- Home
- A-Z Publications
- Current Medicinal Chemistry
- Fast Track Listing
Current Medicinal Chemistry - Online First
Description text for Online First listing goes here...
1 - 20 of 170 results
-
-
Next-generation Approaches in Targeting Polycystic Ovarian Syndrome: Innovative Strategies
Available online: 12 May 2025More LessPolycystic Ovary Syndrome (PCOS) is a complex endocrine disorder that affects millions of women worldwide and is characterized by ovarian dysfunction, hyperandrogenism, and metabolic abnormalities. The traditional diagnostic and therapeutic approaches often fail to address the multifaceted nature of PCOS. Recent advancements in next-generation sequencing (NGS), bioinformatics, and precision medicine have paved the way for innovative research and therapeutic strategies that promise to revolutionize PCOS management. This review focuses on exploring the genetic and molecular mechanisms of PCOS using innovative methodologies, such as genome-wide association studies (GWAS), transcriptomics, and computational approaches. Integrating big data analytics and machine learning algorithms enhances the predictive accuracy of PCOS diagnoses and treatment outcomes. In addition, the emergence of personalized medicine has enabled tailored therapeutic interventions based on individual genetic profiles and phenotypic expression. Furthermore, we explored the development of novel pharmacological agents and combinational therapies to enhance the understanding of PCOS pathophysiology. These approaches also focus on reducing inflammation, improving insulin sensitivity, and optimizing hormonal balance to achieve optimal health outcomes. The potential of digital health tools, including mobile applications and wearable technologies, to support self-monitoring and patient engagement in PCOS management is also highlighted. In conclusion, the integration of next-generation technologies and innovative research is necessary to transform the field of PCOS diagnosis and treatment, offering hope for more effective and individualized care. These underscore the importance of continued investment in advanced research methodologies and the adoption of personalized therapeutic strategies to address the complexities of PCOS.
-
-
-
C-Reactive Protein Velocity in Patients with ST-elevation Myocardial Infarction: Rethinking a Traditional Biomarker
Available online: 06 May 2025More Less
-
-
-
Spinosin Suppresses RANKL-induced Osteoclastogenesis and Alleviates LPS-induced Cranial Osteolysis: A Study based on Network Pharmacology and Experimental Validation
Authors: Qi Meng, Yang Su, Shankun Dong, Jianxun Ge, Lei Tian and Shui SunAvailable online: 05 May 2025More LessAimInflammatory osteolysis often characterizes many orthopedic diseases, with an important role played by the overactivity of osteoclasts. This research endeavoured to investigate the effects of spinosin, a potent ingredient in traditional Chinese medicine, on Lipopolysaccharide (LPS)-induced osteoclast activity and formation to alleviate osteolysis.
MethodsBased on the molecular structure of spinosin, network pharmacology was used to predict its primary targets and mechanisms. LPS was used to stimulate pre-osteoclasts and to simulate an inflammatory environment. The effect of spinosin on osteoclast biology was subsequently examined via morphological study, qPCR, and Western blot (WB). Moreover, LPS-induced cranial osteolysis mice were utilized, followed by micro-CT analysis, to reveal the curative effects in vivo.
ResultsNetwork pharmacology and molecular docking suggested that EGFR and Akt might be the key targets for the efficacy of spinosin in inflammatory osteolysis. The results of in vitro experiments demonstrated that spinosin significantly inhibited osteoclast function and activity in the inflammatory environment, and this effect might be achieved through regulating EGFR-Akt signaling. The results of animal experiments also showed spinosin-protected mice against LPS-induced bone loss.
ConclusionSpinosin can inhibit EGFR-mediated Akt phosphorylation, which in turn negatively affects downstream Nfatc1-mediated osteoclast-associated gene expression and subsequent osteoclast formation and functionality, mitigating the LPS-induced osteolysis. Our study proves that spinosin holds the promise of being an innovative drug to prevent inflammatory osteolysis.
-
-
-
Cartilage Oligomeric Matrix Protein: A Potential Prognostic Biomarker and Therapeutic Target in Gastric Cancer
Authors: Dongbing Li and Guizhen LyuAvailable online: 24 April 2025More LessBackgroundCartilage oligomeric matrix protein (COMP) is a protein that has been implicated in the development of some tumors, but its exact role in gastric cancer (GC) remains unclear.
ObjectiveThe study aims to comprehensively examine COMP in GC and to confirm its effects through experimental methods.
MethodsThe research harnessed data from the Cancer Genome Atlas (TCGA) to explore the significance of COMP in GC and its potential as a diagnostic tool. The study also examined the regulatory networks involving COMP, including its interactions with immune cells, immune checkpoint genes, tumor mutational burden (TMB), microsatellite instability (MSI), and the stemness index based on mRNA expression (mRNAsi). Additionally, the study explored the relationship between COMP expression and drug sensitivity in GC. Genomic variations of COMP in GC were assessed. The expression of COMP was validated by the GEPIA2 tool and confirmed with quantitative reverse transcription PCR (qRT-PCR) in cell lines (normal human gastric epithelial cells GES-1 and GC cell lines AGS and HGC-27).
ResultsAbnormal expression patterns of COMP were observed in various cancers, including GC. Higher levels of COMP in GC were significantly associated with the pathologic T stage and a history of reflux (p < 0.05 for both). Elevated COMP expression was correlated with poorer progression-free survival (PFS) (p = 0.027). COMP expression levels were identified as an independent prognostic factor for GC (p = 0.017). COMP was linked to TCF-dependent signaling in response to ECM receptor interaction, focal adhesion, and other pathways. There was an association between COMP expression and immune infiltration, immune checkpoint genes, TMB/MSI, and mRNAsi in GC. COMP expression was inversely correlated with the sensitivity to several drugs, indicating that higher levels of COMP may reduce the effectiveness of these drugs. COMP was found to be significantly up-regulated in GC cell lines.
ConclusionsCOMP could serve as a prognostic biomarker and a potential therapeutic target for the treatment of GC.
-
-
-
Exploring Therapeutic Strategies against Monkeypox Virus Through Network Pharmacology and Bioinformatics Analysis
Authors: Zafer Saad Al Shehri, Faez Falah Alshehri and Abdur RehmanAvailable online: 23 April 2025More LessIntroductionThe emergence of the monkeypox virus (MPXV) as a zoonotic threat has necessitated the development of effective treatments, particularly after it spread to regions outside of Central and Western Africa, such as the 2003 outbreak in the United States. Our groundbreaking study identifies CDK1 and TOP2A as key proteins in the pathogenesis of MPXV infection, utilizing network pharmacology to target these proteins for the first time. CDK1 and TOP2A, previously known for their roles in cell reprogramming, emerge as critical targets in our strategy to combat the virus.
MethodsBy targeting CDK1 and TOP2A, proteins integral to cell reprogramming, with small molecules identified in our study, such as carnosic acid, rosmarinic acid, and coclaurine, we propose a novel method not only to inhibit the replication of the monkeypox virus but also to harness cellular plasticity for therapeutic purposes. The identification and targeting of these proteins with specific compounds disrupt the virus's life cycle and simultaneously enhance the efficiency of cell reprogramming.
ResultsThis dual-action approach leverages the inherent plasticity of cellular reprogramming processes to combat the virus, showcasing a pioneering step in the use of regenerative medicine principles for antiviral strategies. Moreover, molecular docking and dynamic simulations strengthen our findings by demonstrating a strong binding affinity between TOP2A and CDK1, validating the synergistic effects of our identified small molecules.
ConclusionOur research thus opens new avenues for addressing viral threats like monkeypox, utilizing the convergence of virology, network pharmacology, and cellular reprogramming to pave the way for innovative treatments.
-
-
-
Mechanisms and Characteristics of Chronic Pain in Alzheimer’s Disease: A Narrative Review
Authors: Roman Konovalov, Mina Aubakirova and Dmitriy VidermanAvailable online: 15 April 2025More LessAlzheimer’s disease is a neurodegenerative illness that significantly diminishes patients’ quality of life. Chronic pain remains a major contributor to exacerbating patients’ well-being. This comprehensive review aims to explore the mechanisms underlying pain perception in AD as well as identify potential targets and future considerations for pain relief. AD causes structural and functional alterations in the affected brain, including shrinkage of gray matter volume and disruptions in brain network connectivity. Besides memory loss, pain is a significant yet often neglected symptom. Effective pain management in AD is challenged by the adverse effects of pain-relief medications and communication difficulties, especially as the disease progresses. Both non- and pharmacological interventions are currently used to alleviate pain in AD. Pharmacological options include opioids, nonsteroidal anti-inflammatory drugs, paracetamol/acetaminophen, and adjuvant pain relievers like antidepressants and antiepileptic medications, though these are not officially approved for pain relief in AD. Non-pharmacological strategies, such as exercise therapy, music therapy, Reiki, reflexology, and behavioral therapy, are preferred to prevent the side effects of medication. However, the use of these methods is limited due to a lack of high-quality research. The review highlights a crucial link between neurological changes in AD and the perception of pain, underscoring the need for customized pain management approaches for this population. Emphasizing non-pharmacological interventions could potentially improve pain management in AD patients, provided that further research supports their effectiveness.
-
-
-
lncRNAs and circRNAs: Emerging Players in Pediatric Medulloblastoma Pathology
Authors: Ozal Beylerli, Elmar Musaev, Tatiana Ilyasova and Albert SufianovAvailable online: 15 April 2025More LessMedulloblastomas (MBs) are the most common malignant brain tumors in children, marked by aggressive growth, molecular heterogeneity, and a high propensity for cerebrospinal dissemination. Despite advancements in conventional treatments - surgery, chemotherapy, and radiation therapy—substantial challenges persist, including debilitating long-term toxicities and emerging resistance to therapy. This review examines the multifaceted roles of non-coding RNAs (ncRNAs) - particularly long non- coding RNAs (lncRNAs) and circular RNAs (circRNAs) - in pediatric medulloblastoma pathogenesis, diagnosis, and therapeutic targeting. NcRNAs exert robust regulatory effects on gene expression by modulating signaling pathways, acting as miRNA sponges, and controlling the expression of oncogenic or tumor-suppressive genes. In this study, we focus on notable examples of lncRNAs (e.g., HOTAIR, TP73-AS1) and circRNAs (e.g., circ-SKA3, circ_63706) implicated in fundamental oncogenic processes, such as cell proliferation, apoptosis, metastasis, and stem cell maintenance. We also discuss their subgroup-specific roles, emphasizing high-risk groups, such as Sonic Hedgehog (SHH) and Group 3 medulloblastomas. In parallel, we explore the potential of ncRNAs to serve as diagnostic/prognostic biomarkers, given their tissue-specific expression, stability, and detectability in biological fluids like the Cerebrospinal Fluid (CSF). Finally, we review emerging therapeutic strategies, including antisense oligonucleotides, RNA sponges, and CRISPR-based editing, aimed at disrupting oncogenic ncRNA functions or reinforcing tumor-suppressive pathways. While these strategies hold promise, major hurdles include functional redundancy, optimizing in vivo delivery, and mitigating off-target effects. By detailing these challenges and outlining future research directions, this review underscores the revolutionary potential of ncRNA-focused diagnostics and therapies for managing pediatric medulloblastomas, offering new paths for improving survival outcomes and quality of life in affected children.
-
-
-
TGF-β: The Molecular Mechanisms of Atherosclerosis - insights into SMAD Pathways and Gene Therapy Prospects
Available online: 15 April 2025More LessAtherosclerosis, a leading cause of global morbidity and mortality, is characterized by plaque formation resulting from the accumulation of fibrous elements, lipids, and calcification in arteries, leading to complications such as ischemic stroke, coronary artery disease, and myocardial infarction. Traditional treatments primarily address symptoms but fail to target underlying causes, prompting exploration of novel approaches like gene therapy. The TGF-β family, encompassing TGF-β1, TGF-β2, and TGF-β3, plays a critical role in cellular processes including proliferation, apoptosis, and migration, with its dysregulation strongly linked to cardiovascular diseases. In atherosclerosis, TGF-β influences key factors, such as macrophage cholesterol regulation, plaque stability, and vascular smooth muscle cell function, while also contributing to endothelial dysfunction-an early stage in disease development. Personalized medicine has highlighted the importance of tailoring therapies to genetic profiles, particularly regarding TGF-β pathway variations such as SNPs in TGF-β1 and TGFBR2, which could inform more precise interventions. Emerging technologies like CRISPR-Cas9 and RNA-based therapies enable targeted modulation of these genetic factors, offering new avenues to mitigate disease progression. CRISPR-Cas9 allows direct editing of gene loci linked to atherosclerosis, potentially correcting mutations or modulating expression levels, while RNA-based therapies, including siRNAs and antisense oligonucleotides, provide additional precision tools for addressing dysregulated genes. This review focuses on identifying key genes and additional molecular players involved in or regulated by the TGF-β pathway that may serve as precise targets for gene therapy intervention in atherosclerosis and related cardiovascular diseases. By targeting genes involved in cholesterol metabolism, inflammation, and endothelial function, gene therapy offers a targeted strategy to ameliorate the genetic drivers of these conditions. In summary, modulation of TGF-β signaling by gene therapy has the potential to revolutionize the treatment of atherosclerosis and other cardiovascular diseases while shedding light on the underlying genetic mechanisms of these disorders.
-
-
-
Assessment of the Toxicity of Free and PLGA-Encapsulated Phospholipase A2 CB: An In Vitro Approach
Authors: Vanessa Barbosa Pinheiro Gonçalves, Gabriel Acácio de Moura, João Pedro Viana Rodrigues, Javier Martinez Latorre, Vicente Candela-Nogueira, Paula M. Soriano-Teruel, Alba Garcia Fernandez, Ramón Martínez Máñez, Marlos de Medeiros Chaves, Claudia do Ó Pessoa, Anderson Maciel de Lima, Andreimar Martins Soares and Roberto NicoleteAvailable online: 10 April 2025More LessBackgroundThe use of bioactive molecules isolated from rattlesnake venom and other poisons has been ongoing for years. Among these bioactive compounds present in snake venom, crotoxin (CTX) stands out as a β-heterodimeric neurotoxin isolated from the venom of Crotalus durissus terrificus. Research on this toxin for its applicability to tumor inhibition has advanced to clinical trials in recent years. Consequently, concerns regarding the use of a toxin as a treatment and the search for dose control that does not trigger extreme toxicity have emerged. Thus, it is necessary to investigate alternatives for controlled delivery and targeted toxin administration.
MethodsThis study aimed to evaluate the in vitro toxic action of CTX and its phospholipase A2 CB (PLA2CB) component, both free and encapsulated in polymeric nanoparticles. The inhibitory concentration value of 50% tumor growth (IC50) for CTX and PLA2CB was determined in an initial screening against six tumor cell lines. After identifying the lowest inhibitory concentration value of 0.8 μM observed in human melanoma (SK-MEL-103), this cell line was chosen.
ResultsThe cell death mechanism triggered by CTX and PLA2CB exhibited characteristics associated with the necrotic process. However, polymeric nanoparticles containing PLA2CB (NP-PLA2CB) demonstrated apoptosis-like cell death processes in flow cytometry. PLGA polymeric nanoparticles containing PLA2CB were synthesized using microfluidics, resulting in NP-PLA2CB with a diameter of 91 ± 2.9 nm and a zeta potential of -21.8 ± 3.2 mV. The encapsulation efficiency of PLA2CB was approximately 70% (protein content).
ConclusionIt was concluded that using the phospholipase component of the toxin in a polymeric-controlled delivery and targeted system may be an alternative solution to the issues in advancing this bioactive molecule in clinical-oncological studies. However, further studies are still being conducted for targeted treatment involving this nanotechnological approach.
-
-
-
COL4A1 Promotes Gastric Cancer Progression by Regulating Tumor Invasion, Tumor Microenvironment and Drug Sensitivity
Authors: Xiaojun Qian, Wei Jia, Yuntian Li, Jian Chen, Jinguo Zhang and Yubei SunAvailable online: 07 April 2025More LessBackgroundCollagen type IV alpha 1 chain (COL4A1), which has been proven to be a potential biomarker in Gastric Cancer (GC), but its role in tumors and the tumor microenvironment (TME) needs further explanation.
MethodsWe analysed the relationship between COL4A1 and clinical characteristics based on The Cancer Genome Atlas (TCGA) database and verified by tissue microarrays as well as GC cell lines using immunohistochemistry, Q-PCR, Western blot, cell proliferation assays, colony formation assays, cell invasion and migration assays. The immune infiltration and drug sensitivity information between high and low COL4A1 expression were analysed by R package and pRRophetic package. Finally, we established a nomogram based on COL4A1 expression using the bootstrap method.
ResultsCOL4A1 was overexpressed in gastric carcinoma compared with normal gastric tissue, indicating a poor prognosis of GC patients in the TCGA database which were also validated by GC tissue microarrays. GO, KEGG and hallmark enrichment analyses indicated that COL4A1 was mainly associated with the extracellular matrix than malignant proliferation. By siRNA transfection, we found that COL4A1 knockdown inhibited cell colony formation, invasion and migration but did not affect cell proliferation, similar to previous results. Immune infiltration and drug sensitivity analysis showed that COL4A1 was negatively correlated with antitumor immunity and positively correlated with multidrug resistance. By developing a nomogram model based on 8 risk factors, including COL4A1, patients with better clinical outcomes could be accurately distinguished.
ConclusionCOL4A1 is identified as a prognostic marker and potential therapeutic target in gastric cancer. Its overexpression correlates with poor prognosis, tumor invasion, and immunosuppression. A nomogram based on COL4A1 can predict patient outcomes. Future research should validate these findings and explore targeted therapies.
-
-
-
Development of Potential Pharmacological Targets to Normalize Gene Expression in Islets of Type 2 Diabetic Patients
Available online: 07 April 2025More LessBackgroundType 2 diabetes (T2D) is a disease of high prevalence that is expected to continue increasing despite the pharmacological treatments available; in most cases, it is difficult to control. Therefore, more research on experimental drugs is necessary to propose better treatments.
ObjectiveThis study aimed to identify the molecular alterations of pancreatic islets in type 2 diabetes through multi-omics data integration and possible pharmacological targets using bioinformatics methods.
MethodsIn this study, the OmicsNet tool was used to integrate the multi-omics data associated with T2D, and the protein-protein interaction was visualized. Then, gene ontology and KEGG pathways analyses were carried out. Using the DrugRep server, the hub genes obtained underwent a virtual screening with experimental drugs, and twelve experimental drugs were selected to execute the molecular docking by CB-Dock2. Finally, the interactions were displayed in BIOVIA software.
ResultsOur results showed that the main molecular alterations of pancreatic islets in T2D were enzyme binding, mitochondrial metabolism, transcription factors, etc. They were involved in glucose uptake, receptor insulin signaling, and secretion. The molecular docking showed that SRC, AKT1, CREBBP, and HSP90AA1 were therapeutic targets for DB02729, DB04877, DB07970, DB07789, and DB03373.
ConclusionWe identified some alterations in the pancreas of patients with T2D, ten hub genes, and five experimental drugs that could potentially correct gene expression abnormalities. However, further studies are required to validate these results.
-
-
-
Mapping the Multifaceted Roles of ZNF280A: Insights into Prognosis, Immunity, and Function Across Pan-Cancer
Authors: Xiong Qin, Boyuan Qiu, Kai Xiong, Chuangming Huang, Xi Xie, Dejie Lu and Bo ZhuAvailable online: 07 April 2025More LessIntroductionZNF280A, a pivotal member of the zinc finger protein family, is significantly involved in vital cellular functions including cell proliferation, programmed cell death, cellular invasion, metastasis, and resistance to therapeutic drugs across various malignancies. However, its comprehensive role in pan-cancer has not been thoroughly investigated.
MethodsThis research aims to elucidate the oncogenic and immunological functions of ZNF280A across different types of cancer. We conducted an extensive analysis of ZNF280A expression levels, prognostic significance, functional pathways, methylation status, and interactions with immune cells, while also examining immune infiltration patterns and responses to immunotherapy using diverse databases.
ResultsOur findings reveal that ZNF280A expression is significantly upregulated in numerous cancers, correlating with adverse patient prognosis. This association appears to be linked to its involvement in key cancer-related pathways, including the Ras signaling pathway, and its correlation with ZNF280A methylation levels, microsatellite instability (MSI), tumor mutational burden (TMB), and the dynamics of immune cells. Notably, ZNF280A seems to undermine anti-tumor immunity and the effectiveness of immunotherapeutic approaches by promoting the infiltration of immune cells and compromising the functionality of cytotoxic T lymphocytes.
ConclusionThese findings suggest that ZNF280A holds promise as a valuable indicator for forecasting patient outcomes and assessing the effectiveness of immunotherapy, thereby opening avenues for further exploration into targeted therapeutic approaches.
-
-
-
In Silico ADMET Studies, Molecular Docking and Molecular Dynamics Simulation of Thiadiazole Derivatives for the Identification of Putative HsaA Monooxygenase Inhibitors
Available online: 03 April 2025More LessIntroductionThe rise of drug-resistant strains of Mycobacterium tuberculosis (Mtb) represents a substantial public health challenge. Current TB treatments involve the combination of several antibiotics and other agents. However, the development of drug resistance, reduced bioavailability, and elevated toxicity have rendered most of the drugs less effective.
MethodsTo resolve this problem, the identification of novel anti-tuberculosis agents with novel mechanisms of action is the need of the hour. HsaA monooxygenase is an enzyme involved in cholesterol metabolism, particularly in certain strains of Mycobacterium bacteria. This research focuses on discovering new inhibitors for HsaA from a pool of 40 compounds using computational techniques like molecular docking and Molecular Dynamics (MD) simulations along with comparing it with GSK2556286.
ResultsDocking studies revealed that AK05 and AK13 showed good binding affinity as compared to GSK2556286. The docking scores of AK05, AK13, and GSK2556286 are -9.4, -9.0, and -8.9 kcal/mol, respectively. ADMET studies showed that these thiadiazole derivatives can be investigated as lead molecules for the development of novel antituberculosis drugs. MD simulation studies showed that both of the compounds AK05 and AK13 were stable at the binding site with RMSD below 0.25 nm.
ConclusionAll these findings demonstrated that AK05 and AK13 could be used as potent compounds for the development of HsaA monooxygenase inhibitors.
-
-
-
Immunogenic Cell Death-relevant Molecular Patterns, Prognostic Genes, and Implications for Immunotherapy in Ovarian Cancer
Authors: Pijun Gong, Jia Li, Yinbin Zhang and Shuqun ZhangAvailable online: 03 April 2025More LessBackgroundOvarian cancer (OV) is one of the deadliest gynecologic cancers, and approximately 75% of serous ovarian cancer (SOC) patients are diagnosed at advanced stages due to the lack of effective biomarkers.
ObjectiveImmunogenic cell death (ICD) has been investigated in many comprehensive studies, and the role of ICD in ovarian cancer and its impact on immunotherapy is not yet known.
MethodsThe NMF clustering analysis was employed to categorize OV samples into different subgroups. Survival, mutation, and CNV analyses were performed in these clusters. ESTIMATE, CIBERSORT, TIDE, and drug sensitivity analyses (based on GDSC) were also performed on the subtypes. Then, differentially expressed immunogenic cell death genes (DE-ICDGs) in OV were obtained by crossing the DEGs between cluster3 vs. cluster1, DEGs from the TCGA-GTEx dataset, and DEGs from the GSE40595 dataset. Functional enrichment analysis of DE-ICDGs was then performed. The signature genes related to the prognosis of OV in three OV datasets were excavated by drawing Kaplan-Meier curves. Finally, quantitative real-time PCR (qRT-PCR) was performed to verify the expression trends of the signature genes.
ResultsThe NMF clustering analysis categorized OV samples into three distinct groups according to the expression levels of ICDGs, with differential analysis indicating that Cluster3 represented the subgroup with high ICD expression. Mutation and CNV analysis did not differ significantly between clusters, but Amp and Del's numbers did. Immuno-infiltration analysis revealed that cluster3 showed significant differences from cluster1 and cluster2. Immunotherapy and drug sensitivity analysis showed differences in immunotherapy and chemotherapy sensitivity between the clusters. The DEGs in cluster3 vs. cluster1, TCGA-GTEx dataset and GSE40595 dataset were intersected to obtain a total of 71 DE-ICDGs, and functional enrichment result suggested that the DE-ICDGs were significantly correlated with inflammatory response, complement system and positive regulation of cytokine production. 2 DE-ICDGs (FN1 and LUM) were identified that were associated with OV prognosis and were validated significantly down-regulated in the SOC group with PCR.
ConclusionWe identified ICD-associated subtypes of OV and mined 2 OV prognostic genes (FN1 and LUM) associated with ICD, which may have important implications for OV prognosis and therapy.
-
-
-
Machine Learning-based Gene Biomarker Identification for Improving Prognosis and Therapy in Hepatocellular Carcinoma
Authors: Lingyan Deng, Lei Dou, Xinyu Huang, Peng Wang and Na ShenAvailable online: 03 April 2025More LessIntroductionTraditional clinical evaluations based on pathological classification have shown limited effectiveness in predicting prognosis and guiding treatment for patients with hepatocellular carcinoma (HCC). This study aims to identify a robust molecular biomarker for improving prognosis and therapy in HCC.
MethodsThe International Cancer Genome Consortium (ICGC), Gene Expression Omnibus (GEO), and The Cancer Genome Atlas (TCGA) provided expression data and clinicopathological information for several cohorts. First, Cox regression analysis and differentially expressed analysis were performed to identify robust prognostic genes. Next, machine learning algorithms, including 101 statistical models, were employed to pinpoint key genes in HCC. Single-cell sequencing analysis was conducted to explore the potential subcellular functions of each key gene. Based on these findings, an HCC Prognosis-Related Index (HPRI) was developed from the identified key genes, and HPRI-based nomogram models were validated across multiple cohorts. Additionally, tumor microenvironment analysis and drug sensitivity analysis were performed further to assess the clinical significance of the HPRI in HCC.
ResultsA total of 36 robust prognostic genes with differential expression in HCC were identified, from which seven key genes-DCAF13, EEF1E1, GMPS, OLA1, PLOD2, PABPC1, and PPARGC1A-were filtered using machine learning algorithms. Except for PPARGC1A, all these genes were highly expressed in malignant cells, followed by fibroblasts. Notably, we developed the HPRI based on the key genes and validated its clinical relevance. Results demonstrated that the HPRI and HPRI-derived nomogram models had good predictive performance across multiple cohorts. Following tumor microenvironment analysis revealed that a high HPRI was linked to a higher likelihood of immune evasion. Drug sensitivity analysis suggested that patients with a high HPRI might benefit from chemotherapeutic agents like sorafenib, as well as novel compounds such as ML323 and MK-1775.
ConclusionOur study demonstrates a well-rounded approach by integrating gene expression, machine learning, tumor microenvironment analysis, and drug sensitivity profiling. HPRI may serve as a promising predictor for guiding prognosis and personalized treatment in HCC.
-
-
-
Commentary on the Role of Medicinal Cannabis in Healthy Aging and Neuroprotection
Authors: Sabrina Rosicler Salas, Florencia Musso and Ana Clara PascualAvailable online: 27 March 2025More Less
-
-
-
Target Selectivity of Cysteine Protease Inhibitors: A Strategy to Address Neglected Tropical Diseases
Available online: 25 March 2025More LessNeglected tropical diseases (NTDs) are a group of infectious diseases that mainly affect the population living in poverty and without basic sanitation, causing severe damage to countries' economies. Among them, Leishmaniasis, Chagas disease, sleeping sickness, and related diseases such as Malaria stand out, which, despite being well known, have limited treatments based on old drugs and have high rates of parasite resistance. In addition, current drugs have an uncertain mechanism of action, and there is a need to identify new mechanisms to overcome problems related to side effects and resistance. In a sense, exploring cysteine proteases (CPs) may be a promising alternative that can lead to discovering innovative drugs that may be useful against these diseases. However, exploring CPs in drug discovery should be a cautious and rational process since parasitic CPs show a high degree of homology with human CPs, raising the need to identify increasingly specific patterns of target selectivity to identify safer drugs with fewer side effects. Finally, in this review, we present the main aspects related to the design of CP inhibitor drugs, highlighting structural features of ligands and targets that can be used in the design of new compounds against Leishmaniasis (LmCPB), Chagas disease (Cruzain), sleeping sickness (rhodesain) and malaria (falcipain). We hope our findings can guide researchers in searching for an innovative drug that can be used against these diseases that threaten the world population's health.
-
-
-
Identification of a Protein-truncating Variant in SCAPER Gene Causing Syndromic form of Intellectual Disability
Available online: 25 March 2025More LessBackgroundIntellectual disability (ID) is characterized by impairments in cognitive functioning and adaptive behavior. Globally, it affects 1-3% of the general population, with an increased prevalence in consanguineous families. It is a clinically heterogeneous disorder that can manifest as a variable phenotype. Intellectual developmental disorder and retinitis pigmentosa (IDDRP) is a rare syndrome in which patients present with both ID and retinitis pigmentosa.
Aims and ObjectivesThis study examined a consanguineous family to identify disease-associated pathogenic mutations and elucidate their potential functional impact in patients with IDDRP.
MethodologyClinical assessment of the patients revealed characteristics consistent with both intellectual disability (ID) and retinitis pigmentosa. Individuals affected by IDDRP were subjected to whole exome sequencing (WES), and the identified candidate pathogenic variants were validated by Sanger sequencing. Computational analyses were conducted to evaluate the impact of these mutations on the protein structure and function.
ResultsWES identified a protein-truncating variant, c.2605A>T (p.Lys869Ter), in the S-phase cyclin A-associated protein in the endoplasmic reticulum (SCAPER) gene. SCAPER has previously been reported to cause IDDRP. In silico analyses revealed structural and interactional alterations in the SCAPER protein. This variant is novel in the Pakistani population and has not been previously reported. This variant exhibits an autosomal recessive mode of inheritance and segregates among the investigated affected and unaffected family members.
ConclusionThe present study expands the spectrum of disease-causing variants in SCAPER and will contribute to a better understanding of the genetic etiology of IDDRP.
-
-
-
The Protective Effects of Ferula assa-foetida L. oleo-gum Resin on Diabetic Neuropathy in Animal Models
Available online: 18 March 2025More LessBackgroundFerula assa-foetida L. has traditionally been used to treat various diseases, including infections, asthma, stomach aches, and flatulence. Previous studies have highlighted its anti-inflammatory, anti-oxidative, anti-diabetic, neuroprotective, and nerve-stimulating properties.
ObjectiveThis study aimed to evaluate the therapeutic effects and molecular mechanisms of action of the oleo-gum resin from Ferula assa-foetida L. in an animal model of diabetic neuropathy (DN).
MethodsThe essential oil of oleo-gum resin from Ferula assa-foetida L. was analyzed using Gas Chromatography-Mass Spectrometric Analysis. Forty-two male Wistar rats were included in the study, with diabetes induced via streptozotocin (STZ) injection. The rats were randomly assigned to seven groups (n=6 per group) and treated with different doses of Ferula assa-foetida L. extract (100, 200 mg/kg/day) or oil (10, 20 mg/kg/day), alongside appropriate control groups. After a five-week treatment period, samples of dorsal root ganglia (DRG), pancreatic tissue, and blood were collected. Key parameters assessed included blood glucose and insulin levels, motor function tests, oxidative stress protein generation, pro-inflammatory cytokine gene expression, and histopathological analyses.
ResultsTreatment with various doses of Ferula assa-foetida L. extract or oil, as well as gabapentin, led to significant improvements. These included reduced blood sugar levels, increased insulin levels, and improved glycemic control. Motor function was enhanced, while the expression of pro-inflammatory cytokines and oxidative stress markers was significantly reduced.
ConclusionThese findings indicate a promising therapeutic approach for managing DN. Further studies are warranted to elucidate the underlying mechanisms of Ferula assa-foetida L.'s beneficial effects in DN.
-
-
-
Analysis of the Main Directions in the Development of Mono and Combination Pharmacotherapy Acting on Hormonal Signaling Pathways of Breast Cancer According to the FDA Databases and Clinicaltrials.gov
Available online: 17 March 2025More LessBackgroundHormone signaling plays a significant role in cancerogenesis. This review presents a comprehensive analysis of FDA-approved drugs, as well as recent clinical trials of drugs acting on hormone signaling pathways. It discusses traditional methods of hormonal cancer therapy and identifies new mechanisms in cancer hormonal signaling. The review has made use of the databases Clinicaltrials.gov and PubMed to find new trends in the development of anti-cancer drugs and related hormonal-dependent mechanisms of breast cancer.
MethodsA search of the Drugs@FDA database was conducted to identify pharmaceutical agents approved by the FDA for the treatment of hormone-dependent breast tumors. The clinical trials for these drugs were obtained from ClinicalTrials.gov. The search was expanded from 2018 to early 2024. The keywords used in the search for information were breast cancer, hormonal signaling pathways, luminal types of breast cancer, and hormone-dependent breast cancer. The drug targets, pharmacological information, and clinical data were obtained from the PubMed database.
ResultsAn analysis of the ClinicalTrials.gov database revealed that the pharmacokinetic direction has significant potential for the discovery of new drugs. The metabolites of SERMs metabolites and their combination have the potential to enhance the efficiency of prodrug. Small molecules can penetrate through the blood-brain-barrier, making them a promising avenue for treating brain metastasis. New SERDs, such as ZB716, exhibit superior oral bioavailability compared to fulvestrant, which is solely administered via injection. The investigation of the signaling hormonal pathways of BC allows for the enhancement of personalised anti-cancer therapy and the overcoming of resistance. Consequently, the specific mechanism of action of ARV-471 (the PROTAC group) enhances sensitivity to drug-resistant targets and affects non-enzymatic functions. Furthermore, PROTACs exhibit markedly enhanced target selectivity in comparison to traditional inhibitors. The combination of endocrine therapy for breast cancer with compounds that target mTOR, PI3K, CDK4/6, and other pathways holds considerable promise. The combination of letrozole with everolimus demonstrated the most promising outcome, with a median progression-free survival period of 22 months, a significant improvement over the 9-month median progression-free survival observed in monotherapy with letrozole.
ConclusionIt is evident that traditional endocrine treatments play a pivotal role in the management of HR+ BC. However, the emergence of resistance necessitates the development of novel therapeutic strategies. These strategies should be based on pharmacokinetics, further investigation of the molecular signaling pathways of BC, such as new SERMs, SERDs, PROTACs, as well as new drug groups, like SERCAs, CERANs, SHERPAs. Combination therapy represents the most promising avenue for BC treatment. While PROTAC combination with new monotherapeutic agents for BC treatment has yet to be investigated, we believe that such combinations have the potential to make the treatment more selective, effective, and personalised in the future.
-