Skip to content
2000
Volume 33, Issue 5
  • ISSN: 0929-8673
  • E-ISSN: 1875-533X

Abstract

Introduction

Dyshomeostasis of Cu2+ and abnormal interactions between Cu2+ and β Amyloid peptide (Aβ) can promote Aβ aggregation and oxidative stress, which are considered to trigger Alzheimer’s Disease (AD). Metal chelating therapy is a promising approach for the treatment of AD.

Methods

In this study, 2-(2-hydroxyphenyl)benzazoles were synthesized microwave irradiation promotion. Chelators inhibiting Cu2+-induced Aβ aggregation were determined through turbidity assay and BCA protein assay, while anti-oxidants were detected HRP/Amplex red assay and fluorescent probe of DCFH-DA. Cell viability was measured by MTT assay.

Results

The bio-activity for inhibiting Cu2+ induced-Aβ aggregation of chelators S-1, S-3, S-4, S-5, S-7, S-10, N-5, N-9, N-10 O-2, O-4, X-N-2 was better than that of CQ. The ability of the chelators (S-1, S-10, O-2, O-5, N-9, and X-N-2) to decrease the level of ROS in Aβ+Cu2+ treated SH-SY5Y cells was better than that of CQ. The ability to attenuate Aβ-mediated cytotoxicity in SH-SY5Y cells of S-10 (O-2, O-5, and N-9) was better than that of CQ.

Conclusion

After the evolution of the bio-activities for the treatment of AD , it was found that 4 chelators (S-10, O-2, O-5, and N-9) exhibited better bio-activities than CQ in all aspects.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673371011250612094752
2025-07-08
2026-02-20
Loading full text...

Full text loading...

/deliver/fulltext/cmc/33/5/CMC-33-5-07.html?itemId=/content/journals/cmc/10.2174/0109298673371011250612094752&mimeType=html&fmt=ahah

References

  1. WangT. LiuX. GuanJ. GeS. WuM.B. LinJ. YangL. Advancement of multi-target drug discoveries and promising applications in the field of Alzheimer’s disease.Eur. J. Med. Chem.201916920022310.1016/j.ejmech.2019.02.07630884327
    [Google Scholar]
  2. SangZ. WangK. ShiJ. LiuW. ChengX. ZhuG. WangY. ZhaoY. QiaoZ. WuA. TanZ. The development of advanced structural framework as multi-target-directed ligands for the treatment of Alzheimer’s disease.Eur. J. Med. Chem.202019211218010.1016/j.ejmech.2020.11218032131034
    [Google Scholar]
  3. ZhangP. XuS. ZhuZ. XuJ. Multi-target design strategies for the improved treatment of Alzheimer’s disease.Eur. J. Med. Chem.201917622824710.1016/j.ejmech.2019.05.02031103902
    [Google Scholar]
  4. BenekO. KorabecnyJ. SoukupO. A perspective on multi-target drugs for Alzheimer’s disease.Trends Pharmacol. Sci.202041743444510.1016/j.tips.2020.04.00832448557
    [Google Scholar]
  5. KashyapP. MuthusamyK. NiranjanM. TrikhaS. KumarS. Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease.Steroids202015310852910.1016/j.steroids.2019.10852931672628
    [Google Scholar]
  6. BarzB. LiaoQ. StrodelB. Pathways of amyloid-β aggregation depend on oligomer shape.J. Am. Chem. Soc.2018140131932710.1021/jacs.7b1034329235346
    [Google Scholar]
  7. SharmaA.K. PavlovaS.T. KimJ. FinkelsteinD. HawcoN.J. RathN.P. KimJ. MiricaL.M. Bifunctional compounds for controlling metal-mediated aggregation of the aβ42 peptide.J. Am. Chem. Soc.2012134156625663610.1021/ja210588m22452395
    [Google Scholar]
  8. MetaxasA. Imbalances in copper or zinc concentrations trigger further trace metal dyshomeostasis in amyloid-beta producing Cacnorhabditis alegans.Front. Neurosci.20211575547510.3389/fnins.2021.75547534707479
    [Google Scholar]
  9. PavlidisN. KofinasA. PapanikolaouM.G. MirasH.N. DrouzaC. KalampouniasA.G. KabanosT.A. KonstandiM. LeondaritisG. Synthesis, characterization and pharmacological evaluation of quinoline derivatives and their complexes with copper(ΙΙ) in in vitro cell models of Alzheimer’s disease.J. Inorg. Biochem.202121711139310.1016/j.jinorgbio.2021.11139333610031
    [Google Scholar]
  10. JakuschT. HassoonA.A. KissT. Characterization of copper(II) specific pyridine containing ligands: Potential metallophores for Alzheimer’s disease therapy.J. Inorg. Biochem.202222811169210.1016/j.jinorgbio.2021.11169234990971
    [Google Scholar]
  11. BushA.I. MastersC.L. TanziR.E. Copper, β-amyloid, and Alzheimer’s disease: Tapping a sensitive connection.Proc. Natl. Acad. Sci. USA200310020111931119410.1073/pnas.213506110014506299
    [Google Scholar]
  12. LevitisE. VogelJ.W. FunckT. HachinskiV. GauthierS. VögleinJ. LevinJ. GordonB.A. BenzingerT. Iturria-MedinaY. EvansA.C. Differentiating amyloid beta spread in autosomal dominant and sporadic Alzheimer’s disease.Brain Commun.202243fcac08510.1093/braincomms/fcac08535602652
    [Google Scholar]
  13. PatelR. AschnerM. Commonalities between copper neurotoxicity and Alzheimer’s disease.Toxics202191410.3390/toxics901000433430181
    [Google Scholar]
  14. DasN. RaymickJ. SarkarS. Role of metals in Alzheimer’s disease.Metab. Brain Dis.20213671627163910.1007/s11011‑021‑00765‑w34313926
    [Google Scholar]
  15. ArnalN. DominiciL. TacconiM.J.T. MarraC.A. Copper-induced alterations in rat brain depends on route of overload and basal copper levels.Nutrition20143019610610.1016/j.nut.2013.06.00924290605
    [Google Scholar]
  16. LiuF. ZhangZ. ZhangL. MengR.N. GaoJ. JinM. LiM. WangX.P. Effect of metal ions on Alzheimer’s disease.Brain Behav.2022123e252710.1002/brb3.252735212185
    [Google Scholar]
  17. BushA. Metals and neuroscience.Curr. Opin. Chem. Biol.20004218419110.1016/S1367‑5931(99)00073‑310742195
    [Google Scholar]
  18. LeeH.J. ParkM.K. SeoY.R. Pathogenic mechanisms of heavy metal induced-Alzheimer’s disease.Toxicol. Environ. Health Sci.201810111010.1007/s13530‑018‑0340‑x
    [Google Scholar]
  19. BushA.I. Drug development based on the metals hypothesis of Alzheimer’s disease.J. Alzheimers Dis.200815222324010.3233/JAD‑2008‑1520818953111
    [Google Scholar]
  20. Conte-DabanA. BeylerM. TripierR. HureauC. Kinetics are crucial when targeting copper ions to fight Alzheimer’s disease: An illustration with azamacrocyclic ligands.Chemistry201824338447845210.1002/chem.20180152029611877
    [Google Scholar]
  21. SantosM.A. ChandK. ChavesS. Recent progress in multifunctional metal chelators as potential drugs for Alzheimer’s disease. Coordin. Chem. Rev.2016327-328287303
    [Google Scholar]
  22. PelleiM. BagnarelliL. LucianiL. Del BelloF. GiorgioniG. PiergentiliA. QuagliaW. De FrancoM. GandinV. MarzanoC. SantiniC. Synthesis and cytotoxic activity evaluation of new Cu(I) complexes of bis(pyrazol-1-yl) acetate ligands functionalized with an NMDA receptor antagonist.Int. J. Mol. Sci.2020217261610.3390/ijms2107261632283777
    [Google Scholar]
  23. DobsonC.M. Protein folding and misfolding.Nature2003426696888489010.1038/nature0226114685248
    [Google Scholar]
  24. BarnhamK.J. BushA.I. Metals in Alzheimer’s and Parkinson’s diseases.Curr. Opin. Chem. Biol.200812222222810.1016/j.cbpa.2008.02.01918342639
    [Google Scholar]
  25. BudimirA. Metal ions, Alzheimer’s disease and chelation therapy.Acta Pharm.201161111410.2478/v10007‑011‑0006‑621406339
    [Google Scholar]
  26. KeppK.P. Alzheimmer’s disease: How metal ions define β-amyloid function. Coordin.Chem. Rev.2017351127159
    [Google Scholar]
  27. SiottoM. SquittiR. Copper imbalance in Alzheimer’s disease: Overview of the exchangeable copper component in plasma and the intriguing role albumin plays. Coordin. Chem. Rev.20183718695
    [Google Scholar]
  28. HegdeM.L. BharathiP. SuramA. VenugopalC. JagannathanR. PoddarP. SrinivasP. SambamurtiK. RaoK.J. ScancarJ. MessoriL. ZeccaL. ZattaP. Challenges associated with metal chelation therapy in Alzheimer’s disease.J. Alzheimers Dis.200917345746810.3233/JAD‑2009‑106819363258
    [Google Scholar]
  29. KencheV.B. BarnhamK.J. Alzheimer’s disease & metals: Therapeutic opportunities.Br. J. Pharmacol.2011163221121910.1111/j.1476‑5381.2011.01221.x21232050
    [Google Scholar]
  30. ZattaP. DragoD. BologninS. SensiS.L. Alzheimer’s disease, metal ions and metal homeostatic therapy.Trends Pharmacol. Sci.200930734635510.1016/j.tips.2009.05.00219540003
    [Google Scholar]
  31. BaumL. NgA. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer’s disease animal models.J. Alzheimers Dis.20046436737710.3233/JAD‑2004‑640315345806
    [Google Scholar]
  32. LiL.B. FanY.G. WuW.X. BaiC.Y. JiaM.Y. HuJ.P. GaoH.L. WangT. ZhongM.L. HuangX.S. GuoC. Novel melatonin-trientine conjugate as potential therapeutic agents for Alzheimer’s disease.Bioorg. Chem.202212810610010.1016/j.bioorg.2022.10610035988518
    [Google Scholar]
  33. CuiZ. LockmanP. AtwoodC. HsuC. GupteA. AllenD. MumperR. Novel -penicillamine carrying nanoparticles for metal chelation therapy in Alzheimer’s and other CNS diseases.Eur. J. Pharm. Biopharm.200559226327210.1016/j.ejpb.2004.07.00915661498
    [Google Scholar]
  34. ChoiJ.S. BraymerJ.J. ParkS.K. MustafaS. ChaeJ. LimM.H. Synthesis and characterization of IMPY derivatives that regulate metal-induced amyloid-β aggregation.Metallomics20113328429110.1039/c0mt00077a21210061
    [Google Scholar]
  35. CarvalhoA. BarbosaB.M. FloresJ.S. do Carmo GonçalvesP. DinizR. CordeiroY. FernándezC.O. CukiermanD.S. ReyN.A. New mescaline-related N-acylhydrazone and its unsubstituted benzoyl derivative: Promising metallophores for copper-associated deleterious effects relief in Alzheimer’s disease.J. Inorg. Biochem.202323811203310.1016/j.jinorgbio.2022.11203336396525
    [Google Scholar]
  36. EstradaM. Herrera-ArozamenaC. PérezC. ViñaD. RomeroA. Morales-GarcíaJ.A. Pérez-CastilloA. Rodríguez-FrancoM.I. New cinnamic – N-benzylpiperidine and cinnamic – N,N-dibenzyl(N-methyl)amine hybrids as Alzheimer-directed multitarget drugs with antioxidant, cholinergic, neuroprotective and neurogenic properties.Eur. J. Med. Chem.201612137638610.1016/j.ejmech.2016.05.05527267007
    [Google Scholar]
  37. KumarR. PavlovP.F. WinbladB. Metal Binding by GMP-1 and Its Pyrimido [1, 2] benzimidazole analogs confirms protection against amyloid-β associated neurotoxicity.J. Alzheimers Dis.202073269570510.3233/JAD‑19069531839606
    [Google Scholar]
  38. FancelluG. ChandK. TomásD. OrlandiniE. PiemonteseL. SilvaD.F. CardosoS.M. ChavesS. SantosM.A. Novel tacrine–benzofuran hybrids as potential multi-target drug candidates for the treatment of Alzheimer’s disease.J. Enzyme Inhib. Med. Chem.202035121122610.1080/14756366.2019.168923731760822
    [Google Scholar]
  39. ZhangC. GomesL.M.F. ZhangT. StorrT. A small bifunctional chelator that modulates Aβ42 aggregation.Can. J. Chem.2018961788210.1139/cjc‑2017‑0623
    [Google Scholar]
  40. GoyalD. KaurA. GoyalB. Benzofuran and indole: Promising scaffolds for drug development in Alzheimer’s disease.ChemMedChem201813131275129910.1002/cmdc.20180015629742314
    [Google Scholar]
  41. KhanM. HalimS.A. WaqasM. GolmohammadiF. BalalaieS. CsukR. UddinJ. KhanA. Al-HarrasiA. Substrate-like novel inhibitors of prolyl specific oligo peptidase for neurodegenerative disorders.J. Biomol. Struct. Dyn.202442168454847210.1080/07391102.2023.224657737608559
    [Google Scholar]
  42. KhanA. WaqasM. KhanM. HalimS.A. RehmanN.U. Al-HarrasiA. Identification of novel prolyl oligopeptidase inhibitors from resin of Boswellia papyrifera (Del.) Hochst. and their mechanism: Virtual and biochemical studies.Int. J. Biol. Macromol.202221375176710.1016/j.ijbiomac.2022.06.00135679958
    [Google Scholar]
  43. KeriR.S. PatilM.R. PatilS.A. BudagumpiS. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry.Eur. J. Med. Chem.20158920725110.1016/j.ejmech.2014.10.05925462241
    [Google Scholar]
  44. ZhangC. ZhongB. YangS. PanL. YuS. LiZ. LiS. SuB. MengX. Synthesis and biological evaluation of thiabendazole derivatives as anti-angiogenesis and vascular disrupting agents.Bioorg. Med. Chem.201523133774378010.1016/j.bmc.2015.03.08525936258
    [Google Scholar]
  45. CellierM. FazackerleyE. JamesA.L. OrengaS. PerryJ.D. TurnbullG. StanforthS.P. Synthesis of 2-arylbenzothiazole derivatives and their application in bacterial detection.Bioorg. Med. Chem.20142241250126110.1016/j.bmc.2014.01.01324480653
    [Google Scholar]
  46. IrfanA. BatoolF. Zahra NaqviS.A. IslamA. OsmanS.M. NocentiniA. AlissaS.A. SupuranC.T. Benzothiazole derivatives as anticancer agents.J. Enzyme Inhib. Med. Chem.202035126527910.1080/14756366.2019.169803631790602
    [Google Scholar]
  47. KokS.H.L. GambariR. ChuiC.H. YuenM.C.W. LinE. WongR.S.M. LauF.Y. ChengG.Y.M. LamW.S. ChanS.H. LamK.H. ChengC.H. LaiP.B. YuM.W. CheungF. TangJ.C. ChanA.S. Synthesis and anti-cancer activity of benzothiazole containing phthalimide on human carcinoma cell lines.Bioorg. Med. Chem.20081673626363110.1016/j.bmc.2008.02.00518295491
    [Google Scholar]
  48. MortimerC.G. WellsG. CrochardJ.P. StoneE.L. BradshawT.D. StevensM.F.G. WestwellA.D. Antitumor benzothiazoles. 261 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (GW 610, NSC 721648), a simple fluorinated 2-arylbenzothiazole, shows potent and selective inhibitory activity against lung, colon, and breast cancer cell lines.J. Med. Chem.200649117918510.1021/jm050942k16392802
    [Google Scholar]
  49. PatelN.B. KhanI.H. RajaniS.D. Antimycobacterial and antimicrobial study of new 1,2,4-triazoles with benzothiazoles.Arch. Pharm.201034311-1269269910.1002/ardp.20100006121110343
    [Google Scholar]
  50. AmnerkarN.D. BhusariK.P. Synthesis, anticonvulsant activity and 3D-QSAR study of some prop-2-eneamido and 1-acetyl-pyrazolin derivatives of aminobenzothiazole.Eur. J. Med. Chem.201045114915910.1016/j.ejmech.2009.09.03719853976
    [Google Scholar]
  51. Navarrete-VazquezG. PaoliP. León-RiveraI. Villalobos-MolinaR. Medina-FrancoJ.L. Ortiz-AndradeR. Estrada-SotoS. CamiciG. Diaz-CoutiñoD. Gallardo-OrtizI. Martinez-MayorgaK. Moreno-DíazH. Synthesis, in vitro and computational studies of protein tyrosine phosphatase 1B inhibition of a small library of 2-arylsulfonylaminobenzothiazoles with antihyperglycemic activity.Bioorg. Med. Chem.20091793332334110.1016/j.bmc.2009.03.04219362487
    [Google Scholar]
  52. YarM.S. AnsariZ.H. Synthesis and in vivo diuretic activity of biphenyl benzothiazole-2-carboxamide derivatives.Acta Pol. Pharm.200966438739219702170
    [Google Scholar]
  53. VandeputteM.M. Van UytfangheK. LayleN.K. St GermaineD.M. IulaD.M. StoveC.P. Synthesis, characterization, and μ-Opioid receptor activity assessment of the emerging group of “Nitazene” 2-benzylbenzimidazole synthetic Opioids.ACS Chem. Neurosci.20211271241125110.1021/acschemneuro.1c0006433759494
    [Google Scholar]
  54. LewisJ.C. WuJ.Y. BergmanR.G. EllmanJ.A. Microwave-promoted rhodium-catalyzed arylation of heterocycles through C-H bond activation.Angew. Chem. Int. Ed.200645101589159110.1002/anie.20050428916444794
    [Google Scholar]
  55. QiuD. WeiH. ZhouL. ZengQ. Synthesis of benzimidazoles by copper-catalyzed aerobic oxidative domino reaction of 1,2-diaminoarenes and arylmethyl halides.Appl. Organomet. Chem.201428210911210.1002/aoc.3089
    [Google Scholar]
  56. HeX. WuY. JinW. WangX. WuC. ShangY. Highly efficient AgNO3 -catalyzed approach to 2-(benzo[d]azol-2-yl)phenols from salicylaldehydes with 2-aminothiophenol, 2-aminophenol and benzene-1,2-diamine.Appl. Organomet. Chem.2018324e428410.1002/aoc.4284
    [Google Scholar]
  57. XiaoT. XiongS. XieY. DongX. ZhouL. Copper-catalyzed synthesis of benzazoles via aerobic oxidative condensation of o-amino/mercaptan/hydroxyanilines with benzylamines.RSC Advances2013336155921559510.1039/c3ra42175a
    [Google Scholar]
  58. KarthikM. SureshP. Brønsted acidic reduced graphene oxide as a sustainable carbocatalyst: A selective method for the synthesis of C-2-substituted benzimidazole.New J. Chem.20184222179311793810.1039/C8NJ03257B
    [Google Scholar]
  59. KhalifaM.M. BodnerM.J. BerglundJ.A. HaleyM.M. Synthesis of N-substituted aryl amidines by strong base activation of amines.Tetrahedron Lett.201556274109411110.1016/j.tetlet.2015.05.02926097266
    [Google Scholar]
  60. TandonV.K. KumarM. BF3•Et2O promoted one-pot expeditious and convenient synthesis of 2-substituted benzimidazoles and 3.1,5-benzoxadiazepines.Tetrahedron Lett.2004454185418710.1016/j.tetlet.2004.03.117
    [Google Scholar]
  61. DasS. SamantaS. MajiS.K. SamantaP.K. DuttaA.K. SrivastavaD.N. Visible-light-driven synthesis of 2-substituted benzothiazoles using CdS nanosphere as heterogeneous recyclable catalyst.Tetrahedron Lett.2013541090109610.1016/j.tetlet.2012.12.044
    [Google Scholar]
  62. GorepatilP.B. ManeY.D. GorepatilA.B. GaikwadM.V. IngleV.S. Samarium(III) triflate: A new catalyst for facile synthesis of benzothiazoles and benzoxazoles from carboxylic acids in aqueous media.Res. Chem. Intermed.201541118355836210.1007/s11164‑014‑1897‑x
    [Google Scholar]
  63. ZhilitskayaL.V. ShainyanB.A. YaroshN.O. Modern approaches to the synthesis and transformations of practically valuable benzothiazole derivatives.Molecules2021268219010.3390/molecules2608219033920281
    [Google Scholar]
  64. Rodríguez-RodríguezC. Sánchez de GrootN. RimolaA. Álvarez-LarenaÁ. LloverasV. Vidal-GancedoJ. VenturaS. VendrellJ. SodupeM. González-DuarteP. Design, selection, and characterization of thioflavin-based intercalation compounds with metal chelating properties for application in Alzheimer’s disease.J. Am. Chem. Soc.200913141436145110.1021/ja806062g19133767
    [Google Scholar]
  65. SunB. WangJ-L. Benzothiazole functionalized metal chelators: Synthesis and bioactivities.Wuji Huaxue Xuebao2020367127512282
    [Google Scholar]
  66. SunB. JiangH. Synthesis and bio-activities of bifunctional tetrahydrosalen Cu (II) chelators with potential efficacy in Alzheimer’s disease therapy.J. Inorg. Biochem.202425911263610.1016/j.jinorgbio.2024.11263638943843
    [Google Scholar]
  67. YangG.J. LiuH. MaD.L. LeungC.H. Rebalancing metal dyshomeostasis for Alzheimer’s disease therapy.J. Biol. Inorg. Chem.20192481159117010.1007/s00775‑019‑01712‑y31486954
    [Google Scholar]
  68. DuceJ.A. BushA.I. AdlardP.A. Role of amyloid-β–metal interactions in Alzheimer’s disease.Future Neurol.20116564165910.2217/fnl.11.43
    [Google Scholar]
  69. Fernández-BachillerM.I. PérezC. González-MuñozG.C. CondeS. LópezM.G. VillarroyaM. GarcíaA.G. Rodríguez-FrancoM.I. Novel tacrine-8-hydroxyquinoline hybrids as multifunctional agents for the treatment of Alzheimer’s disease, with neuroprotective, cholinergic, antioxidant, and copper-complexing properties.J. Med. Chem.201053134927493710.1021/jm100329q20545360
    [Google Scholar]
  70. SunL. SharmaA.K. HanB.H. MiricaL.M. Amentoflavone: A bifunctional metal chelator that controls the formation of neurotoxic soluble Aβ42 oligomers.ACS Chem. Neurosci.202011172741275210.1021/acschemneuro.0c0037632786307
    [Google Scholar]
  71. GaggelliE. KozlowskiH. ValensinD. ValensinG. Copper homeostasis and neurodegenerative disorders (Alzheimer’s, prion, and Parkinson’s diseases and amyotrophic lateral sclerosis).Chem. Rev.200610661995204410.1021/cr040410w16771441
    [Google Scholar]
  72. HureauC. FallerP. Aβ-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer’s disease.Biochimie200991101212121710.1016/j.biochi.2009.03.01319332103
    [Google Scholar]
  73. DuZ. LiM. RenJ. QuX. Current strategies for modulating aggregation with multifunctional agents.Acc. Chem. Res.20215492172218410.1021/acs.accounts.1c0005533881820
    [Google Scholar]
  74. PathakC. KabraU.D. A comprehensive review of multi- target directed ligands in the treatment of Alzheimer’s disease.Bioorg. Chem.202414410715210.1016/j.bioorg.2024.10715238290187
    [Google Scholar]
  75. ManzoorS. HodaN. A comprehensive review of monoamine oxidase inhibitors as Anti-Alzheimer’s disease agents: A review.Eur. J. Med. Chem.202020611278710.1016/j.ejmech.2020.11278732942081
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673371011250612094752
Loading
/content/journals/cmc/10.2174/0109298673371011250612094752
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test