
Full text loading...
Alzheimer's disease (AD) is the most common cause of dementia worldwide, with a steadily increasing prevalence. However, the mechanisms underlying AD remain unclear, and current treatments have only limited efficacy.
This study aimed to identify potential biomarker genes for AD and to explore the underlying mechanisms by integrating microarray analysis, Mendelian randomization (MR), and experimental validation.
AD-related microarray datasets were downloaded from the Gene Expression Omnibus database. Differential expression analysis identified differentially expressed genes (DEGs) between AD and control samples. Summary-level data from genome-wide association studies on AD were integrated with expression quantitative trait loci data to identify genes with potential causal relationships with AD using MR. The intersections between DEGs and causal genes were identified as hub genes. Functional analysis was performed to explore underlying mechanisms. Quantitative real-time PCR was applied to validate the expression of hub genes in clinical samples.
Differential expression analysis identified 312 DEGs, whereas MR identified 202 genes with causal effects on AD. The intersection of these two sets identified four hub genes: FCRLB, MT2A, PFKFB3, and SRGN. Functional analysis indicated significant associations between AD and immune-related pathways. Correlation analysis revealed significant connections between hub genes and immune cells in AD. The expression of MT2A, PFKFB3, and SRGN was significantly upregulated, whereas FCRLB was downregulated in clinical AD samples compared with controls.
The integration of microarray analysis, MR, and experimental validation identified and validated four potential biomarker genes with causal effects on AD, namely FCRLB, MT2A, PFKFB3, and SRGN. Functional analysis indicated a pivotal role of the immune microenvironment in AD. These findings offer insights into the molecular mechanisms of AD and have implications for improving its diagnosis and treatment strategies.
Article metrics loading...
Full text loading...
References
Data & Media loading...
Supplements