Skip to content
2000
image of Structural Model of the Oncostatin M (OSM)-OSMRβ-gp130 Ternary Complex Reveals Pathways of Allosteric Communication in OSM Signaling

Abstract

Introduction

Human oncostatin M (OSM) is a pleiotropic cytokine that regulates inflammatory and immune responses by binding to the heterodimer receptor complex OSM receptor beta (OSMRβ) and glycoprotein 130 (gp130). The distinct signaling pathways triggered by OSM are involved in multiple chronic inflammatory conditions, such as inflammatory bowel disease (IBD), rheumatoid arthritis (RA), and cancers, making the OSM-bound receptor complex a significant therapeutic target. Currently, no 3D structure of human OSM recognition complex is available, and thus, the molecular mechanisms underlying OSM signaling remain poorly understood.

Methods

In this study, for the first time, we proposed a full-length structural model of the human OSM-OSMRβ-gp130, generated using AlphaFold2 protein structure prediction and all-atom molecular dynamics (MD) simulation (~ 1.12 million atoms with explicit solvent), enabling investigation of the geometric and dynamic profiles of OSM-OSMRβ-gp130 structure at atomic-level.

Results

Analysis of the simulation trajectory demonstrated that the structural rearrangements of the heterodimer receptors (, OSMRβ and gp130) initiated by OSM binding mediated the signal transduction from the extracellular to the intracellular domains. In the representative conformation identified through clustering analysis, two main allosteric pathways contributed were found to mediate signal transduction from the allosteric region of OSM to the active sites of OSMRβ and gp130. Finally, two druggable binding sites located on OSM and gp130 were detected by dynamically monitoring pocket flexibility throughout the simulation. A comprehensive analysis of the OSM-OSMRβ-gp130 model was carried out with respect to OSM signaling.

Conclusion

The findings of this study not only enhance the mechanistic understanding of OSM binding to the heteromeric OSMRβ/gp130 but also identify druggable binding sites for structure-based design of small molecules to inhibit the intracellular signal transduction.

© 2025 The Author(s). Published by Bentham Science Publishers. This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673362742250508113436
2025-07-01
2025-07-20
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673362742250508113436/BMS-CMC-2024-HT161-6577-1.html?itemId=/content/journals/cmc/10.2174/0109298673362742250508113436&mimeType=html&fmt=ahah

References

  1. Adrian-Segarra J.M. Schindler N. Gajawada P. Lörchner H. Braun T. Pöling J. The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation. J. Biol. Chem. 2018 293 18 7017 7029 10.1074/jbc.RA118.001920 29511087
    [Google Scholar]
  2. Rose-John S. Interleukin-6 family cytokines. Cold Spring Harb. Perspect. Biol. 2018 10 2 a028415 10.1101/cshperspect.a028415 28620096
    [Google Scholar]
  3. Jones S.A. Jenkins B.J. Recent insights into targeting the IL-6 cytokine family in inflammatory diseases and cancer. Nat. Rev. Immunol. 2018 18 12 773 789 10.1038/s41577‑018‑0066‑7 30254251
    [Google Scholar]
  4. Chollangi S. Mather T. Rodgers K.K. Ash J.D. A unique loop structure in oncostatin M determines binding affinity toward oncostatin M receptor and leukemia inhibitory factor receptor. J. Biol. Chem. 2012 287 39 32848 32859 10.1074/jbc.M112.387324 22829597
    [Google Scholar]
  5. Han L. Yan J. Li T. Lin W. Huang Y. Shen P. Ba X. Huang Y. Qin K. Geng Y. Wang H. Zheng K. Liu Y. Wang Y. Chen Z. Tu S. Multifaceted oncostatin M: Novel roles and therapeutic potential of the oncostatin M signaling in rheumatoid arthritis. Front. Immunol. 2023 14 1258765 10.3389/fimmu.2023.1258765 38022540
    [Google Scholar]
  6. West N.R. Hegazy A.N. Owens B.M.J. Bullers S.J. Linggi B. Buonocore S. Coccia M. Görtz D. This S. Stockenhuber K. Pott J. Friedrich M. Ryzhakov G. Baribaud F. Brodmerkel C. Cieluch C. Rahman N. Müller-Newen G. Owens R.J. Kühl A.A. Maloy K.J. Plevy S.E. Keshav S. Travis S.P.L. Powrie F. Oncostatin M drives intestinal inflammation and predicts response to tumor necrosis factor–neutralizing therapy in patients with inflammatory bowel disease. Nat. Med. 2017 23 5 579 589 10.1038/nm.4307 28368383
    [Google Scholar]
  7. Masjedi A. Hajizadeh F. Dargani B.F. Beyzai B. Aksoun M. Hojjat-Farsangi M. Zekiy A. Jadidi-Niaragh F. Oncostatin M: A mysterious cytokine in cancers. Int. Immunopharmacol. 2021 90 107158 10.1016/j.intimp.2020.107158 33187910
    [Google Scholar]
  8. Changeux J.P. Christopoulos A. Allosteric modulation as a unifying mechanism for receptor function and regulation. Cell 2016 166 5 1084 1102 10.1016/j.cell.2016.08.015 27565340
    [Google Scholar]
  9. Bao Y. Xu Y. Jia F. Li M. Xu R. Zhang F. Guo J. Allosteric inhibition of myosin by phenamacril: A synergistic mechanism revealed by computational and experimental approaches. Pest Manag. Sci. 2023 79 12 4977 4989 10.1002/ps.7699 37540764
    [Google Scholar]
  10. Wang Q. Zhao W.C. Fu X.Q. Zheng Q.C. Exploring the allosteric mechanism of SRC homology-2 domain-containing protein tyrosine phosphatase 2 (SHP2) by molecular dynamics simulations. Front Chem. 2020 8 597495 10.3389/fchem.2020.597495 33330386
    [Google Scholar]
  11. Zhao H. Yu J. Weng G. Yu J. Wang E. Gao J. Liu H. Hou T. Wang Z. Kang Y. Structural view on the role of the TRD loop in regulating DNMT3A activity: A molecular dynamics study. Phys. Chem. Chem. Phys. 2022 24 26 15791 15801 10.1039/D2CP02031A 35758413
    [Google Scholar]
  12. Zheng J. Chen D. Xu J. Ding X. Wu Y. Shen H.C. Tan X. Small molecule approaches to treat autoimmune and inflammatory diseases (Part III): Targeting cytokines and cytokine receptor complexes. Bioorg. Med. Chem. Lett. 2021 48 128229 10.1016/j.bmcl.2021.128229 34214508
    [Google Scholar]
  13. Cao L. Coventry B. Goreshnik I. Huang B. Sheffler W. Park J.S. Jude K.M. Marković I. Kadam R.U. Verschueren K.H.G. Verstraete K. Walsh S.T.R. Bennett N. Phal A. Yang A. Kozodoy L. DeWitt M. Picton L. Miller L. Strauch E.M. DeBouver N.D. Pires A. Bera A.K. Halabiya S. Hammerson B. Yang W. Bernard S. Stewart L. Wilson I.A. Ruohola-Baker H. Schlessinger J. Lee S. Savvides S.N. Garcia K.C. Baker D. Design of protein-binding proteins from the target structure alone. Nature 2022 605 7910 551 560 10.1038/s41586‑022‑04654‑9 35332283
    [Google Scholar]
  14. Hayashi M. Rho M.C. Fukami A. Enomoto A. Nonaka S. Sekiguchi Y. Yanagisawa T. Yamashita A. Nogawa T. Kamano Y. Komiyama K. Biological activity of a novel nonpeptide antagonist to the interleukin-6 receptor 20S,21-epoxy-resibufogenin-3-formate. J. Pharmacol. Exp. Ther. 2002 303 1 104 109 10.1124/jpet.102.036137 12235239
    [Google Scholar]
  15. Viswanadhapalli S. Luo Y. Sareddy G.R. Santhamma B. Zhou M. Li M. Ma S. Sonavane R. Pratap U.P. Altwegg K.A. Li X. Chang A. Chávez-Riveros A. Dileep K.V. Zhang K.Y.J. Pan X. Murali R. Bajda M. Raj G.V. Brenner A.J. Manthati V. Rao M.K. Tekmal R.R. Nair H.B. Nickisch K.J. Vadlamudi R.K. EC359: A first-in-class small-molecule inhibitor for targeting oncogenic LIFR signaling in triple-negative breast cancer. Mol. Cancer Ther. 2019 18 8 1341 1354 10.1158/1535‑7163.MCT‑18‑1258 31142661
    [Google Scholar]
  16. Du Q. Qian Y. Xue W. Molecular simulation of oncostatin M and receptor (OSM–OSMR) interaction as a potential therapeutic target for inflammatory bowel disease. Front. Mol. Biosci. 2020 7 29 10.3389/fmolb.2020.00029 32195265
    [Google Scholar]
  17. Du Q. Qian Y. Xue W. Cross-reactivity of two human IL-6 family cytokines OSM and LIF explored by protein-protein docking and molecular dynamics simulation. Biochim. Biophys. Acta. Gen. Subj. 2021 1865 7 129907 10.1016/j.bbagen.2021.129907
    [Google Scholar]
  18. Du Q. Tu G. Qian Y. Yang J. Yao X. Xue W. Unbiased molecular dynamics simulation of a first-in-class small molecule inhibitor binds to oncostatin M. Comput. Biol. Med. 2023 155 106709 10.1016/j.compbiomed.2023.106709 36854228
    [Google Scholar]
  19. Xu B. Chen Y. Xue W. Computational protein design - where it goes? Curr. Med. Chem. 2023 31 20 2841 2854 10.2174/0929867330666230602143700
    [Google Scholar]
  20. Thanos C.D. DeLano W.L. Wells J.A. Hot-spot mimicry of a cytokine receptor by a small molecule. Proc. Natl. Acad. Sci. USA 2006 103 42 15422 15427 10.1073/pnas.0607058103 17032757
    [Google Scholar]
  21. Deller M.C. Hudson K.R. Ikemizu S. Bravo J. Jones E.Y. Heath J.K. Crystal structure and functional dissection of the cytostatic cytokine oncostatin M. Structure 2000 8 8 863 874 10.1016/s0969‑2126(00)00176‑3
    [Google Scholar]
  22. Liongue C Sertori R. Ward A.C. Evolution of cytokine receptor signaling. J. Immunol. 2016 197 1 11 18 10.4049/jimmunol.1600372
    [Google Scholar]
  23. Tunyasuvunakool K. Adler J. Wu Z. Green T. Zielinski M. Žídek A. Bridgland A. Cowie A. Meyer C. Laydon A. Velankar S. Kleywegt G.J. Bateman A. Evans R. Pritzel A. Figurnov M. Ronneberger O. Bates R. Kohl S.A.A. Potapenko A. Ballard A.J. Romera-Paredes B. Nikolov S. Jain R. Clancy E. Reiman D. Petersen S. Senior A.W. Kavukcuoglu K. Birney E. Kohli P. Jumper J. Hassabis D. Highly accurate protein structure prediction for the human proteome. Nature 2021 596 7873 590 596 10.1038/s41586‑021‑03828‑1 34293799
    [Google Scholar]
  24. Huyton T. Zhang J.G. Luo C.S. Lou M.Z. Hilton D.J. Nicola N.A. Garrett T.P.J. An unusual cytokine:Ig- domain interaction revealed in the crystal structure of leukemia inhibitory factor (LIF) in complex with the LIF receptor. Proc. Natl. Acad. Sci. USA 2007 104 31 12737 12742 10.1073/pnas.0705577104 17652170
    [Google Scholar]
  25. Boulanger M.J. Bankovich A.J. Kortemme T. Baker D. Garcia K.C. Convergent mechanisms for recognition of divergent cytokines by the shared signaling receptor gp130. Mol. Cell 2003 12 3 577 589 10.1016/S1097‑2765(03)00365‑4 14527405
    [Google Scholar]
  26. Varadi M. Anyango S. Deshpande M. Nair S. Natassia C. Yordanova G. Yuan D. Stroe O. Wood G. Laydon A. Žídek A. Green T. Tunyasuvunakool K. Petersen S. Jumper J. Clancy E. Green R. Vora A. Lutfi M. Figurnov M. Cowie A. Hobbs N. Kohli P. Kleywegt G. Birney E. Hassabis D. Velankar S. AlphaFold protein structure database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Res. 2022 50 D1 D439 D444 10.1093/nar/gkab1061 34791371
    [Google Scholar]
  27. Soares T.A. Cournia Z. Naidoo K. Amaro R. Wahab H. Merz K.M. Jr. Guidelines for reporting molecular dynamics simulations in jcim publications. J. Chem. Inf. Model. 2023 63 11 3227 3229 10.1021/acs.jcim.3c00599 37191169
    [Google Scholar]
  28. Burley S.K. Bhikadiya C. Bi C. Bittrich S. Chao H. Chen L. Craig P.A. Crichlow G.V. Dalenberg K. Duarte J.M. Dutta S. Fayazi M. Feng Z. Flatt J.W. Ganesan S. Ghosh S. Goodsell D.S. Green R.K. Guranovic V. Henry J. Hudson B.P. Khokhriakov I. Lawson C.L. Liang Y. Lowe R. Peisach E. Persikova I. Piehl D.W. Rose Y. Sali A. Segura J. Sekharan M. Shao C. Vallat B. Voigt M. Webb B. Westbrook J.D. Whetstone S. Young J.Y. Zalevsky A. Zardecki C. RCSB Protein Data Bank (RCSB.org): Delivery of experimentally-determined PDB structures alongside one million computed structure models of proteins from artificial intelligence/machine learning. Nucleic Acids Res. 2023 51 D1 D488 D508 10.1093/nar/gkac1077 36420884
    [Google Scholar]
  29. Lill M.A. Danielson M.L. Computer-aided drug design platform using PyMOL. J. Comput. Aided Mol. Des. 2011 25 1 13 19 10.1007/s10822‑010‑9395‑8 21053052
    [Google Scholar]
  30. Lomize M.A. Pogozheva I.D. Joo H. Mosberg H.I. Lomize A.L. OPM database and PPM web server: Resources for positioning of proteins in membranes. Nucleic Acids Res. 2012 40 D1 D370 D376 10.1093/nar/gkr703 21890895
    [Google Scholar]
  31. Wu E.L. Cheng X. Jo S. Rui H. Song K.C. Dávila-Contreras E.M. Qi Y. Lee J. Monje-Galvan V. Venable R.M. Klauda J.B. Im W. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 2014 35 27 1997 2004 10.1002/jcc.23702 25130509
    [Google Scholar]
  32. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  33. Dickson C.J. Madej B.D. Skjevik Å.A. Betz R.M. Teigen K. Gould I.R. Walker R.C. Lipid14: The amber lipid force field. J. Chem. Theory Comput. 2014 10 2 865 879 10.1021/ct4010307 24803855
    [Google Scholar]
  34. Lee J. Hitzenberger M. Rieger M. Kern N.R. Zacharias M. Im W. CHARMM-GUI supports the amber force fields. J. Chem. Phys. 2020 153 3 035103 10.1063/5.0012280 32716185
    [Google Scholar]
  35. Essmann U. Perera L. Berkowitz M.L. Darden T. Lee H. Pedersen L.G. A smooth particle mesh ewald method. J. Chem. Phys. 1995 103 19 8577 8593 10.1063/1.470117
    [Google Scholar]
  36. Springborg M. Kirtman B. Efficient vector potential method for calculating electronic and nuclear response of infinite periodic systems to finite electric fields. J. Chem. Phys. 2007 126 10 104107 10.1063/1.2711202 17362061
    [Google Scholar]
  37. Roe D.R. Cheatham T.E. III PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. J. Chem. Theory Comput. 2013 9 7 3084 3095 10.1021/ct400341p 26583988
    [Google Scholar]
  38. Gohlke H. Kiel C. Case D.A. Insights into protein-protein binding by binding free energy calculation and free energy decomposition for the Ras-Raf and Ras-RalGDS complexes. J. Mol. Biol. 2003 330 4 891 913 10.1016/S0022‑2836(03)00610‑7 12850155
    [Google Scholar]
  39. Wang E. Sun H. Wang J. Wang Z. Liu H. Zhang J.Z.H. Hou T. End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chem. Rev. 2019 119 16 9478 9508 10.1021/acs.chemrev.9b00055 31244000
    [Google Scholar]
  40. Onufriev A. Bashford D. Case D.A. Exploring protein native states and large-scale conformational changes with a modified generalized born model. Proteins 2004 55 2 383 394 10.1002/prot.20033 15048829
    [Google Scholar]
  41. Wang J. Jain A. McDonald L.R. Gambogi C. Lee A.L. Dokholyan N.V. Mapping allosteric communications within individual proteins. Nat. Commun. 2020 11 1 3862 10.1038/s41467‑020‑17618‑2 32737291
    [Google Scholar]
  42. Schmidtke P. Guilloux L.V. Maupetit J. Tufféry P. fpocket: Online tools for protein ensemble pocket detection and tracking. Nucleic Acids Res. 2010 38 Suppl. 2 W582 W589 10.1093/nar/gkq383 20478829
    [Google Scholar]
  43. Wagner J.R. Sørensen J. Hensley N. Wong C. Zhu C. Perison T. Amaro R.E. POVME 3.0: Software for mapping binding pocket flexibility. J. Chem. Theory Comput. 2017 13 9 4584 4592 10.1021/acs.jctc.7b00500 28800393
    [Google Scholar]
  44. Humphrey W. Dalke A. Schulten K. VMD: visual molecular dynamics. J. Mol. Graph. 1996 14 1 33 38 10.1016/0263‑7855(96)00018‑5
    [Google Scholar]
  45. Jin Y. Fyfe P.K. Gardner S. Wilmes S. Bubeck D. Moraga I. Structural insights into the assembly and activation of the IL -27 signaling complex. EMBO Rep. 2022 23 10 e55450 10.15252/embr.202255450 35920255
    [Google Scholar]
  46. Boulanger M.J. Chow D. Brevnova E.E. Garcia K.C. Hexameric structure and assembly of the interleukin-6/IL-6 alpha-receptor/gp130 complex. Science 2003 300 5628 2101 2104 10.1126/science.1083901 12829785
    [Google Scholar]
  47. Zhou Y. Stevis P.E. Cao J. Saotome K. Wu J. Zaretsky G.A. Haxhinasto S. Yancopoulos G.D. Murphy A.J. Sleeman M.W. Olson W.C. Franklin M.C. Structural insights into the assembly of gp130 family cytokine signaling complexes. Sci. Adv. 2023 9 11 eade4395 10.1126/sciadv.ade4395 36930708
    [Google Scholar]
  48. Baek M. Baker D. Deep learning and protein structure modeling. Nat. Methods 2022 19 1 13 14 10.1038/s41592‑021‑01360‑8 35017724
    [Google Scholar]
  49. Bravo J. Heath J.K. New embo members’ review: Receptor recognition by gp130 cytokines. EMBO J. 2000 19 11 2399 2411 10.1093/emboj/19.11.2399 10835339
    [Google Scholar]
  50. Wu N. Barahona M. Yaliraki S.N. Allosteric communication and signal transduction in proteins. Curr. Opin. Struct. Biol. 2024 84 102737 10.1016/j.sbi.2023.102737 38171189
    [Google Scholar]
  51. Wolf C.L. Pruett C. Lighter D. Jorcyk C.L. The clinical relevance of OSM in inflammatory diseases: A comprehensive review. Front. Immunol. 2023 14 1239732 10.3389/fimmu.2023.1239732 37841259
    [Google Scholar]
  52. Luo D. Zhang Y. Li Y. Liu Z. Wu H. Xue W. Structural models of human norepinephrine transporter ensemble reveal the allosteric sites and ligand-binding mechanism. J. Phys. Chem. B 2024 128 36 8651 8661 10.1021/acs.jpcb.4c03731 39207306
    [Google Scholar]
  53. Mass O.A. Tuccinardi J. Woodbury L. Wolf C.L. Grantham B. Holdaway K. Pu X. King M.D. Warner D.L. Jorcyk C.L. Warner L.R. Bioactive recombinant human oncostatin M for NMR-based screening in drug discovery. Sci. Rep. 2021 11 1 16174 10.1038/s41598‑021‑95424‑6 34376712
    [Google Scholar]
  54. Deng S. Zhang H. Gou R. Luo D. Liu Z. Zhu F. Xue W. Structure-based discovery of a novel allosteric inhibitor against human dopamine transporter. J. Chem. Inf. Model. 2023 63 14 4458 4467 10.1021/acs.jcim.3c00477 37410882
    [Google Scholar]
  55. Du H. Jiang D. Zhang O. Wu Z. Gao J. Zhang X. Wang X. Deng Y. Kang Y. Li D. Pan P. Hsieh C.Y. Hou T. A flexible data-free framework for structure-based de novo drug design with reinforcement learning. Chem. Sci. 2023 14 43 12166 12181 10.1039/D3SC04091G 37969589
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673362742250508113436
Loading
/content/journals/cmc/10.2174/0109298673362742250508113436
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test