Skip to content
2000
image of Investigating the Biomarkers for Alzheimer's Disease: Insights from Microarray Analysis, Mendelian Randomization, and Experimental Validation

Abstract

Background

Alzheimer's disease (AD) is the most common cause of dementia worldwide, with a steadily increasing prevalence. However, the mechanisms underlying AD remain unclear, and current treatments have only limited efficacy.

Objective

This study aimed to identify potential biomarker genes for AD and to explore the underlying mechanisms by integrating microarray analysis, Mendelian randomization (MR), and experimental validation.

Methods

AD-related microarray datasets were downloaded from the Gene Expression Omnibus database. Differential expression analysis identified differentially expressed genes (DEGs) between AD and control samples. Summary-level data from genome-wide association studies on AD were integrated with expression quantitative trait loci data to identify genes with potential causal relationships with AD using MR. The intersections between DEGs and causal genes were identified as hub genes. Functional analysis was performed to explore underlying mechanisms. Quantitative real-time PCR was applied to validate the expression of hub genes in clinical samples.

Results

Differential expression analysis identified 312 DEGs, whereas MR identified 202 genes with causal effects on AD. The intersection of these two sets identified four hub genes: , , , and . Functional analysis indicated significant associations between AD and immune-related pathways. Correlation analysis revealed significant connections between hub genes and immune cells in AD. The expression of , , and was significantly upregulated, whereas was downregulated in clinical AD samples compared with controls.

Conclusion

The integration of microarray analysis, MR, and experimental validation identified and validated four potential biomarker genes with causal effects on AD, namely , , , and . Functional analysis indicated a pivotal role of the immune microenvironment in AD. These findings offer insights into the molecular mechanisms of AD and have implications for improving its diagnosis and treatment strategies.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673366495250527055016
2025-06-23
2025-09-12
Loading full text...

Full text loading...

References

  1. Scheltens P. De Strooper B. Kivipelto M. Holstege H. Chételat G. Teunissen C.E. Cummings J. van der Flier W.M. Alzheimer’s disease. Lancet 2021 397 10284 1577 1590 10.1016/S0140‑6736(20)32205‑4 33667416
    [Google Scholar]
  2. Lane C.A. Hardy J. Schott J.M. Alzheimer’s disease. Eur. J. Neurol. 2018 25 1 59 70 10.1111/ene.13439 28872215
    [Google Scholar]
  3. Trejo-Lopez J.A. Yachnis A.T. Prokop S. Neuropathology of Alzheimer’s Disease. 2022 19 1 173 185
    [Google Scholar]
  4. Zhang J Zhang Y Wang J. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024 9 1 211 10.1038/s41392‑024‑01911‑3 39174535
    [Google Scholar]
  5. Breijyeh Z Karaman R. Comprehensive review on Alzheimer's disease: Causes and treatment. Molecules 2020 25 24 5789 10.3390/molecules25245789 33302541
    [Google Scholar]
  6. Ogbodo J.O. Agbo C.P. Njoku U.O. Ogugofor M.O. Egba S.I. Ihim S.A. Echezona A.C. Brendan K.C. Upaganlawar A.B. Upasani C.D. Alzheimer’s disease: Pathogenesis and therapeutic interventions. Curr. Aging Sci. 2022 15 1 2 25 10.2174/1874609814666210302085232 33653258
    [Google Scholar]
  7. Long J.M. Holtzman D.M. Alzheimer disease: An update on pathobiology and treatment strategies. Cell 2019 179 2 312 339 10.1016/j.cell.2019.09.001 31564456
    [Google Scholar]
  8. Khan S. Barve K.H. Kumar M.S. Recent advancements in pathogenesis, diagnostics and treatment of Alzheimer’s disease. Curr. Neuropharmacol. 2020 18 11 1106 1125 10.2174/1570159X18666200528142429 32484110
    [Google Scholar]
  9. Dubois B. Hampel H. Feldman H.H. Scheltens P. Aisen P. Andrieu S. Bakardjian H. Benali H. Bertram L. Blennow K. Broich K. Cavedo E. Crutch S. Dartigues J.F. Duyckaerts C. Epelbaum S. Frisoni G.B. Gauthier S. Genthon R. Gouw A.A. Habert M.O. Holtzman D.M. Kivipelto M. Lista S. Molinuevo J.L. O’Bryant S.E. Rabinovici G.D. Rowe C. Salloway S. Schneider L.S. Sperling R. Teichmann M. Carrillo M.C. Cummings J. Jack C.R. Jr Preclinical Alzheimer’s disease: Definition, natural history, and diagnostic criteria. Alzheimers Dement. 2016 12 3 292 323 10.1016/j.jalz.2016.02.002 27012484
    [Google Scholar]
  10. Bolón-Canedo V. Alonso-Betanzos A. López-de-Ullibarri I. Cao R. Challenges and future trends for microarray analysis. Methods Mol. Biol. 2019 1986 283 293 10.1007/978‑1‑4939‑9442‑7_14 31115895
    [Google Scholar]
  11. Emdin C.A. Khera A.V. Kathiresan S. Mendelian Randomization. JAMA 2017 318 19 1925 1926 10.1001/jama.2017.17219 29164242
    [Google Scholar]
  12. de Leeuw C. Savage J. Bucur I.G. Heskes T. Posthuma D. Understanding the assumptions underlying Mendelian randomization. Eur. J. Hum. Genet. 2022 30 6 653 660 10.1038/s41431‑022‑01038‑5 35082398
    [Google Scholar]
  13. Ding S. Zhang Y. Tang Y. Zhang Y. Liu M. Combining gene expression microarrays and Mendelian randomization: Exploring key immune-related genes in multiple sclerosis. Front. Neurol. 2024 15 1437778 10.3389/fneur.2024.1437778 39664749
    [Google Scholar]
  14. Cheng F. Li M. Hua H. Zhang R. Zhu Y. Zhu Y. Zhang Y. Tong P. Identification of biomarkers and potential drug targets in osteoarthritis based on bioinformatics analysis and mendelian randomization. Front. Pharmacol. 2024 15 1439289 10.3389/fphar.2024.1439289 39268462
    [Google Scholar]
  15. Zhu Y. Liu J. Wang B. Identification of biomarkers in multiple myeloma: A comprehensive study combining microarray analysis and Mendelian randomization. J. Cell. Mol. Med. 2024 28 12 e18504 10.1111/jcmm.18504 38923838
    [Google Scholar]
  16. Hu W. Xu Y. Transcriptomics in idiopathic pulmonary fibrosis unveiled: A new perspective from differentially expressed genes to therapeutic targets. Front. Immunol. 2024 15 1375171 10.3389/fimmu.2024.1375171 38566986
    [Google Scholar]
  17. Fan C. Gao Y. Sun Y. Integrated multiple-microarray analysis and mendelian randomization to identify novel targets involved in diabetic nephropathy. Front. Endocrinol. 2023 14 1191768 10.3389/fendo.2023.1191768 37492198
    [Google Scholar]
  18. Võsa U. Claringbould A. Westra H.J. Bonder M.J. Deelen P. Zeng B. Kirsten H. Saha A. Kreuzhuber R. Yazar S. Brugge H. Oelen R. de Vries D.H. van der Wijst M.G.P. Kasela S. Pervjakova N. Alves I. Favé M.J. Agbessi M. Christiansen M.W. Jansen R. Seppälä I. Tong L. Teumer A. Schramm K. Hemani G. Verlouw J. Yaghootkar H. Sönmez Flitman R. Brown A. Kukushkina V. Kalnapenkis A. Rüeger S. Porcu E. Kronberg J. Kettunen J. Lee B. Zhang F. Qi T. Hernandez J.A. Arindrarto W. Beutner F. ’t Hoen P.A.C. van Meurs J. van Dongen J. van Iterson M. Swertz M.A. Jan Bonder M. Dmitrieva J. Elansary M. Fairfax B.P. Georges M. Heijmans B.T. Hewitt A.W. Kähönen M. Kim Y. Knight J.C. Kovacs P. Krohn K. Li S. Loeffler M. Marigorta U.M. Mei H. Momozawa Y. Müller-Nurasyid M. Nauck M. Nivard M.G. Penninx B.W.J.H. Pritchard J.K. Raitakari O.T. Rotzschke O. Slagboom E.P. Stehouwer C.D.A. Stumvoll M. Sullivan P. ’t Hoen P.A.C. Thiery J. Tönjes A. van Dongen J. van Iterson M. Veldink J.H. Völker U. Warmerdam R. Wijmenga C. Swertz M. Andiappan A. Montgomery G.W. Ripatti S. Perola M. Kutalik Z. Dermitzakis E. Bergmann S. Frayling T. van Meurs J. Prokisch H. Ahsan H. Pierce B.L. Lehtimäki T. Boomsma D.I. Psaty B.M. Gharib S.A. Awadalla P. Milani L. Ouwehand W.H. Downes K. Stegle O. Battle A. Visscher P.M. Yang J. Scholz M. Powell J. Gibson G. Esko T. Franke L. BIOS Consortium i2QTL Consortium Large-scale cis- and trans-eQTL analyses identify thousands of genetic loci and polygenic scores that regulate blood gene expression. Nat. Genet. 2021 53 9 1300 1310 10.1038/s41588‑021‑00913‑z 34475573
    [Google Scholar]
  19. Burgess S. Butterworth A. Thompson S.G. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet. Epidemiol. 2013 37 7 658 665 10.1002/gepi.21758 24114802
    [Google Scholar]
  20. Zhu Y. Liu J. Wang B. Integrated approach for biomarker discovery and mechanistic insights into the co-pathogenesis of type 2 diabetes mellitus and non-hodgkin lymphoma. Diabetes Metab. Syndr. Obes. 2025 18 267 282 10.2147/DMSO.S503449 39906693
    [Google Scholar]
  21. Jack C.R. Jr Bennett D.A. Blennow K. Carrillo M.C. Dunn B. Haeberlein S.B. Holtzman D.M. Jagust W. Jessen F. Karlawish J. Liu E. Molinuevo J.L. Montine T. Phelps C. Rankin K.P. Rowe C.C. Scheltens P. Siemers E. Snyder H.M. Sperling R. Elliott C. Masliah E. Ryan L. Silverberg N. Contributors NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018 14 4 535 562 10.1016/j.jalz.2018.02.018 29653606
    [Google Scholar]
  22. Passeri E Elkhoury K. Alzheimer's disease: Treatment strategies and their limitations. Int. J. Mol. Sci. 2022 23 22 13954 10.3390/ijms232213954 36430432
    [Google Scholar]
  23. Zhang Q. Li J. Weng L. Identification and validation of aging-related genes in Alzheimer’s disease. Front. Neurosci. 2022 16 905722 10.3389/fnins.2022.905722 35615282
    [Google Scholar]
  24. Wang B. Fu C. Wei Y. Xu B. Yang R. Li C. Qiu M. Yin Y. Qin D. Ferroptosis-related biomarkers for Alzheimer’s disease: Identification by bioinformatic analysis in hippocampus. Front. Cell. Neurosci. 2022 16 1023947 10.3389/fncel.2022.1023947 36467613
    [Google Scholar]
  25. Zhao H. Wang J. Li Z. Wang S. Yu G. Wang L. Identification ferroptosis-related hub genes and diagnostic model in Alzheimer’s disease. Front. Mol. Neurosci. 2023 16 1280639 10.3389/fnmol.2023.1280639 37965040
    [Google Scholar]
  26. Wang Y. Chen G. Shao W. Identification of ferroptosis-related genes in Alzheimer’s disease based on bioinformatic analysis. Front. Neurosci. 2022 16 823741 10.3389/fnins.2022.823741 35197821
    [Google Scholar]
  27. Pei Y. Chen S. Zhou F. Xie T. Cao H. Construction and evaluation of Alzheimer’s disease diagnostic prediction model based on genes involved in mitophagy. Front. Aging Neurosci. 2023 15 1146660 10.3389/fnagi.2023.1146660 37032823
    [Google Scholar]
  28. Richmond R.C. Davey Smith G. Mendelian randomization: Concepts and scope. Cold Spring Harb. Perspect. Med. 2022 12 1 a040501 10.1101/cshperspect.a040501 34426474
    [Google Scholar]
  29. Zhang H. Pros and cons of Mendelian randomization. Fertil. Steril. 2023 119 6 913 916 10.1016/j.fertnstert.2023.03.029 36990264
    [Google Scholar]
  30. Koral G. Ulusoy C. Cossins J. Lazaridis K. Türkoğlu R. Dong Y.Y. Tüzün E. Yılmaz V. Silencing of FCRLB by shRNA ameliorates MuSK-induced EAMG in mice. J. Neuroimmunol. 2023 383 578195 10.1016/j.jneuroim.2023.578195 37660538
    [Google Scholar]
  31. Shabani M. Bayat A.A. Jeddi-Tehrani M. Rabbani H. Hojjat-Farsangi M. Ulivieri C. Amirghofran Z. Baldari C.T. Shokri F. Ligation of human Fc receptor like-2 by monoclonal antibodies down-regulates B-cell receptor- mediated signalling. Immunology 2014 143 3 341 353 10.1111/imm.12311 24797767
    [Google Scholar]
  32. Fernandez-Vizarra P. Lopez-Franco O. Mallavia B. Higuera-Matas A. Lopez-Parra V. Ortiz-Muñoz G. Ambrosio E. Egido J. Almeida O.F.X. Gomez-Guerrero C. Immunoglobulin G Fc receptor deficiency prevents Alzheimer-like pathology and cognitive impairment in mice. Brain 2012 135 9 2826 2837 10.1093/brain/aws195 22961553
    [Google Scholar]
  33. Ling X.B. Wei H.W. Wang J. Kong Y.Q. Wu Y.Y. Guo J.L. Li T.F. Li J.K. Mammalian Metallothionein-2A and oxidative stress. Int. J. Mol. Sci. 2016 17 9 1483 10.3390/ijms17091483 27608012
    [Google Scholar]
  34. Ma H. Su L. Yue H. Yin X. Zhao J. Zhang S. Kung H. Xu Z. Miao J. HMBOX1 interacts with MT2A to regulate autophagy and apoptosis in vascular endothelial cells. Sci. Rep. 2015 5 1 15121 10.1038/srep15121 26456220
    [Google Scholar]
  35. Waller R Murphy M Garwood CJ Jennings L Heath PR Chambers A. Metallothionein-I/II expression associates with the astrocyte DNA damage response and not Alzheimer-type pathology in the aging brain. Glia 2018 66 11 2316 2323 10.1002/glia.23465 30098078
    [Google Scholar]
  36. Zeng H. Pan T. Zhan M. Hailiwu R. Liu B. Yang H. Li P. Suppression of PFKFB3-driven glycolysis restrains endothelial-to-mesenchymal transition and fibrotic response. Signal Transduct. Target. Ther. 2022 7 1 303 10.1038/s41392‑022‑01097‑6 36045132
    [Google Scholar]
  37. Ahmad I. Singh R. Pal S. Prajapati S. Sachan N. Laiq Y. Husain H. Exploring the role of glycolytic enzymes PFKFB3 and GAPDH in the modulation of Aβ and neurodegeneration and their potential of therapeutic targets in Alzheimer’s disease. Appl. Biochem. Biotechnol. 2023 195 7 4673 4688 10.1007/s12010‑023‑04340‑0 36692648
    [Google Scholar]
  38. Korpetinou A. Skandalis S.S. Labropoulou V.T. Smirlaki G. Noulas A. Karamanos N.K. Theocharis A.D. Serglycin: At the crossroad of inflammation and malignancy. Front. Oncol. 2014 3 327 10.3389/fonc.2013.00327 24455486
    [Google Scholar]
  39. Scully OJ Chua PJ Harve KS Bay BH Yip GW Serglycin in health and diseases. Anat. Rec. 2012 295 9 1415 1420 10.1002/ar.22536 22807344
    [Google Scholar]
  40. Lorente-Gea L. García B. Martín C. Ordiales H. García-Suárez O. Piña-Batista K.M. Merayo-Lloves J. Quirós L.M. Fernández-Vega I. Heparan sulfate proteoglycans undergo differential expression alterations in Alzheimer disease brains. J. Neuropathol. Exp. Neurol. 2020 79 5 474 483 10.1093/jnen/nlaa016 32232475
    [Google Scholar]
  41. Bettcher BM Tansey MG Dorothée G. Peripheral and central immune system crosstalk in Alzheimer disease – A research prospectus. Nat. Rev. Neurol 2021 17 11 689 701 10.1038/s41582‑021‑00549‑x 34522039
    [Google Scholar]
  42. Jevtic S. Sengar A.S. Salter M.W. McLaurin J. The role of the immune system in Alzheimer disease: Etiology and treatment. Ageing Res. Rev. 2017 40 84 94 10.1016/j.arr.2017.08.005 28941639
    [Google Scholar]
  43. Chen X. Holtzman D.M. Emerging roles of innate and adaptive immunity in Alzheimer’s disease. Immunity 2022 55 12 2236 2254 10.1016/j.immuni.2022.10.016 36351425
    [Google Scholar]
  44. Heneka M.T. Carson M.J. Khoury J.E. Landreth G.E. Brosseron F. Feinstein D.L. Jacobs A.H. Wyss-Coray T. Vitorica J. Ransohoff R.M. Herrup K. Frautschy S.A. Finsen B. Brown G.C. Verkhratsky A. Yamanaka K. Koistinaho J. Latz E. Halle A. Petzold G.C. Town T. Morgan D. Shinohara M.L. Perry V.H. Holmes C. Bazan N.G. Brooks D.J. Hunot S. Joseph B. Deigendesch N. Garaschuk O. Boddeke E. Dinarello C.A. Breitner J.C. Cole G.M. Golenbock D.T. Kummer M.P. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015 14 4 388 405 10.1016/S1474‑4422(15)70016‑5 25792098
    [Google Scholar]
  45. Chen X Firulyova M Manis M Herz J. Microglia-mediated T cell infiltration drives neurodegeneration in tauopathy. Nature 2023 615 7953 668 677 10.1038/s41586‑023‑05788‑0 36890231
    [Google Scholar]
  46. Dai L. Shen Y. Insights into T-cell dysfunction in Alzheimer’s disease. Aging Cell 2021 20 12 e13511 10.1111/acel.13511 34725916
    [Google Scholar]
  47. Sabatino JJ Jr Pröbstel AK. B cells in autoimmune and neurodegenerative central nervous system diseases. Nat. Rev. Neurosci 2019 20 12 728 745 10.1038/s41583‑019‑0233‑2 31712781
    [Google Scholar]
  48. Zenaro E. Pietronigro E. Bianca V.D. Piacentino G. Marongiu L. Budui S. Turano E. Rossi B. Angiari S. Dusi S. Montresor A. Carlucci T. Nanì S. Tosadori G. Calciano L. Catalucci D. Berton G. Bonetti B. Constantin G. Neutrophils promote Alzheimer’s disease– like pathology and cognitive decline via LFA-1 integrin. Nat. Med. 2015 21 8 880 886 10.1038/nm.3913 26214837
    [Google Scholar]
  49. Solana C. Tarazona R. Immunosenescence of natural killer cells, inflammation, and Alzheimer’s disease. Int. J. Alzheimers Dis. 2018 2018 3128758 10.1155/2018/3128758 30515321
    [Google Scholar]
  50. Davis R.S. FCRL regulation in innate-like B cells. Ann. N. Y. Acad. Sci. 2015 1362 1 110 116 10.1111/nyas.12771 25964091
    [Google Scholar]
  51. Si M. Lang J. The roles of metallothioneins in carcinogenesis. J. Hematol. Oncol. 2018 11 1 107 10.1186/s13045‑018‑0645‑x 30139373
    [Google Scholar]
  52. Liu Y Yan H Gu H Zhang E He J Cao W. Myeloma-derived IL-32γ induced PD-L1 expression in macrophages facilitates immune escape via the PFKFB3- JAK1 axis. Oncoimmunology 2022 11 1 2057837 10.1080/2162402X.2022.2057837 35371618
    [Google Scholar]
  53. Qian Y. Yang L. Chen J. Zhou C. Zong N. Geng Y. Xia S. Yang H. Bao X. Chen Y. Xu Y. SRGN amplifies microglia-mediated neuroinflammation and exacerbates ischemic brain injury. J. Neuroinflammation 2024 21 1 35 10.1186/s12974‑024‑03026‑6 38287411
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673366495250527055016
Loading
/content/journals/cmc/10.2174/0109298673366495250527055016
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test