Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
61 - 80 of 227 results
-
-
Capsid Assembly Modulators: A Promising Curative Regimen for Chronic Hepatitis B
Authors: Chunhua Ma, Xiaoyan Zhang, Junbiao Chang and Bin YuAvailable online: 23 May 2025More Less
-
-
-
Advancements in Structure-based Drug Design Using Geometric Deep Learning
Authors: Tomojit Bhattacharjee and Rohit BhatiaAvailable online: 23 May 2025More Less
-
-
-
Betanin, a Natural Product from Red Beets, Improves Endothelial Dysfunction through Activation of Autophagy
Authors: Junpei Li, Luyan Xu, Duoduo Zha, Yixiong Zhan, Yijia Wu, Xianxian Mao, Li Zuo, Xinyan Bai, Linsiqi Wang, Kunhua Chen, Jinghua Luo and Yisong QianAvailable online: 22 May 2025More LessObjectiveEndothelial dysfunction is the altered pathological ability of endothelial cells to modulate the passage of cells and solutes across vessels, which underlies the development of inflammatory diseases. Betanin (betanidin-5-O-β-glucoside), a natural product rich in red beets, is a water-soluble nitrogen-containing pigment, and its potential protective effects on cardiovascular disease have been reported. In this study, we investigated the protective role of betanin in vascular endothelial dysfunction induced by TNFα and explored potential mechanisms.
MethodsWe modelled endothelial dysfunction through TNFα stimulation in human umbilical vein endothelial cells (HUVECs) and examined the role of betanin and its possible mechanism of action by MTT assay, Western blotting, and immunofluorescence staining. A systemic inflammation model of mice was built through LPS to investigate the protective roles of betanin.
ResultsBetanin pre-treatment increased cell viability, inhibited the expression of intercellular cell adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1), and improved endothelial tight junction by upregulating the expression of occludin and zonula occludens-1 (ZO-1) after TNFα stimulation in HUVECs. In terms of endothelial-mesenchymal transition, betanin up-regulated the expression of endothelial phenotypes VE-cadherin and CD31, whereas it inhibited the expression of mesenchymal phenotype N-cadherin, indicating that betanin reduced endothelial-mesenchymal transition in TNFα-stimulated HUVECs. In addition, betanin increased the expression of LC3 and decreased the expression of p62, two central proteins in autophagy. Betanin also reversed the abnormal autophagic flux after TNFα exposure. However, the specific autophagy inhibitor, 3-methyladenine, blocked the protective effect of betanin. Finally, betanin was found to greatly decrease ICAM-1 and VCAM-1 expression, and upregulate occludin and ZO-1 levels in a systemic inflammation model of mice.
ConclusionThe above results collectively suggested that betanin may improve endothelial dysfunction by promoting autophagy, thus exerting beneficial effects on cardiovascular health.
-
-
-
Construction of PANoptosis-related LncRNA Prognostic Signature and Functional Analysis of AC034229.4 in Hepatocellular Carcinoma
Authors: Rui He, Ningning Wang, Xiujuan Zheng, Baiming Jin, Xuying Li, Mingqi Li, Shijing Nian and Kewei WangAvailable online: 22 May 2025More LessAimsThis study aimed to establish a PANoptosis related prognostic signature and identify potential prognostic markers and therapeutic targets for HCC.
BackgroundHepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide. The survival rate of patients with HCC remains relatively low. PANoptosis can be mediated by lncRNA to involve the pathophysiology of HCC, but the mechanism is still unclear.
ObjectiveTCGA and GEO hepatocellular carcinoma databases and previous research results were used to construct the PANoptosis related risk model.
MethodsBased on the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database, this study identified long non-coding RNAs (lncRNAs) associated with PANoptosis in HCC. Univariate, LASSO-Cox, and multivariate COX analyses were employed to gradually screen prognostic lncRNAs and construct prognostic models. Further analysis was conducted on the core lncRNA-AC034229.4.
ResultsA total of 8 differentially expressed lncRNAs closely correlated with HCC prognosis were discovered. A prognostic model comprising 6 lncRNAs (AC090192.2, LINC01703, AC034229.4, AC073352.1, AC004816.1, and AL136162.1) was established demonstrating good predictive ability for prognosis. Moreover, this prognostic model exhibited close associations with tumor immune microenvironment and immune checkpoints. Subsequent investigations revealed that AC034229.4 independently influenced HCC prognosis by regulating cell cycle progression and inhibiting the immune microenvironment response. Drug sensitivity analysis indicated that AC034229 .4 displayed sensitivity to various anticancer drugs as well. In addition, inhibition of AC034229 .4 expression suppressed HCC migration and invasion abilities.
ConclusionThis study generated a novel and efficient prognostic signature model while identifying AC034229 .4 as a promising diagnostic and prognostic biomarker in HCC.
-
-
-
Relationship between 21 Medications and Negative Emotions: A Mendelian Randomization Analysis in Asian Populations
Authors: Xiaotong Wang, Yuhan Wei, Xi Nie, Yuchuan Zhang, Lan Yang, Weiting Zeng, Kexin Shi and Haixiong LinAvailable online: 19 May 2025More LessObjectiveNegative emotional states, such as nervousness, anxiety, depression, and tension, exert profound detrimental effects on an individual's quality of life and overall health. Although certain widely prescribed medications have been observed to modulate these emotional states, the existing body of research in this domain remains insufficient. To address this gap, Mendelian randomization (MR) methodologies, leveraging large-scale datasets, were employed to investigate the causal relationships between 21 commonly utilized medications and the manifestation of negative emotions.
MethodsThe inverse variance weighting (IVW) method was employed as the primary analytical strategy to analyze causal relationships. MR-Egger, weighted mode, and weighted median approaches were utilized to enhance the robustness of the results. Sensitivity analyses were conducted to assess the stability of the data.
ResultsAgents acting on the renin-angiotensin system, β-blocking agents, antithrombotic agents, and salicylic acid and derivatives could reduce the risk of nervousness, anxiety, tension, or depression (OR = 0.61, 95% CI 0.37 to 0.99, p = 0.047; OR = 0.59, 95% CI 0.36 to 0.98, p = 0.041; OR = 0.55, 95% CI 0.34 to 0.88, p = 0.013; OR = 0.61, 95% CI 0.40 to 0.95, p = 0.030), with no heterogeneity, horizontal pleiotropy, or reverse causation (p > 0.05).
ConclusionThis study revealed four medications associated with reducing the risk of negative emotions, providing clinicians with a scientific basis for medication selection to better assist patients in alleviating psychological issues and improving their quality of life.
-
-
-
Cholesteatoma: An Updated Review of Molecular Pathogenesis and Potential Therapeutic Directions
Authors: Bingwen Xing, Yalong Dang and Kai XiAvailable online: 19 May 2025More LessCholesteatoma, an abnormal accumulation of keratinized squamous epithelium in the middle ear, occurs as a locally invasive but histologically benign lesion. Its capacity for bone erosion leads to significant complications, including hearing loss, facial nerve paralysis, and intracranial infections. Chronic inflammation is central to its pathogenesis, with proinflammatory mediators like TNF-α, IL-1β, and IL-6 activating signaling pathways, such as NF-κB, JAK/STAT, and MAPK. These pathways contribute to epithelial hyperproliferation and extracellular matrix degradation mediated by Matrix Metalloproteinases (MMPs). Dysregulation of epithelial cell behavior, involving altered keratinocyte function and reduced E-cadherin-mediated adhesion, may facilitate lesion formation and expansion. Furthermore, aberrant signaling involving growth factors (e.g., EGF, TGF-β) and dysregulation of osteoclast activity via the RANKL pathway contribute to enhanced bone erosion and tissue invasion. Emerging research highlights potential roles of the c-MYC proto-oncogene, microRNAs, and Sonic hedgehog signaling in disease progression, offering deeper insights into the pathogenesis. Current management primarily involves surgical excision, yet high recurrence rates emphasize the need for adjunctive therapeutic strategies. Potential future directions include modulating key pathways, such as NF-κB, MMP activity, and RANKL signaling, as well as exploring interventions related to growth factors and cell adhesion. Integrating molecular insights with clinical research is essential for developing strategies to reduce recurrence and improve patient outcomes.
-
-
-
Emerging New Treatments for Colon Cancer
Authors: Sheu Ibrahim Adedayo and Eva Sonnenberg-RiethmacherAvailable online: 16 May 2025More LessColorectal cancer includes cancer of the rectum and colon. It is the primary cause of cancer-related deaths among men under 50 years of age. In 2022, over 1.9 million cases of CRC were reported, resulting in approximately 904,000 deaths worldwide. Factors like smoking, alcohol consumption, obesity, familial history, and inflammation significantly contribute to the risk of CRC development. Additionally, bacterial infections from organisms like Bacteroides fragilis, Fusobacterium nucleatum, and Helicobacter pylori also play a role in increasing this risk. Conventional treatment methods for CRC typically involve surgery/polypectomy, chemotherapy, and radiotherapy. Because of limitations like lack of target specificity, the risk of tumor relapse, and the potential for tumor resistance, there is a growing necessity for more individually tailored treatment strategies to improve the outcomes of patients with CRC. As such, emerging treatments like cancer vaccine, (CAR) T-cells, CAR-NK cells, macrophages, and stem cell engineering (particularly mesenchymal stem cells), dendritic vaccine, siRNA, and miRNA, hold significant promise in enhancing outcomes for CRC patients. Moreover, specific gut microbiomes like Bacteroides fragilis, Streptococcus gallolyticus, Enterococcus faecalis, and Escherichia coli, linked to CRC development, have been identified. Hence, modulating the gut microbiome to potentially enhance responses to CRC in high-risk populations could be a new line of treatment. This modulation can be accomplished through dietary interventions, prebiotics, probiotics, postbiotics, antibiotics, and fecal microbiota transplantation (FMT). This review summarizes the most promising new emerging treatments in the fight against colon cancer.
-
-
-
A Neuroendocrine Differentiation-related Molecular Model for Prognosis Prediction in Prostate Cancer Patients
Authors: Yong Wei, Jiang-Bo Sun, Qian-Ren-Shun Qiu, Yu-Xuan Zhao, Qing-Shui Zheng, Xiong-Lin Sun, Ning Xu and Xue-Yi XueAvailable online: 15 May 2025More LessPurposeThe purpose of this study is to construct and validate a neuroendocrine differentiation-related molecular model for predicting prognosis in patients with prostate cancer (PCa).
Materials and MethodsTranscriptome data for PCa were collected from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) websites. Differentially expressed neuroendocrine differentiation related genes (NDGs) were identified. By utilizing multivariate Cox analysis, a neuroendocrine differentiation-related molecular model for predicting prognosis was constructed and validated. The study investigated the novel model’s association with the tumor immune microenvironment, clinicopathological characteristics, tumor stemness, and anticancer treatment sensitivity. Additionally, preliminary experimental verifications of Diencephalon / Mesencephalon Homeobox 1 (DMBX1) were conducted.
ResultsFinally, we identified a total of 19 differentially expressed NDGs. A neuroendocrine differentiation-related molecular model was established and successfully validated both internally and externally. The high-risk group exhibited significantly poorer biochemical recurrence-free survival (BCRFS) in the training, testing, and validating cohorts. The areas under the receiver operating characteristic curves for the training, testing, and validating cohorts were 0.825, 0.719, and 0.729, respectively. The tumor immune microenvironment, clinicopathological features, tumor stemness, and anti-cancer drug sensitivity was significantly different between high and low-risk patients. Preliminary experiments revealed that higher expression of DMBX1 significantly enhanced the proliferation, migration, and neuroendocrine differentiation of PCa cells.
ConclusionThis research developed a unique neuroendocrine differentiation-related molecular model that is highly suitable for predicting BCRFS. High DMBX1 expression may promote the development and neuroendocrine differentiation of prostate cancer.
-
-
-
Next-generation Approaches in Targeting Polycystic Ovarian Syndrome: Innovative Strategies
Available online: 12 May 2025More LessPolycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects millions of women worldwide and is characterized by ovarian dysfunction, hyperandrogenism, and metabolic abnormalities. The traditional diagnostic and therapeutic approaches often fail to address the multifaceted nature of PCOS. Recent advancements in next-generation sequencing (NGS), bioinformatics, and precision medicine have paved the way for innovative research and therapeutic strategies that promise to revolutionize PCOS management. This review focuses on exploring the genetic and molecular mechanisms of PCOS using innovative methodologies, such as genome-wide association studies (GWAS), transcriptomics, and computational approaches. Integrating big data analytics and machine learning algorithms enhances the predictive accuracy of PCOS diagnoses and treatment outcomes. In addition, the emergence of personalized medicine has enabled tailored therapeutic interventions based on individual genetic profiles and phenotypic expression. Furthermore, we explored the development of novel pharmacological agents and combinational therapies to enhance the understanding of PCOS pathophysiology. These approaches also focus on reducing inflammation, improving insulin sensitivity, and optimizing hormonal balance to achieve optimal health outcomes. The potential of digital health tools, including mobile applications and wearable technologies, to support self-monitoring and patient engagement in PCOS management is also highlighted. In conclusion, the integration of next-generation technologies and innovative research is necessary to transform the field of PCOS diagnosis and treatment, offering hope for more effective and individualized care. These underscore the importance of continued investment in advanced research methodologies and the adoption of personalized therapeutic strategies to address the complexities of PCOS.
-
-
-
Binding Specificity and Local Frustration in Structure-based Drug Discovery
Authors: Zhiqiang Yan, Yuqing Li, Ying Cao, Xuetao Tao, Jin Wang and Yongsheng JiangAvailable online: 12 May 2025More LessEvolution has optimized proteins to balance stability and function by reducing unfavorable energy states, leading to regions of flexibility and frustration on protein surfaces. These locally frustrated regions correspond to functionally important areas, such as active sites and regions for ligand binding and conformational plasticity. Typical strategies of structure-based drug discovery primarily concentrate on enhancing the binding affinity during compound screening and target identification. However, this often overlooks the binding specificity, which is critical for distinguishing specific binding partners from competing ones and avoiding off-target effects. According to the energy landscape theory, optimization of the intrinsic binding specificity involves globally minimizing the frustrations existing in the biomolecular interactions. Recent studies have demonstrated that identifying local frustrations provides a promising approach for screening more specific compounds binding with targets, and quantifying binding specificity complements typical strategies that focus on binding affinity only. This review explores the principles and strategies of computationally quantifying the binding specificity and local frustrations and discusses their applications in structure-based drug discovery. Moreover, given the advancements of artificial intelligence in protein science, this review aims to motivate the integration of AI and available approaches in quantifying the binding specificity and local frustration. We expect that an AI-powered prediction model will accelerate the drug discovery process and improve the success rate of hit compounds.
-
-
-
Nanomaterial Enhances the Performance of Amyloid-beta Biosensing for Alzheimer’s Disease Diagnosis
Authors: Zhong Zhao, Wenli Chen, Hao Tang, Xiaoyan Wang, Wenjiao Huang, Subash C.B. Gopinath and Shu YangAvailable online: 07 May 2025More LessBackgroundHighly sensitive, accurate, and low-cost detection systems are gaining interest for early intervention in the progression of Alzheimer's disease (AD). Amyloid-beta (Aβ), a peptide highly involved in the progression of AD, is found in abundance in patients with severe AD.
ObjectiveThis research focused on developing an Aβ oligomer (AβO) biosensor using a single-walled carbon nanotube-modified (SWCN) interdigitated electrode (IDE) sensor.
MethodsThe SWCN was functionalized onto the sensor surface through an amine linker, followed by the attachment of an aptamer-gold nanoparticle (GNP) complex, which was used to capture the AβO.
ResultsThe GNP-aptamer was saturated at 500 nM on the SWCN surface, and AβO was detected using a sandwich consisting of aptamer-AβO-antibody. The SWCN modification increased the number of aptamer attachment sites on the IDE, while the aptamer and antibody conjugation with GNP enhanced AβO interaction. This sandwich assay detected AβO at concentrations as low as 10 fM, with a linear regression coefficient (y = 2.9189x - 2.076; R2 = 0.9544). Furthermore, AβO-spiked artificial CSF was detected without interference, as confirmed by the increased current responses. No significant changes were recorded with control proteins, including α-synuclein, IgG antibody, and a complementary aptamer, indicating specific AβO detection.
ConclusionThis SWCN modified IDE-based sandwich detects AβO at its lower level and contributes to the early diagnosis of AD.
-
-
-
Milk Thistle (Silybum marianum): Potential Role in Cancer Prevention
Authors: Geir Bjørklund, Olha Storchylo, Monica Butnariu, Maryam Dadar and Salvatore ChirumboloAvailable online: 06 May 2025More LessMilk thistle compounds have recently gained attention for their potential role in cancer prevention and treatment. Despite most evidence reporting this property refers to in vitro and animal studies, milk thistle flavonoids may provide insightful suggestions about novel chemopreventive agents. This narrative review provides an overview of the current understanding of milk thistle's effects on cancer cells and highlights possible mechanisms of action. The active compounds in milk thistle mainly exhibit antioxidant and anti-inflammatory effects, which protect cells and enhance their survival responses, even inhibiting cancer development. In addition, the compounds possess immunomodulatory properties crucial in preventing cancer progression. Another important mechanism is the induction of apoptosis, promoting cancer cell death and inhibiting tumour growth. These compounds inhibit angiogenesis, preventing tumour growth and spread. Due to their potential to inhibit cancer progression, they modulate cell signalling pathways, including the MAPK and PI3K/Akt pathways, which are involved in cell growth and survival. Although current research is promising, it is crucial to address the current gaps in knowledge about milk thistle compounds in cancer prevention and treatment. Future studies should focus on rigorous clinical trials, dose optimization, mechanistic investigations, combination therapy approaches, and personalized medicine to maximize their potential. Basic experimental evidence can provide new clues to establish clinical trials to improve cancer care and reassure patients and healthcare professionals.
-
-
-
C-Reactive Protein Velocity in Patients with ST-elevation Myocardial Infarction: Rethinking a Traditional Biomarker
Available online: 06 May 2025More Less
-
-
-
Icaritin Attenuates HSC Activation by Down-regulating the HIF-1α and TGF-β/Smad Signaling Pathways to Ameliorate Liver Fibrosis
Authors: Keping Feng, Qiaoman Fei, Na Huang, Ke Du, Chengbo Zhang, Yudan Fan, Ying Zhou, Yaping Zhao, Pengfei Liu and Zongfang LiAvailable online: 05 May 2025More LessIntroductionIcaritin is a bioactive flavonol isolated from the Chinese medicinal herb Epimedium. The comprehensive understanding of antifibrotic effects and associated molecular mechanisms of icaritin remains incomplete. This study aims to explore the protective effects of icaritin against liver fibrosis and to further elucidate the mechanisms involved.
MethodsHuman hepatic stellate LX-2 cells stimulated with TGF-β1 and a carbon tetrachloride (CCl4)-induced liver fibrosis mouse model were employed. In vitro assays were carried out to evaluate collagen type I (COL I) and α-smooth muscle actin (α-SMA) expression, while in vivo studies assessed fibrosis alleviation. Molecular mechanisms were explored via analysis of TGF-β1, phosphorylated Smad2/3, and HIF-1α protein levels using Western blotting.
ResultsIcaritin suppressed TGF-β1-induced COL I and α-SMA expression in LX-2 cells and ameliorated liver fibrosis in CCl4-treated mice. Mechanistically, it significantly reduced TGF-β1 levels, inhibited Smad2/3 phosphorylation, and downregulated HIF-1α protein expression in LX-2 cells.
ConclusionIcaritin attenuated experimental liver fibrosis through the inhibition of the TGF-β/Smad and HIF-1α signaling pathways, highlighting its therapeutic potential for fibrotic liver diseases.
-
-
-
Genetic Studies on Multiple Consanguineous Families Segregating Diverse Phenotypes of Microphthalmia Identified Novel and Recurrent Mutations
Available online: 05 May 2025More LessIntroductionAnophthalmia/microphthalmia (A/M) and anterior segment dysgenesis (ASD) are severe ocular anomalies impacting eye morphology, occurring in 30 per 100,000 live births. Genetic research has identified over 30 genes linked to A/M anomalies, with their products mainly involved in eye organogenesis.
Aims and ObjectivesThis study examined two consanguineous A/M families to identify disease-associated pathogenic mutations and predict their functional impact.
MethodologyPatients were clinically examined using A-scan and ophthalmic ultrasonography. Whole exome sequencing (WES) identified candidate pathogenic variants validated through Sanger sequencing. Computational analyses assessed the impact of these mutations on protein structure and function.
ResultsThe clinical diagnosis of family A revealed microphthalmia with ASD, while family B presented with an A/M phenotype. Exome analysis of family A identified a novel missense variant, NM_012293:c.A3742G [p.(Arg1248Gly)], in the peroxidasin (PXDN) gene (ClinVar ID: VCV001333267.1). At the cellular level, PXDN is involved in establishing sulfilimine bonds in collagen IV, a component of the basement membrane, suggesting that ocular defects may result from impaired integrity of the basement membrane in the developing eye. In contrast, Family B exhibited a nonsense variant NM _012186:c.720C>A (p.Cys240*) in the FOXE3 gene. This variant has been previously reported in other South Asian populations, suggesting a founder effect in subcontinent populations. Structural modeling and simulation analysis of mutant proteins revealed altered properties, thus corroborating the pathogenicity of the identified mutation.
ConclusionOur findings may contribute to the elucidation of genotype-phenotype correlations, potentially facilitating the molecular diagnosis of microphthalmia and ASD.
-
-
-
Spinosin Suppresses RANKL-induced Osteoclastogenesis and Alleviates LPS-induced Cranial Osteolysis: A Study based on Network Pharmacology and Experimental Validation
Authors: Qi Meng, Yang Su, Shankun Dong, Jianxun Ge, Lei Tian and Shui SunAvailable online: 05 May 2025More LessAimInflammatory osteolysis often characterizes many orthopedic diseases, with an important role played by the overactivity of osteoclasts. This research endeavoured to investigate the effects of spinosin, a potent ingredient in traditional Chinese medicine, on Lipopolysaccharide (LPS)-induced osteoclast activity and formation to alleviate osteolysis.
MethodsBased on the molecular structure of spinosin, network pharmacology was used to predict its primary targets and mechanisms. LPS was used to stimulate pre-osteoclasts and to simulate an inflammatory environment. The effect of spinosin on osteoclast biology was subsequently examined via morphological study, qPCR, and Western blot (WB). Moreover, LPS-induced cranial osteolysis mice were utilized, followed by micro-CT analysis, to reveal the curative effects in vivo.
ResultsNetwork pharmacology and molecular docking suggested that EGFR and Akt might be the key targets for the efficacy of spinosin in inflammatory osteolysis. The results of in vitro experiments demonstrated that spinosin significantly inhibited osteoclast function and activity in the inflammatory environment, and this effect might be achieved through regulating EGFR-Akt signaling. The results of animal experiments also showed spinosin-protected mice against LPS-induced bone loss.
ConclusionSpinosin can inhibit EGFR-mediated Akt phosphorylation, which in turn negatively affects downstream Nfatc1-mediated osteoclast-associated gene expression and subsequent osteoclast formation and functionality, mitigating the LPS-induced osteolysis. Our study proves that spinosin holds the promise of being an innovative drug to prevent inflammatory osteolysis.
-
-
-
Endothelial Function Biomarkers in Hypertension
Available online: 02 May 2025More LessHypertension (HTN) is a major cardiovascular risk factor, contributing to over 10.4 million deaths annually. HTN's pathophysiology involves complex mechanisms, including altered vascular resistance and hormonal regulation. Endothelial dysfunction, a hallmark of HTN, is characterized by reduced vasodilator production and increased vasoconstrictor and inflammatory cytokine generation, leading to elevated blood pressure (BP) and vascular damage. Early detection and intervention are crucial to prevent long-term complications. Identifying biomarkers of endothelial function in HTN can aid early disease detection and offer insights into underlying mechanisms. Blood sample-derived biomarkers include nitric oxide (NO), asymmetric dimethylarginine (ADMA), matrix metalloproteinases (MMPs), vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and endothelial microparticles. Imaging-based biomarkers such as flow-mediated dilation (FMD) and coronary flow reserve (CFR) are also significant. These biomarkers provide the means to identify inflammation, endothelial dysfunction, and vascular injury, enhancing disease pathogenesis understanding. Combined with accurate BP measurements, they contribute to early diagnosis and provide valuable insights that may inform treatment strategies. Baseline and sequential plasma biomarker measurements also indicate treatment efficacy. However, large-scale, prospective population studies are necessary to fully validate these biomarkers for clinical use.
-
-
-
Identification and Validation of BATF3 as a Promising Biomarker Gene for Peripheral T-cell Lymphoma
Authors: Yidong Zhu, Jun Liu and Ting ZhangAvailable online: 02 May 2025More LessBackgroundPeripheral T-cell lymphoma (PTCL) is a rare and heterogeneous group of hematological malignancies. Treatment options are limited and often unsatisfactory, leading to a poor prognosis in most subtypes.
ObjectiveThis study aimed to identify potential biomarker genes for PTCL and to explore the underlying mechanisms by integrating machine learning, Mendelian Randomization (MR), and experimental validation.
MethodsMicroarray datasets (GSE6338, GSE14879, and GSE59307) were downloaded from the Gene Expression Omnibus database. Differential expression analysis was conducted to identify the Differentially Expressed Genes (DEGs) between patients with PTCL and controls. A machine learning algorithm was then used to further refine the selection of characteristic genes for PTCL. We integrated genome-wide association studies data with expression quantitative trait loci data to identify genes with potential causal relationships to PTCL. Functional analysis was performed to explore underlying mechanisms. Finally, the identified gene was validated in clinical samples from patients with PTCL and controls.
ResultsBased on 60 DEGs, the least absolute shrinkage and selection operator algorithm identified nine characteristic genes for PTCL. MR analysis revealed 203 genes with causal effects on PTCL, ultimately identifying one co-expressed gene: Basic Leucine Zipper ATF-like Transcription Factor 3 (BATF3). It demonstrated good predictive performance across various PTCL subtypes, with AUC values ranging from 0.7 to 1. Functional analysis suggested that BATF3 may play a role in PTCL through immune-related pathways. Experimental validation using clinical samples further suggested the potential of this biomarker gene in PTCL.
ConclusionBy combining machine learning, MR, and experimental validation, we identified and validated BATF3 as a promising biomarker of PTCL. These findings provide insights into the molecular mechanisms underlying PTCL and may inform the development of effective treatment strategies for this disease.
-
-
-
Identification and Experimental Validation of Tumor Antigens and Hypoxia Subtypes of Osteosarcoma for Potential mRNA Vaccine Development
Authors: Chunnian Ren, Dawei He and Quan WangAvailable online: 29 April 2025More LessBackgroundOsteosarcoma is the most common primary malignant bone tumor in children and adolescents. The aim of this study was to explore the possibility of OS hypoxia subtype for anti-OS mRNA vaccine development and select suitable patients for precision therapy.
MethodsWe comprehensively explored hypoxia-related genes (HRGs) as potential sources of tumor neoantigens in OS patients. Gene set enrichment analysis algorithm and consensus clustering analysis were used to determine immune subtypes and evaluate tumor microenvironment. Estimation of stromal and immune cells in malignant tumour tissues using expression data algorithm was used to assess tumour immune activity. The OS hypoxia landscape was visualized using dimensionality reduction analysis based on the DDRTree algorithm. Assessment of clinical samples and molecular experiments were performed to verify the determined tumor antigens.
ResultsFour overexpressed and mutated tumor antigens associated with prognosis and infiltration of antigen-presenting cells were identified and verified by clinical samples and molecular experiments. Furthermore, OS patients were stratified into two OS hypoxia subtypes. Interestingly, patients with the OS hypoxia subtype 1 tumor had a superior survival than those with the OS hypoxia subtype 2 tumor. Distinct expressions of immune checkpoint proteins (ICPs) and immunogenic cell death (ICD) modulators were observed in different immune subtype tumors. Finally, the immune landscape of OS showed a high degree of heterogeneity between individual patients.
ConclusionThis study identified potential antigens for the anti-OS mRNA vaccine as well as different OS hypoxia subtypes, guiding more effective immunotherapeutic strategies and selecting appropriate patients for tumor vaccine therapy.
-
-
-
The Pre-metastatic Niche-related Index Reveals the Immune Signature and Immunotherapy Response in Lung Adenocarcinoma
Authors: Weichang Yang, Zhijian Wu, Shanshan Cai, Jiajia Xiang and Xiaoqun YeAvailable online: 29 April 2025More LessBackgroundMetastasis is the leading cause of death in lung cancer patients. Pre-metastatic niche (PMN) plays an important role in pre-metastatic tumors. However, the development of clinical applications of PMN is still limited.
MethodsExpression data for lung adenocarcinoma (LUAD) patients and PMN-related genes were downloaded from the UCSC Xena website and GeneCards database, respectively. Multiple combinations based on machine learning algorithms were used to screen signature genes and construct a PMN-associated index. Spearman analysis explored the correlation between the PMN-associated index and immune cell infiltration. In addition, we analyzed the clinical value of the PMN-associated index based on drug sensitivity analysis and TIDE scores.
ResultsThe enrichment analyses suggested that PMN-related genes were mainly enriched in the PI3K-Akt and HIF-1 signaling pathways. We chose random survival forest, Lasso, and multivariate Cox regression analyses to construct the PMN-associated index based on the results of multiple machine learning algorithms. Six signature genes (SNAI2, CXCR4, TNFSF11, ENG, TIMP1, and PDGFB) were screened to construct the PMN-associated index. KM analysis suggested that the survival probability was greater in the low PMN-associated index group than in the high PMN-associated index group. In addition, we confirmed that LUAD patients with a low PMN-associated index were more likely to benefit from immunotherapy.
ConclusionWe confirmed that the PMN-associated index is a valid predictor of prognosis, immune characteristics, and antitumor therapy efficacy in LUAD patients, which provides additional evidence for the potential clinical value of PMN development.
-