Skip to content
2000
image of Highly Efficient and Eco-friendly Synthesis and Bio-activities of 1,3-benzazoles as Cu (II) Chelators in Alzheimer’s Disease Therapy

Abstract

Introduction

Dyshomeostasis of Cu2+ and abnormal interactions between Cu2+ and β Amyloid peptide (Aβ) can promote Aβ aggregation and oxidative stress, which are considered to trigger Alzheimer’s Disease (AD). Metal chelating therapy is a promising approach for the treatment of AD.

Methods

In this study, 2-(2-hydroxyphenyl)benzazoles were synthesized microwave irradiation promotion. Chelators inhibiting Cu2+-induced Aβ aggregation were determined through turbidity assay and BCA protein assay, while anti-oxidants were detected HRP/Amplex red assay and fluorescent probe of DCFH-DA. Cell viability was measured by MTT assay.

Results

The bio-activity for inhibiting Cu2+ induced-Aβ aggregation of chelators S-1, S-3, S-4, S-5, S-7, S-10, N-5, N-9, N-10 O-2, O-4, X-N-2 was better than that of CQ. The ability of the chelators (S-1, S-10, O-2, O-5, N-9, and X-N-2) to decrease the level of ROS in Aβ+Cu2+ treated SH-SY5Y cells was better than that of CQ. The ability to attenuate Aβ-mediated cytotoxicity in SH-SY5Y cells of S-10 (O-2, O-5, and N-9) was better than that of CQ.

Conclusion

After the evolution of the bio-activities for the treatment of AD , it was found that 4 chelators (S-10, O-2, O-5, and N-9) exhibited better bio-activities than CQ in all aspects.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode.
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673371011250612094752
2025-07-08
2025-11-04
Loading full text...

Full text loading...

/deliver/fulltext/cmc/10.2174/0109298673371011250612094752/BMS-CMC-2024-HT139-6061-14.html?itemId=/content/journals/cmc/10.2174/0109298673371011250612094752&mimeType=html&fmt=ahah

References

  1. Wang T. Liu X. Guan J. Ge S. Wu M.B. Lin J. Yang L. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease. Eur. J. Med. Chem. 2019 169 200 223 10.1016/j.ejmech.2019.02.076 30884327
    [Google Scholar]
  2. Sang Z. Wang K. Shi J. Liu W. Cheng X. Zhu G. Wang Y. Zhao Y. Qiao Z. Wu A. Tan Z. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2020 192 112180 10.1016/j.ejmech.2020.112180 32131034
    [Google Scholar]
  3. Zhang P. Xu S. Zhu Z. Xu J. Multi-target design strategies for the improved treatment of Alzheimer’s disease. Eur. J. Med. Chem. 2019 176 228 247 10.1016/j.ejmech.2019.05.020 31103902
    [Google Scholar]
  4. Benek O. Korabecny J. Soukup O. A perspective on multi-target drugs for Alzheimer’s disease. Trends Pharmacol. Sci. 2020 41 7 434 445 10.1016/j.tips.2020.04.008 32448557
    [Google Scholar]
  5. Kashyap P. Muthusamy K. Niranjan M. Trikha S. Kumar S. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids 2020 153 108529 10.1016/j.steroids.2019.108529 31672628
    [Google Scholar]
  6. Barz B. Liao Q. Strodel B. Pathways of amyloid-β aggregation depend on oligomer shape. J. Am. Chem. Soc. 2018 140 1 319 327 10.1021/jacs.7b10343 29235346
    [Google Scholar]
  7. Sharma A.K. Pavlova S.T. Kim J. Finkelstein D. Hawco N.J. Rath N.P. Kim J. Mirica L.M. Bifunctional compounds for controlling metal-mediated aggregation of the aβ42 peptide. J. Am. Chem. Soc. 2012 134 15 6625 6636 10.1021/ja210588m 22452395
    [Google Scholar]
  8. Metaxas A. Imbalances in copper or zinc concentrations trigger further trace metal dyshomeostasis in amyloid-beta producing Cacnorhabditis alegans. Front. Neurosci. 2021 15 755475 10.3389/fnins.2021.755475 34707479
    [Google Scholar]
  9. Pavlidis N. Kofinas A. Papanikolaou M.G. Miras H.N. Drouza C. Kalampounias A.G. Kabanos T.A. Konstandi M. Leondaritis G. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer’s disease. J. Inorg. Biochem. 2021 217 111393 10.1016/j.jinorgbio.2021.111393 33610031
    [Google Scholar]
  10. Jakusch T. Hassoon A.A. Kiss T. Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy. J. Inorg. Biochem. 2022 228 111692 10.1016/j.jinorgbio.2021.111692 34990971
    [Google Scholar]
  11. Bush A.I. Masters C.L. Tanzi R.E. Copper, β-amyloid, and Alzheimer’s disease: Tapping a sensitive connection. Proc. Natl. Acad. Sci. USA 2003 100 20 11193 11194 10.1073/pnas.2135061100 14506299
    [Google Scholar]
  12. Levitis E. Vogel J.W. Funck T. Hachinski V. Gauthier S. Vöglein J. Levin J. Gordon B.A. Benzinger T. Iturria-Medina Y. Evans A.C. Differentiating amyloid beta spread in autosomal dominant and sporadic Alzheimer’s disease. Brain Commun. 2022 4 3 fcac085 10.1093/braincomms/fcac085 35602652
    [Google Scholar]
  13. Patel R. Aschner M. Commonalities between copper neurotoxicity and Alzheimer’s disease. Toxics 2021 9 1 4 10.3390/toxics9010004 33430181
    [Google Scholar]
  14. Das N. Raymick J. Sarkar S. Role of metals in Alzheimer’s disease. Metab. Brain Dis. 2021 36 7 1627 1639 10.1007/s11011‑021‑00765‑w 34313926
    [Google Scholar]
  15. Arnal N. Dominici L. Tacconi M.J.T. Marra C.A. Copper-induced alterations in rat brain depends on route of overload and basal copper levels. Nutrition 2014 30 1 96 106 10.1016/j.nut.2013.06.009 24290605
    [Google Scholar]
  16. Liu F. Zhang Z. Zhang L. Meng R.N. Gao J. Jin M. Li M. Wang X.P. Effect of metal ions on Alzheimer’s disease. Brain Behav. 2022 12 3 e2527 10.1002/brb3.2527 35212185
    [Google Scholar]
  17. Bush A. Metals and neuroscience. Curr. Opin. Chem. Biol. 2000 4 2 184 191 10.1016/S1367‑5931(99)00073‑3 10742195
    [Google Scholar]
  18. Lee H.J. Park M.K. Seo Y.R. Pathogenic mechanisms of heavy metal induced-Alzheimer’s disease. Toxicol. Environ. Health Sci. 2018 10 1 1 10 10.1007/s13530‑018‑0340‑x
    [Google Scholar]
  19. Bush A.I. Drug development based on the metals hypothesis of Alzheimer’s disease. J. Alzheimers Dis. 2008 15 2 223 240 10.3233/JAD‑2008‑15208 18953111
    [Google Scholar]
  20. Conte-Daban A. Beyler M. Tripier R. Hureau C. Kinetics are crucial when targeting copper ions to fight Alzheimer’s disease: An illustration with azamacrocyclic ligands. Chemistry 2018 24 33 8447 8452 10.1002/chem.201801520 29611877
    [Google Scholar]
  21. Santos M.A. Chand K. Chaves S. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coordin. Chem. Rev. 2016 327-328 287 303
    [Google Scholar]
  22. Pellei M. Bagnarelli L. Luciani L. Del Bello F. Giorgioni G. Piergentili A. Quaglia W. De Franco M. Gandin V. Marzano C. Santini C. Synthesis and cytotoxic activity evaluation of new Cu(I) complexes of bis(pyrazol-1-yl) acetate ligands functionalized with an NMDA receptor antagonist. Int. J. Mol. Sci. 2020 21 7 2616 10.3390/ijms21072616 32283777
    [Google Scholar]
  23. Dobson C.M. Protein folding and misfolding. Nature 2003 426 6968 884 890 10.1038/nature02261 14685248
    [Google Scholar]
  24. Barnham K.J. Bush A.I. Metals in Alzheimer’s and Parkinson’s diseases. Curr. Opin. Chem. Biol. 2008 12 2 222 228 10.1016/j.cbpa.2008.02.019 18342639
    [Google Scholar]
  25. Budimir A. Metal ions, Alzheimer’s disease and chelation therapy. Acta Pharm. 2011 61 1 1 14 10.2478/v10007‑011‑0006‑6 21406339
    [Google Scholar]
  26. Kepp K.P. Alzheimmer’s disease: How metal ions define β-amyloid function. Coordin. Chem. Rev. 2017 351 127 159
    [Google Scholar]
  27. Siotto M. Squitti R. Copper imbalance in Alzheimer’s disease: Overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coordin. Chem. Rev. 2018 371 86 95
    [Google Scholar]
  28. Hegde M.L. Bharathi P. Suram A. Venugopal C. Jagannathan R. Poddar P. Srinivas P. Sambamurti K. Rao K.J. Scancar J. Messori L. Zecca L. Zatta P. Challenges associated with metal chelation therapy in Alzheimer’s disease. J. Alzheimers Dis. 2009 17 3 457 468 10.3233/JAD‑2009‑1068 19363258
    [Google Scholar]
  29. Kenche V.B. Barnham K.J. Alzheimer’s disease & metals: Therapeutic opportunities. Br. J. Pharmacol. 2011 163 2 211 219 10.1111/j.1476‑5381.2011.01221.x 21232050
    [Google Scholar]
  30. Zatta P. Drago D. Bolognin S. Sensi S.L. Alzheimer’s disease, metal ions and metal homeostatic therapy. Trends Pharmacol. Sci. 2009 30 7 346 355 10.1016/j.tips.2009.05.002 19540003
    [Google Scholar]
  31. Baum L. Ng A. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models. J. Alzheimers Dis. 2004 6 4 367 377 10.3233/JAD‑2004‑6403 15345806
    [Google Scholar]
  32. Li L.B. Fan Y.G. Wu W.X. Bai C.Y. Jia M.Y. Hu J.P. Gao H.L. Wang T. Zhong M.L. Huang X.S. Guo C. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer’s disease. Bioorg. Chem. 2022 128 106100 10.1016/j.bioorg.2022.106100 35988518
    [Google Scholar]
  33. Cui Z. Lockman P. Atwood C. Hsu C. Gupte A. Allen D. Mumper R. Novel -penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases. Eur. J. Pharm. Biopharm. 2005 59 2 263 272 10.1016/j.ejpb.2004.07.009 15661498
    [Google Scholar]
  34. Choi J.S. Braymer J.J. Park S.K. Mustafa S. Chae J. Lim M.H. Synthesis and characterization of IMPY derivatives that regulate metal-induced amyloid-β aggregation. Metallomics 2011 3 3 284 291 10.1039/c0mt00077a 21210061
    [Google Scholar]
  35. Carvalho A. Barbosa B.M. Flores J.S. do Carmo Gonçalves P. Diniz R. Cordeiro Y. Fernández C.O. Cukierman D.S. Rey N.A. New mescaline-related N-acylhydrazone and its unsubstituted benzoyl derivative: Promising metallophores for copper-associated deleterious effects relief in Alzheimer’s disease. J. Inorg. Biochem. 2023 238 112033 10.1016/j.jinorgbio.2022.112033 36396525
    [Google Scholar]
  36. Estrada M. Herrera-Arozamena C. Pérez C. Viña D. Romero A. Morales-García J.A. Pérez-Castillo A. Rodríguez-Franco M.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties. Eur. J. Med. Chem. 2016 121 376 386 10.1016/j.ejmech.2016.05.055 27267007
    [Google Scholar]
  37. Kumar R. Pavlov P.F. Winblad B. Metal Binding by GMP-1 and Its Pyrimido [1, 2] benzimidazole analogs confirms protection against amyloid-β associated neurotoxicity. J. Alzheimers Dis. 2020 73 2 695 705 10.3233/JAD‑190695 31839606
    [Google Scholar]
  38. Fancellu G. Chand K. Tomás D. Orlandini E. Piemontese L. Silva D.F. Cardoso S.M. Chaves S. Santos M.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s disease. J. Enzyme Inhib. Med. Chem. 2020 35 1 211 226 10.1080/14756366.2019.1689237 31760822
    [Google Scholar]
  39. Zhang C. Gomes L.M.F. Zhang T. Storr T. A small bifunctional chelator that modulates Aβ 42 aggregation. Can. J. Chem. 2018 96 1 78 82 10.1139/cjc‑2017‑0623
    [Google Scholar]
  40. Goyal D. Kaur A. Goyal B. Benzofuran and indole: Promising scaffolds for drug development in Alzheimer’s disease. ChemMedChem 2018 13 13 1275 1299 10.1002/cmdc.201800156 29742314
    [Google Scholar]
  41. Khan M. Halim S.A. Waqas M. Golmohammadi F. Balalaie S. Csuk R. Uddin J. Khan A. Al-Harrasi A. Substrate-like novel inhibitors of prolyl specific oligo peptidase for neurodegenerative disorders. J. Biomol. Struct. Dyn. 2024 42 16 8454 8472 10.1080/07391102.2023.2246577 37608559
    [Google Scholar]
  42. Khan A. Waqas M. Khan M. Halim S.A. Rehman N.U. Al-Harrasi A. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswellia papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies. Int. J. Biol. Macromol. 2022 213 751 767 10.1016/j.ijbiomac.2022.06.001 35679958
    [Google Scholar]
  43. Keri R.S. Patil M.R. Patil S.A. Budagumpi S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem. 2015 89 207 251 10.1016/j.ejmech.2014.10.059 25462241
    [Google Scholar]
  44. Zhang C. Zhong B. Yang S. Pan L. Yu S. Li Z. Li S. Su B. Meng X. Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents. Bioorg. Med. Chem. 2015 23 13 3774 3780 10.1016/j.bmc.2015.03.085 25936258
    [Google Scholar]
  45. Cellier M. Fazackerley E. James A.L. Orenga S. Perry J.D. Turnbull G. Stanforth S.P. Synthesis of 2-arylbenzothiazole derivatives and their application in bacterial detection. Bioorg. Med. Chem. 2014 22 4 1250 1261 10.1016/j.bmc.2014.01.013 24480653
    [Google Scholar]
  46. Irfan A. Batool F. Zahra Naqvi S.A. Islam A. Osman S.M. Nocentini A. Alissa S.A. Supuran C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem. 2020 35 1 265 279 10.1080/14756366.2019.1698036 31790602
    [Google Scholar]
  47. Kok S.H.L. Gambari R. Chui C.H. Yuen M.C.W. Lin E. Wong R.S.M. Lau F.Y. Cheng G.Y.M. Lam W.S. Chan S.H. Lam K.H. Cheng C.H. Lai P.B. Yu M.W. Cheung F. Tang J.C. Chan A.S. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines. Bioorg. Med. Chem. 2008 16 7 3626 3631 10.1016/j.bmc.2008.02.005 18295491
    [Google Scholar]
  48. Mortimer C.G. Wells G. Crochard J.P. Stone E.L. Bradshaw T.D. Stevens M.F.G. Westwell A.D. Antitumor benzothiazoles. 261 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines. J. Med. Chem. 2006 49 1 179 185 10.1021/jm050942k 16392802
    [Google Scholar]
  49. Patel N.B. Khan I.H. Rajani S.D. Antimycobacterial and antimicrobial study of new 1,2,4-triazoles with benzothiazoles. Arch. Pharm. 2010 343 11-12 692 699 10.1002/ardp.201000061 21110343
    [Google Scholar]
  50. Amnerkar N.D. Bhusari K.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole. Eur. J. Med. Chem. 2010 45 1 149 159 10.1016/j.ejmech.2009.09.037 19853976
    [Google Scholar]
  51. Navarrete-Vazquez G. Paoli P. León-Rivera I. Villalobos-Molina R. Medina-Franco J.L. Ortiz-Andrade R. Estrada-Soto S. Camici G. Diaz-Coutiño D. Gallardo-Ortiz I. Martinez-Mayorga K. Moreno-Díaz H. Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity. Bioorg. Med. Chem. 2009 17 9 3332 3341 10.1016/j.bmc.2009.03.042 19362487
    [Google Scholar]
  52. Yar M.S. Ansari Z.H. Synthesis and in vivo diuretic activity of biphenyl benzothiazole-2-carboxamide derivatives. Acta Pol. Pharm. 2009 66 4 387 392 19702170
    [Google Scholar]
  53. Vandeputte M.M. Van Uytfanghe K. Layle N.K. St Germaine D.M. Iula D.M. Stove C.P. Synthesis, characterization, and μ-Opioid receptor activity assessment of the emerging group of “Nitazene” 2-benzylbenzimidazole synthetic Opioids. ACS Chem. Neurosci. 2021 12 7 1241 1251 10.1021/acschemneuro.1c00064 33759494
    [Google Scholar]
  54. Lewis J.C. Wu J.Y. Bergman R.G. Ellman J.A. Microwave-promoted rhodium-catalyzed arylation of heterocycles through C--H bond activation. Angew. Chem. Int. Ed. 2006 45 10 1589 1591 10.1002/anie.200504289 16444794
    [Google Scholar]
  55. Qiu D. Wei H. Zhou L. Zeng Q. Synthesis of benzimidazoles by copper-catalyzed aerobic oxidative domino reaction of 1,2-diaminoarenes and arylmethyl halides. Appl. Organomet. Chem. 2014 28 2 109 112 10.1002/aoc.3089
    [Google Scholar]
  56. He X. Wu Y. Jin W. Wang X. Wu C. Shang Y. Highly efficient AgNO3 -catalyzed approach to 2-(benzo[d]azol-2-yl)phenols from salicylaldehydes with 2-aminothiophenol, 2-aminophenol and benzene-1,2-diamine. Appl. Organomet. Chem. 2018 32 4 e4284 10.1002/aoc.4284
    [Google Scholar]
  57. Xiao T. Xiong S. Xie Y. Dong X. Zhou L. Copper-catalyzed synthesis of benzazoles via aerobic oxidative condensation of o-amino/mercaptan/hydroxyanilines with benzylamines. RSC Advances 2013 3 36 15592 15595 10.1039/c3ra42175a
    [Google Scholar]
  58. Karthik M. Suresh P. Brønsted acidic reduced graphene oxide as a sustainable carbocatalyst: A selective method for the synthesis of C-2-substituted benzimidazole. New J. Chem. 2018 42 22 17931 17938 10.1039/C8NJ03257B
    [Google Scholar]
  59. Khalifa M.M. Bodner M.J. Berglund J.A. Haley M.M. Synthesis of N-substituted aryl amidines by strong base activation of amines. Tetrahedron Lett. 2015 56 27 4109 4111 10.1016/j.tetlet.2015.05.029 26097266
    [Google Scholar]
  60. Tandon V.K. Kumar M. BF3•Et2O promoted one-pot expeditious and convenient synthesis of 2-substituted benzimidazoles and 3.1,5-benzoxadiazepines. Tetrahedron Lett. 2004 45 4185 4187 10.1016/j.tetlet.2004.03.117
    [Google Scholar]
  61. Das S. Samanta S. Maji S.K. Samanta P.K. Dutta A.K. Srivastava D.N. Visible-light-driven synthesis of 2-substituted benzothiazoles using CdS nanosphere as heterogeneous recyclable catalyst. Tetrahedron Lett. 2013 54 1090 1096 10.1016/j.tetlet.2012.12.044
    [Google Scholar]
  62. Gorepatil P.B. Mane Y.D. Gorepatil A.B. Gaikwad M.V. Ingle V.S. Samarium(III) triflate: A new catalyst for facile synthesis of benzothiazoles and benzoxazoles from carboxylic acids in aqueous media. Res. Chem. Intermed. 2015 41 11 8355 8362 10.1007/s11164‑014‑1897‑x
    [Google Scholar]
  63. Zhilitskaya L.V. Shainyan B.A. Yarosh N.O. Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives. Molecules 2021 26 8 2190 10.3390/molecules26082190 33920281
    [Google Scholar]
  64. Rodríguez-Rodríguez C. Sánchez de Groot N. Rimola A. Álvarez-Larena Á. Lloveras V. Vidal-Gancedo J. Ventura S. Vendrell J. Sodupe M. González-Duarte P. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease. J. Am. Chem. Soc. 2009 131 4 1436 1451 10.1021/ja806062g 19133767
    [Google Scholar]
  65. Sun B. Wang J-L. Benzothiazole functionalized metal chelators: Synthesis and bioactivities. Wuji Huaxue Xuebao 2020 36 7 1275 12282
    [Google Scholar]
  66. Sun B. Jiang H. Synthesis and bio-activities of bifunctional tetrahydrosalen Cu (II) chelators with potential efficacy in Alzheimer’s disease therapy. J. Inorg. Biochem. 2024 259 112636 10.1016/j.jinorgbio.2024.112636 38943843
    [Google Scholar]
  67. Yang G.J. Liu H. Ma D.L. Leung C.H. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy. J. Biol. Inorg. Chem. 2019 24 8 1159 1170 10.1007/s00775‑019‑01712‑y 31486954
    [Google Scholar]
  68. Duce J.A. Bush A.I. Adlard P.A. Role of amyloid-β–metal interactions in Alzheimer’s disease. Future Neurol. 2011 6 5 641 659 10.2217/fnl.11.43
    [Google Scholar]
  69. Fernández-Bachiller M.I. Pérez C. González-Muñoz G.C. Conde S. López M.G. Villarroya M. García A.G. Rodríguez-Franco M.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties. J. Med. Chem. 2010 53 13 4927 4937 10.1021/jm100329q 20545360
    [Google Scholar]
  70. Sun L. Sharma A.K. Han B.H. Mirica L.M. Amentoflavone: A bifunctional metal chelator that controls the formation of neurotoxic soluble Aβ42 oligomers. ACS Chem. Neurosci. 2020 11 17 2741 2752 10.1021/acschemneuro.0c00376 32786307
    [Google Scholar]
  71. Gaggelli E. Kozlowski H. Valensin D. Valensin G. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis). Chem. Rev. 2006 106 6 1995 2044 10.1021/cr040410w 16771441
    [Google Scholar]
  72. Hureau C. Faller P. Aβ-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer’s disease. Biochimie 2009 91 10 1212 1217 10.1016/j.biochi.2009.03.013 19332103
    [Google Scholar]
  73. Du Z. Li M. Ren J. Qu X. Current strategies for modulating aggregation with multifunctional agents. Acc. Chem. Res. 2021 54 9 2172 2184 10.1021/acs.accounts.1c00055 33881820
    [Google Scholar]
  74. Pathak C. Kabra U.D. A comprehensive review of multi- target directed ligands in the treatment of Alzheimer’s disease. Bioorg. Chem. 2024 144 107152 10.1016/j.bioorg.2024.107152 38290187
    [Google Scholar]
  75. Manzoor S. Hoda N. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review. Eur. J. Med. Chem. 2020 206 112787 10.1016/j.ejmech.2020.112787 32942081
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673371011250612094752
Loading
/content/journals/cmc/10.2174/0109298673371011250612094752
Loading

Data & Media loading...

Supplements

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test