primarily on the activity and potential application of the nucleoside monophosphates modified with sulfur and selenium at the phosphorus atom, such as nucleoside 5’-O-phosphorothioate and 5’-O-phosphoroselenoates as well as adenosine cyclic 5’, 3’- monothiophosphate and guanosine cyclic 5’, 3’-monothiophosphate.
-
-
-
The Gut Microbiota-anxiety Connection: Evidence, Mechanisms, and Therapeutic Strategies
Authors: Geir Bjørklund, Monica Butnariu, Maryam Dadar and Yuliya SemenovaAvailable online: 25 April 2025More LessThe gut-brain axis (GBA), a bidirectional communication system between the gut and the brain, has emerged as a critical player in mental health. The interest in the connection between anxiety disorders (AD) and the gut microbiota is growing. This paper provides an overview of gut microbiota’s role in dysregulation in anxiety, including alterations in gut microbiota (dysbiosis), leaky gut, metabolic endotoxemia, and the effect of antipsychotic medications. The mechanisms underlying the gut microbiota-anxiety (GMA) connection, such as neurotransmitter production, immune dysregulation, and GBA communication, are discussed. Furthermore, the paper explores gut microbiota-based therapeutic strategies, including probiotics, prebiotics, symbiotics, fecal microbiota transplantation, and dietary interventions, as potential approaches for anxiety management. This research field's clinical implications and future directions are also examined, underscoring that more studies are needed on gut microbiota’s role in anxiety disorders. The conclusion highlights the importance of this ongoing research and the potential for personalized therapeutic interventions, instilling hope and optimism for the future of anxiety management and providing reassurance about the potential for personalized therapeutic interventions in this field.
-
-
-
Cartilage Oligomeric Matrix Protein: A Potential Prognostic Biomarker and Therapeutic Target in Gastric Cancer
Authors: Dongbing Li and Guizhen LyuAvailable online: 24 April 2025More LessBackgroundCartilage oligomeric matrix protein (COMP) is a protein that has been implicated in the development of some tumors, but its exact role in gastric cancer (GC) remains unclear.
ObjectiveThe study aims to comprehensively examine COMP in GC and to confirm its effects through experimental methods.
MethodsThe research harnessed data from the Cancer Genome Atlas (TCGA) to explore the significance of COMP in GC and its potential as a diagnostic tool. The study also examined the regulatory networks involving COMP, including its interactions with immune cells, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), and the stemness index based on mRNA expression (mRNAsi). Additionally, the study explored the relationship between COMP expression and drug sensitivity in GC. Genomic variations of COMP in GC were assessed. The expression of COMP was validated by the GEPIA2 tool and confirmed with quantitative reverse transcription PCR (qRT-PCR) in cell lines (normal human gastric epithelial cells GES-1 and GC cell lines AGS and HGC-27).
ResultsAbnormal expression patterns of COMP were observed in various cancers, including GC. Higher levels of COMP in GC were significantly associated with the pathologic T stage and a history of reflux (p < 0.05 for both). Elevated COMP expression was correlated with poorer progression-free survival (PFS) (p = 0.027). COMP expression levels were identified as an independent prognostic factor for GC (p = 0.017). COMP was linked to TCF-dependent signaling in response to ECM receptor interaction, focal adhesion, and other pathways. There was an association between COMP expression and immune infiltration, immune checkpoint genes, TMB/MSI, and mRNAsi in GC. COMP expression was inversely correlated with the sensitivity to several drugs, indicating that higher levels of COMP may reduce the effectiveness of these drugs. COMP was found to be significantly up-regulated in GC cell lines.
ConclusionsCOMP could serve as a prognostic biomarker and a potential therapeutic target for the treatment of GC.
-
-
-
Sleep Disturbances Associated with Different Systems of the Body: Underlying Mechanisms Involved and Consequences
Available online: 23 April 2025More LessSleep is necessary for long-term health and well-being. Sleep is divided into the rapid eye movement (REM), and non-rapid eye movement (NREM) stages. The normal sleep pattern follows a 90-minute cycle, and within those cycles, the body undergoes a regenerative state, restoring various components used daily. A sleep disorder can be due to multiple factors, i.e., genetic, environmental, and individual factors. Short and long-term effects of sleep deprivation can have harmful effects. The immune system requires sufficient sleep to maintain optimal function, and sleep deprivation leads to the release of proinflammatory cytokines, which dysregulate the function of the immune system. Sleep deprivation affects the central nervous system, resulting in cognitive impairments and diseases related to decreased prefrontal cortex activity. Sleep disturbance affects the hypothalamus, secreting corticotrophin-releasing hormone, which results in the release of adrenocorticotropic hormone. This leads to the secretion of cortisol and catecholamines. Sleep disturbance causes reduced muscle glycogen concentration and gives rise to various gastrointestinal problems. Sleep disturbance affects the cardiovascular system which results in hypertension, cardiac ischemia, congestive cardiac failure, and arrhythmia. Sleep disturbances affect the endocrine system leading to insulin resistance, obesity, and metabolic syndrome. Interestingly, treatment of obstructive sleep apnea with continuous positive airway pressure was found to enhance metabolic status. We discuss the pharmacological, non-pharmacological, and surgical treatment options for sleep disorders. Understanding the mechanism of sleep disturbance and its association with different systems of the body may help in better treatment outcomes.
-
-
-
Variants of Visceral Adipocytokine Genes in Obesity and Coronary Atherosclerosis: A Review
Available online: 23 April 2025More LessAdipocytokines secreted by adipokines can have both direct and indirect effects on the development of atherosclerosis progression. Research using modern high-tech methods of molecular genetic analysis, which make it possible to identify the influence of certain variants of regulatory genes on the course of the atherosclerotic process, is becoming increasingly relevant. The review examines variants of genes (ADIPOQ, RETN, ITLN1, PBEF1, SCT, LEP, and GHRL) associated with obesity and metabolic disorders, as well as atherosclerosis-associated cardiovascular diseases. The review also addresses the mechanisms underlying various variants of visceral adipocytokine genes, as well as the translational potential of understanding these variants for therapeutic advances. The variants studied in the context of obesity, metabolic disorders, and atherosclerosis-associated cardiovascular diseases included rs1501299 (276G/T), rs2241766 (45G/T), rs74577862, rs182052, and rs266729 for ADIPOQ gene; rs1862513 (-420C/G), rs3745367 (299 G/A) for RETN gene; rs2274907 (326A/T) for ITLN1 gene; rs1319501 (G-948T), rs2302559, rs1215113036, rs11977021 (−3187G>A), rs4730153, and rs9770242 for PBEF1 gene; rs7799039 (G2548A), rs2167270 G>A, rs12112075 (G-2548A) for LEP gene; rs696217 (+408C>A, c.214G>T, p.Leu72Met), rs27647 (A-604G) for GHRL gene. The missense variant rs376423879 in the SCT gene was the only variant that has been studied in association with overweight. The contribution of gene variants to the development of obesity, metabolic disorders, and CVD depends on many factors, including lifestyle, nutrition, and other genetic and environmental factors. For a more accurate understanding of the role of the genes presented in the review, more research is needed in different populations, both in terms of the nature of the variation of genes predisposing to diseases associated with overweight, dyslipidemia, and atherosclerosis and in terms of the characteristics of their phenotypic manifestation.
-
-
-
Regulatory Relationships between DNA Methylation and Long Non- coding RNAs in Neuroblastoma
Authors: Yuan Fang, Fei Xu, Rui Dong, Lian Chen and Yizhen WangAvailable online: 23 April 2025More LessObjectivesNeuroblastoma (NB) is a prevalent pediatric solid malignancy associated with significant morbidity and mortality, largely driven by epigenetic alterations. This review aims to identify novel biomarkers related to long non-coding RNAs (lncRNAs) and DNA methylation in NB to enhance prognostic capabilities.
MethodsWe conducted a detailed analysis of the interplay between lncRNAs and DNA methylation in NB, focusing on regulatory variations and their implications for disease progression. Key lncRNAs, including GTL2/MEG3, DALI, NBAT-1, and DLX6-AS1, were examined for their regulation by DNA methylation through cis- and trans-methylation mechanisms.
ResultsThere are clinical and biological implications of lncRNAs in NB and related cancers. Notably, GTL2 and its alias MEG3 are implicated in tumorigenesis through epigenetic modifications, such as hypermethylation, leading to the loss of gene expression and aggressive tumor behavior. Similarly, the interactions of DALI with adjacent genes illustrate the crucial role lncRNAs play in neuronal differentiation and tumor progression, suggesting their potential to impact prognosis through regulatory effects. Furthermore, NBAT-1 emerges as a promising tumor suppressor with strong correlations to NB prognosis, where its methylation-induced silencing is associated with negative outcomes. DLX6-AS1 is also linked to increased NB risk, with expression patterns correlating to disease stage and survival rates; however, more extensive survival data are required to establish its prognostic value.
ConclusionThis review highlights the potential of lncRNAs as prognostic indicators in NB, emphasizing the need for further research to elucidate their roles and validate them as biomarkers for improved patient outcomes.
-
-
-
Exploring Therapeutic Strategies against Monkeypox Virus Through Network Pharmacology and Bioinformatics Analysis
Authors: Zafer Saad Al Shehri, Faez Falah Alshehri and Abdur RehmanAvailable online: 23 April 2025More LessIntroductionThe emergence of the monkeypox virus (MPXV) as a zoonotic threat has necessitated the development of effective treatments, particularly after it spread to regions outside of Central and Western Africa, such as the 2003 outbreak in the United States. Our groundbreaking study identifies CDK1 and TOP2A as key proteins in the pathogenesis of MPXV infection, utilizing network pharmacology to target these proteins for the first time. CDK1 and TOP2A, previously known for their roles in cell reprogramming, emerge as critical targets in our strategy to combat the virus.
MethodsBy targeting CDK1 and TOP2A, proteins integral to cell reprogramming, with small molecules identified in our study, such as carnosic acid, rosmarinic acid, and coclaurine, we propose a novel method not only to inhibit the replication of the monkeypox virus but also to harness cellular plasticity for therapeutic purposes. The identification and targeting of these proteins with specific compounds disrupt the virus's life cycle and simultaneously enhance the efficiency of cell reprogramming.
ResultsThis dual-action approach leverages the inherent plasticity of cellular reprogramming processes to combat the virus, showcasing a pioneering step in the use of regenerative medicine principles for antiviral strategies. Moreover, molecular docking and dynamic simulations strengthen our findings by demonstrating a strong binding affinity between TOP2A and CDK1, validating the synergistic effects of our identified small molecules.
ConclusionOur research thus opens new avenues for addressing viral threats like monkeypox, utilizing the convergence of virology, network pharmacology, and cellular reprogramming to pave the way for innovative treatments.
-
-
-
Erbin Inhibited Angiogenesis in vitro with the Inhibition on the STAT3 Pathway in Breast Cancer Cells
Authors: MingZhen Zhao, HaiLan Xu, Yu Sun, XinYang Li, LingLing Wang, Xing Zhao, Die Mu, YaLei Li and LiXin SunAvailable online: 23 April 2025More LessBackgroundAngiogenesis plays an important role in progression of tumors including breast cancer, which accounts for the vast majority of women's malignant tumors globally, to meet the excessive requirement of oxygen and nutrition for growth, metastasis, and invasion of the tumor. Therefore, targeting tumor angiogenesis has turned into a significant target for cancer therapy. Erbin has a significant effect on the initiation and progression of cancer, including breast cancer, but its role in inhibiting vascular endothelial cell proliferation and angiogenesis by breast cancer cells remains unclear.
MethodsIn this study, human SKBR3 and MCF-7 breast cancer cells were used and transfected with the plasmid and siRNA for overexpression and silence of Erbin, respectively. Western blot, qRT-PCR, CLEIA, CCK-8 and Matrigel Tube Formation Assay were used for the proteins detection, mRNAs detection, detection of VEGF in the culture supernatants, detection of cell proliferation and detection of the angiogenic ability of HUVECs in vitro, respectively.
ResultsIt was shown that the expression of both Erbin protein and mRNA in SKBR3 cells was lower compared to that in MCF-7 cells (p < 0.05). While the expression of VEGF protein was higher in SKBR3 cells than that in MCF-7 cells (p < 0.05). Furthermore, the VEGF protein and mRNA in the cells, VEGF protein in the culture supernatant, HUVEC proliferation in the conditioned medium at 16 h and 24 h, the total length of tube formation in the conditioned medium, and pSTAT3 protein in the cells, were downregulated by transfection of Erbin gene in SKBR3 cells and upregulated (excluding HUVEC proliferation at 16 h) by transfection of Erbin siRNA in MCF-7 cells compared with their NC cells (p < 0.05).
ConclusionIt can be concluded that Erbin, with inhibiting the STAT3 pathway, suppresses the proangiogenic effects of breast cancer cells, thereby suggesting its potential as a therapeutic target for breast cancer.
-
-
-
Protective Effects of Ginsenosides on Drug-induced Cardiotoxicity: A New Therapeutic Approach with Focus on Molecular Mechanisms in Cardio-oncology Field
Available online: 17 April 2025More LessPanax ginseng (PG), a staple in traditional medicine in Korea and China, holds a rich history of application for various diseases. Notably, its primary active components, ginsenosides, exhibit diverse therapeutic effects. Chemotherapy-induced side effects pose significant challenges to the treatment outcomes of cancer patients. Current strategies for managing the adverse effects of chemotherapy exhibit limited efficacy and have the potential to induce various detrimental side effects. In the realm of complications, cardiotoxicity poses a serious threat, ranking as the second major contributor to illness and death in individuals suffering cancer. It is linked to various cellular mechanisms such as oxidative stress, inflammation, apoptosis, autophagy, endoplasmic reticulum stress, and aberrant myocardial energy metabolism. Both in vivo and in vitro experiments confirm that ginsenosides undeniably present non-toxic and efficacious alternatives for addressing chemotherapy-induced side effects, including cardiotoxicity, neurotoxicity, nephrotoxicity, hepatotoxicity, immunotoxicity, and hematopoietic inhibition. Hence, there is a need to produce novel and potent drugs sourced from natural, non-toxic compounds to address the side effects induced by chemotherapy. The emphasis should be on the underlying mechanisms targeting mentioned cellular pathways. In this comprehensive review, we consolidate current knowledge and summarization with this aim and shed light on the future research of PG in cardio-oncology.
-
-
-
Anti-cancer Properties of Epigallocatechin-3-gallate (EGCG) and its Signaling Pathways
Available online: 17 April 2025More LessGreen tea is a traditional drink found in Asian countries, made up of four derivatives. One of the derivatives is epigallocatechin-3-gallate (EGCG). EGCG provides therapeutic benefits for cancer, heart disease, diabetes, and obesity. However, its poor absorption and instability limit its effectiveness, which can be improved using nanoparticle encapsulation. This work is a comprehensive review of the studies on green tea polyphenols, the impact of pro-oxidants and EGCG in cancer prevention, and their delivery using nanotechnology. Other plant sources of ellagitannin and its physicochemical properties, the therapeutic and preventive role of EGCG in breast cancer, and other cancers that can be treated using nano gold (NpAu) carriers are also discussed.
-
-
-
Mechanisms and Characteristics of Chronic Pain in Alzheimer’s Disease: A Narrative Review
Authors: Roman Konovalov, Mina Aubakirova and Dmitriy VidermanAvailable online: 15 April 2025More LessAlzheimer’s disease is a neurodegenerative illness that significantly diminishes patients’ quality of life. Chronic pain remains a major contributor to exacerbating patients’ well-being. This comprehensive review aims to explore the mechanisms underlying pain perception in AD as well as identify potential targets and future considerations for pain relief. AD causes structural and functional alterations in the affected brain, including shrinkage of gray matter volume and disruptions in brain network connectivity. Besides memory loss, pain is a significant yet often neglected symptom. Effective pain management in AD is challenged by the adverse effects of pain-relief medications and communication difficulties, especially as the disease progresses. Both non- and pharmacological interventions are currently used to alleviate pain in AD. Pharmacological options include opioids, nonsteroidal anti-inflammatory drugs, paracetamol/acetaminophen, and adjuvant pain relievers like antidepressants and antiepileptic medications, though these are not officially approved for pain relief in AD. Non-pharmacological strategies, such as exercise therapy, music therapy, Reiki, reflexology, and behavioral therapy, are preferred to prevent the side effects of medication. However, the use of these methods is limited due to a lack of high-quality research. The review highlights a crucial link between neurological changes in AD and the perception of pain, underscoring the need for customized pain management approaches for this population. Emphasizing non-pharmacological interventions could potentially improve pain management in AD patients, provided that further research supports their effectiveness.
-
-
-
Ab-initio Molecular Dynamics and Density Functional Theory Study of Amodiaquine Analogues as Potential Inhibitors of β-haematin Crystallization
Authors: Pélagie Manwal A. Mekoung, Kevin A. Lobb and Ibrahim N. MbouombouoAvailable online: 15 April 2025More LessIntroductionPrevention of the formation of β-haematin is the target of several existing antimalarials drugs, most notably chloroquine. This target is therefore attractive for the development of new molecules with antimalarial potential.
MethodsIn this study, we have used a combination of ab-initio molecular dynamics and density functional tight-binding to examine the possible interaction mechanisms between five amodiaquine analogues and four conformations of haematin. Reactivity and stability of these complexes were investigated using bond length (Fe-N and Fe-O), energies (HOMO-LUMO) and molecular dynamics.
ResultsResults revealed a good interaction between haem and the compounds, stable geometries of complexes.
ConclusionThe findings from this study are valuable because they can aid the design and understanding of new therapeutic molecules that could be used to treat drug-resistant malaria, a global threat of today.
-
-
-
lncRNAs and circRNAs: Emerging Players in Pediatric Medulloblastoma Pathology
Authors: Ozal Beylerli, Elmar Musaev, Tatiana Ilyasova and Albert SufianovAvailable online: 15 April 2025More LessMedulloblastomas (MBs) are the most common malignant brain tumors in children, marked by aggressive growth, molecular heterogeneity, and a high propensity for cerebrospinal dissemination. Despite advancements in conventional treatments - surgery, chemotherapy, and radiation therapy—substantial challenges persist, including debilitating long-term toxicities and emerging resistance to therapy. This review examines the multifaceted roles of non-coding RNAs (ncRNAs) - particularly long non- coding RNAs (lncRNAs) and circular RNAs (circRNAs) - in pediatric medulloblastoma pathogenesis, diagnosis, and therapeutic targeting. NcRNAs exert robust regulatory effects on gene expression by modulating signaling pathways, acting as miRNA sponges, and controlling the expression of oncogenic or tumor-suppressive genes. In this study, we focus on notable examples of lncRNAs (e.g., HOTAIR, TP73-AS1) and circRNAs (e.g., circ-SKA3, circ_63706) implicated in fundamental oncogenic processes, such as cell proliferation, apoptosis, metastasis, and stem cell maintenance. We also discuss their subgroup-specific roles, emphasizing high-risk groups, such as Sonic Hedgehog (SHH) and Group 3 medulloblastomas. In parallel, we explore the potential of ncRNAs to serve as diagnostic/prognostic biomarkers, given their tissue-specific expression, stability, and detectability in biological fluids like the Cerebrospinal Fluid (CSF). Finally, we review emerging therapeutic strategies, including antisense oligonucleotides, RNA sponges, and CRISPR-based editing, aimed at disrupting oncogenic ncRNA functions or reinforcing tumor-suppressive pathways. While these strategies hold promise, major hurdles include functional redundancy, optimizing in vivo delivery, and mitigating off-target effects. By detailing these challenges and outlining future research directions, this review underscores the revolutionary potential of ncRNA-focused diagnostics and therapies for managing pediatric medulloblastomas, offering new paths for improving survival outcomes and quality of life in affected children.
-
-
-
TGF-β: The Molecular Mechanisms of Atherosclerosis - insights into SMAD Pathways and Gene Therapy Prospects
Available online: 15 April 2025More LessAtherosclerosis, a leading cause of global morbidity and mortality, is characterized by plaque formation resulting from the accumulation of fibrous elements, lipids, and calcification in arteries, leading to complications such as ischemic stroke, coronary artery disease, and myocardial infarction. Traditional treatments primarily address symptoms but fail to target underlying causes, prompting exploration of novel approaches like gene therapy. The TGF-β family, encompassing TGF-β1, TGF-β2, and TGF-β3, plays a critical role in cellular processes including proliferation, apoptosis, and migration, with its dysregulation strongly linked to cardiovascular diseases. In atherosclerosis, TGF-β influences key factors, such as macrophage cholesterol regulation, plaque stability, and vascular smooth muscle cell function, while also contributing to endothelial dysfunction-an early stage in disease development. Personalized medicine has highlighted the importance of tailoring therapies to genetic profiles, particularly regarding TGF-β pathway variations such as SNPs in TGF-β1 and TGFBR2, which could inform more precise interventions. Emerging technologies like CRISPR-Cas9 and RNA-based therapies enable targeted modulation of these genetic factors, offering new avenues to mitigate disease progression. CRISPR-Cas9 allows direct editing of gene loci linked to atherosclerosis, potentially correcting mutations or modulating expression levels, while RNA-based therapies, including siRNAs and antisense oligonucleotides, provide additional precision tools for addressing dysregulated genes. This review focuses on identifying key genes and additional molecular players involved in or regulated by the TGF-β pathway that may serve as precise targets for gene therapy intervention in atherosclerosis and related cardiovascular diseases. By targeting genes involved in cholesterol metabolism, inflammation, and endothelial function, gene therapy offers a targeted strategy to ameliorate the genetic drivers of these conditions. In summary, modulation of TGF-β signaling by gene therapy has the potential to revolutionize the treatment of atherosclerosis and other cardiovascular diseases while shedding light on the underlying genetic mechanisms of these disorders.
-
-
-
Assessment of the Toxicity of Free and PLGA-Encapsulated Phospholipase A2 CB: An In Vitro Approach
Authors: Vanessa Barbosa Pinheiro Gonçalves, Gabriel Acácio de Moura, João Pedro Viana Rodrigues, Javier Martinez Latorre, Vicente Candela-Nogueira, Paula M. Soriano-Teruel, Alba Garcia Fernandez, Ramón Martínez Máñez, Marlos de Medeiros Chaves, Claudia do Ó Pessoa, Anderson Maciel de Lima, Andreimar Martins Soares and Roberto NicoleteAvailable online: 10 April 2025More LessBackgroundThe use of bioactive molecules isolated from rattlesnake venom and other poisons has been ongoing for years. Among these bioactive compounds present in snake venom, crotoxin (CTX) stands out as a β-heterodimeric neurotoxin isolated from the venom of Crotalus durissus terrificus. Research on this toxin for its applicability to tumor inhibition has advanced to clinical trials in recent years. Consequently, concerns regarding the use of a toxin as a treatment and the search for dose control that does not trigger extreme toxicity have emerged. Thus, it is necessary to investigate alternatives for controlled delivery and targeted toxin administration.
MethodsThis study aimed to evaluate the in vitro toxic action of CTX and its phospholipase A2 CB (PLA2CB) component, both free and encapsulated in polymeric nanoparticles. The inhibitory concentration value of 50% tumor growth (IC50) for CTX and PLA2CB was determined in an initial screening against six tumor cell lines. After identifying the lowest inhibitory concentration value of 0.8 μM observed in human melanoma (SK-MEL-103), this cell line was chosen.
ResultsThe cell death mechanism triggered by CTX and PLA2CB exhibited characteristics associated with the necrotic process. However, polymeric nanoparticles containing PLA2CB (NP-PLA2CB) demonstrated apoptosis-like cell death processes in flow cytometry. PLGA polymeric nanoparticles containing PLA2CB were synthesized using microfluidics, resulting in NP-PLA2CB with a diameter of 91 ± 2.9 nm and a zeta potential of -21.8 ± 3.2 mV. The encapsulation efficiency of PLA2CB was approximately 70% (protein content).
ConclusionIt was concluded that using the phospholipase component of the toxin in a polymeric-controlled delivery and targeted system may be an alternative solution to the issues in advancing this bioactive molecule in clinical-oncological studies. However, further studies are still being conducted for targeted treatment involving this nanotechnological approach.
-
-
-
COL4A1 Promotes Gastric Cancer Progression by Regulating Tumor Invasion, Tumor Microenvironment and Drug Sensitivity
Authors: Xiaojun Qian, Wei Jia, Yuntian Li, Jian Chen, Jinguo Zhang and Yubei SunAvailable online: 07 April 2025More LessBackgroundCollagen type IV alpha 1 chain (COL4A1), which has been proven to be a potential biomarker in Gastric Cancer (GC), but its role in tumors and the tumor microenvironment (TME) needs further explanation.
MethodsWe analysed the relationship between COL4A1 and clinical characteristics based on The Cancer Genome Atlas (TCGA) database and verified by tissue microarrays as well as GC cell lines using immunohistochemistry, Q-PCR, Western blot, cell proliferation assays, colony formation assays, cell invasion and migration assays. The immune infiltration and drug sensitivity information between high and low COL4A1 expression were analysed by R package and pRRophetic package. Finally, we established a nomogram based on COL4A1 expression using the bootstrap method.
ResultsCOL4A1 was overexpressed in gastric carcinoma compared with normal gastric tissue, indicating a poor prognosis of GC patients in the TCGA database which were also validated by GC tissue microarrays. GO, KEGG and hallmark enrichment analyses indicated that COL4A1 was mainly associated with the extracellular matrix than malignant proliferation. By siRNA transfection, we found that COL4A1 knockdown inhibited cell colony formation, invasion and migration but did not affect cell proliferation, similar to previous results. Immune infiltration and drug sensitivity analysis showed that COL4A1 was negatively correlated with antitumor immunity and positively correlated with multidrug resistance. By developing a nomogram model based on 8 risk factors, including COL4A1, patients with better clinical outcomes could be accurately distinguished.
ConclusionCOL4A1 is identified as a prognostic marker and potential therapeutic target in gastric cancer. Its overexpression correlates with poor prognosis, tumor invasion, and immunosuppression. A nomogram based on COL4A1 can predict patient outcomes. Future research should validate these findings and explore targeted therapies.
-
-
-
Development of Potential Pharmacological Targets to Normalize Gene Expression in Islets of Type 2 Diabetic Patients
Available online: 07 April 2025More LessBackgroundType 2 diabetes (T2D) is a disease of high prevalence that is expected to continue increasing despite the pharmacological treatments available; in most cases, it is difficult to control. Therefore, more research on experimental drugs is necessary to propose better treatments.
ObjectiveThis study aimed to identify the molecular alterations of pancreatic islets in type 2 diabetes through multi-omics data integration and possible pharmacological targets using bioinformatics methods.
MethodsIn this study, the OmicsNet tool was used to integrate the multi-omics data associated with T2D, and the protein-protein interaction was visualized. Then, gene ontology and KEGG pathways analyses were carried out. Using the DrugRep server, the hub genes obtained underwent a virtual screening with experimental drugs, and twelve experimental drugs were selected to execute the molecular docking by CB-Dock2. Finally, the interactions were displayed in BIOVIA software.
ResultsOur results showed that the main molecular alterations of pancreatic islets in T2D were enzyme binding, mitochondrial metabolism, transcription factors, etc. They were involved in glucose uptake, receptor insulin signaling, and secretion. The molecular docking showed that SRC, AKT1, CREBBP, and HSP90AA1 were therapeutic targets for DB02729, DB04877, DB07970, DB07789, and DB03373.
ConclusionWe identified some alterations in the pancreas of patients with T2D, ten hub genes, and five experimental drugs that could potentially correct gene expression abnormalities. However, further studies are required to validate these results.
-
-
-
Mapping the Multifaceted Roles of ZNF280A: Insights into Prognosis, Immunity, and Function Across Pan-Cancer
Authors: Xiong Qin, Boyuan Qiu, Kai Xiong, Chuangming Huang, Xi Xie, Dejie Lu and Bo ZhuAvailable online: 07 April 2025More LessIntroductionZNF280A, a pivotal member of the zinc finger protein family, is significantly involved in vital cellular functions including cell proliferation, programmed cell death, cellular invasion, metastasis, and resistance to therapeutic drugs across various malignancies. However, its comprehensive role in pan-cancer has not been thoroughly investigated.
MethodsThis research aims to elucidate the oncogenic and immunological functions of ZNF280A across different types of cancer. We conducted an extensive analysis of ZNF280A expression levels, prognostic significance, functional pathways, methylation status, and interactions with immune cells, while also examining immune infiltration patterns and responses to immunotherapy using diverse databases.
ResultsOur findings reveal that ZNF280A expression is significantly upregulated in numerous cancers, correlating with adverse patient prognosis. This association appears to be linked to its involvement in key cancer-related pathways, including the Ras signaling pathway, and its correlation with ZNF280A methylation levels, microsatellite instability (MSI), tumor mutational burden (TMB), and the dynamics of immune cells. Notably, ZNF280A seems to undermine anti-tumor immunity and the effectiveness of immunotherapeutic approaches by promoting the infiltration of immune cells and compromising the functionality of cytotoxic T lymphocytes.
ConclusionThese findings suggest that ZNF280A holds promise as a valuable indicator for forecasting patient outcomes and assessing the effectiveness of immunotherapy, thereby opening avenues for further exploration into targeted therapeutic approaches.
-