Skip to content
2000
image of Network Pharmacology and Validation Experiments Reveal Cryptotanshinone Inhibits Acute Myeloid Leukemia Progression by Activating Endoplasmic Reticulum Stress

Abstract

Background

Acute myeloid leukemia (AML) is the most common adult hematologic malignancy, with relapse and drug resistance posing major challenges despite treatment advances. Cryptotanshinone (CTS), a diterpenoid compound derived from , exhibits anticancer activity in various tumors. However, its role and mechanisms in AML remain unclear. This study aims to investigate the inhibitory effects of CTS on AML cells and its potential mechanisms.

Methods

Network pharmacology was employed to identify potential AML-related targets of CTS, and a disease-drug-target interaction network was constructed. The effects of CTS on KG-1 cells were assessed using CCK-8 proliferation assays, cell cycle analysis and apoptosis detection. Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were performed to analyze the regulatory effects of CTS on the endoplasmic reticulum stress (ERS) signaling pathway. The role of the Hippo-YAP signaling pathway in CTS-induced AML inhibition was further explored.

Results

Network pharmacology analysis identified key AML-related targets of CTS, enriched in multiple cancer-related signaling pathways. Experimental results showed that CTS inhibited KG-1 cell proliferation in a dose-dependent manner, induced S-phase arrest, and promoted apoptosis. Furthermore, CTS treatment significantly upregulated ERS-related key proteins. While YAP overexpression attenuated CTS-induced ERS activation and reduced apoptosis levels.

Conclusion

This study indicates that CTS inhibits AML cell proliferation and induces apoptosis while activating the ERS signaling pathway. However, aberrant activation of the Hippo-YAP pathway weakens this effect. These findings provide novel theoretical insights into potential therapeutic strategies for AML.

Loading

Article metrics loading...

/content/journals/cmc/10.2174/0109298673348269250611042934
2025-07-01
2025-09-08
Loading full text...

Full text loading...

References

  1. Short N.J. Rytting M.E. Cortes J.E. Acute myeloid leukaemia. Lancet 2018 392 10147 593 606 10.1016/S0140‑6736(18)31041‑9 30078459
    [Google Scholar]
  2. Bhansali R.S. Pratz K.W. Lai C. Recent advances in targeted therapies in acute myeloid leukemia. J. Hematol. Oncol. 2023 16 1 29 10.1186/s13045‑023‑01424‑6 36966300
    [Google Scholar]
  3. Kayser S. Levis M.J. The clinical impact of the molecular landscape of acute myeloid leukemia. Haematologica 2023 108 2 308 320 10.3324/haematol.2022.280801 36722402
    [Google Scholar]
  4. Yates J.W. Wallace H.J. Jr Ellison R.R. Holland J.F. Cytosine arabinoside (NSC-63878) and daunorubicin (NSC-83142) therapy in acute nonlymphocytic leukemia. Cancer Chemother. Rep. 1973 57 4 485 488 4586956
    [Google Scholar]
  5. Fernandez H.F. Sun Z. Yao X. Litzow M.R. Luger S.M. Paietta E.M. Racevskis J. Dewald G.W. Ketterling R.P. Bennett J.M. Rowe J.M. Lazarus H.M. Tallman M.S. Anthracycline dose intensification in acute myeloid leukemia. N. Engl. J. Med. 2009 361 13 1249 1259 10.1056/NEJMoa0904544 19776406
    [Google Scholar]
  6. De Rooij J. Zwaan C. Van den Heuvel-Eibrink M. Pediatric AML: From biology to clinical management. J. Clin. Med. 2015 4 1 127 149 10.3390/jcm4010127 26237023
    [Google Scholar]
  7. Rodriguez-Arboli E Othus M Orvain C Second allogeneic hematopoietic cell transplantation for relapsed adult acute myeloid leukemia: Outcomes and prognostic factors. Transplant Cell Ther 2024 30 9 905 10.1016/j.jtct.2024.06.019 38914227
    [Google Scholar]
  8. Thol F. Ganser A. Treatment of relapsed acute myeloid leukemia. Curr. Treat. Options Oncol. 2020 21 8 66 10.1007/s11864‑020‑00765‑5 32601974
    [Google Scholar]
  9. Jiang S. Yan H. Lu X. Wei R. Chen H. Zhang A. Shi W. Xia L. How to improve the outcomes of elderly acute myeloid leukemia patients through allogeneic hematopoietic stem cell transplantation. Front. Immunol. 2023 14 1102966 10.3389/fimmu.2023.1102966 37207218
    [Google Scholar]
  10. Crossnohere N.L. Richardson D.R. Reinhart C. O’Donoghue B. Love S.M. Smith B.D. Bridges J.F.P. Side effects from acute myeloid leukemia treatment: Results from a national survey. Curr. Med. Res. Opin. 2019 35 11 1965 1970 10.1080/03007995.2019.1631149 31188058
    [Google Scholar]
  11. Thol F. Döhner H. Ganser A. How I treat refractory and relapsed acute myeloid leukemia. Blood 2024 143 1 11 20 10.1182/blood.2023022481 37944143
    [Google Scholar]
  12. Vago L. Gojo I. Immune escape and immunotherapy of acute myeloid leukemia. J. Clin. Invest. 2020 130 4 1552 1564 10.1172/JCI129204 32235097
    [Google Scholar]
  13. Zhang X. Qiu H. Li C. Cai P. Qi F. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer. Biosci. Trends 2021 15 5 283 298 10.5582/bst.2021.01318 34421064
    [Google Scholar]
  14. Xie J. Huang H. Li X. Ouyang L. Wang L. Liu D. Wei X. Tan P. Tu P. Hu Z. The role of traditional chinese medicine in cancer immunotherapy: Current status and future directions. Am. J. Chin. Med. 2023 51 7 1627 1651 10.1142/S0192415X2350074X 37638827
    [Google Scholar]
  15. Orgah J.O. He S. Wang Y. Jiang M. Wang Y. Orgah E.A. Duan Y. Zhao B. Zhang B. Han J. Zhu Y. Pharmacological potential of the combination of Salvia miltiorrhiza (Danshen) and Carthamus tinctorius (Honghua) for diabetes mellitus and its cardiovascular complications. Pharmacol. Res. 2020 153 104654 10.1016/j.phrs.2020.104654 31945473
    [Google Scholar]
  16. Dalil D. Iranzadeh S. Kohansal S. Anticancer potential of cryptotanshinone on breast cancer treatment; A narrative review. Front. Pharmacol. 2022 13 979634 10.3389/fphar.2022.979634 36188552
    [Google Scholar]
  17. Li H. Gao C. Liu C. Liu L. Zhuang J. Yang J. Zhou C. Feng F. Sun C. Wu J. A review of the biological activity and pharmacology of cryptotanshinone, an important active constituent in Danshen. Biomed. Pharmacother. 2021 137 111332 10.1016/j.biopha.2021.111332 33548911
    [Google Scholar]
  18. Carpi S. Quarta S. Doccini S. Saviano A. Marigliano N. Polini B. Massaro M. Carluccio M.A. Calabriso N. Wabitsch M. Santorelli F.M. Cecchini M. Maione F. Nieri P. Scoditti E. Tanshinone IIA and cryptotanshinone counteract inflammation by regulating gene and mirna expression in human SGBS adipocytes. Biomolecules 2023 13 7 1029 10.3390/biom13071029 37509065
    [Google Scholar]
  19. Park I.J. Kim M.J. Park O.J. Park M.G. Choe W. Kang I. Kim S.S. Ha J. Cryptotanshinone sensitizes DU145 prostate cancer cells to Fas(APO1/CD95)-mediated apoptosis through Bcl-2 and MAPK regulation. Cancer Lett. 2010 298 1 88 98 10.1016/j.canlet.2010.06.006 20638780
    [Google Scholar]
  20. Vundavilli H. Datta A. Sima C. Hua J. Lopes R. Bittner M. Cryptotanshinone induces cell death in lung cancer by targeting aberrant feedback loops. IEEE J. Biomed. Health Inform. 2020 24 8 2430 2438 10.1109/JBHI.2019.2958042 31825884
    [Google Scholar]
  21. Wang Y. Zhang Z. Auyeung K.K.W. Cho C.H. Yung K.K.L. Ko J.K.S. Cryptotanshinone-Induced p53-Dependent Sensitization of Colon Cancer Cells to Apoptotic Drive by Regulation of Calpain and Calcium Homeostasis. Am. J. Chin. Med. 2020 48 5 1179 1202 10.1142/S0192415X20500585 32668972
    [Google Scholar]
  22. Kim C. Terado T. Tambe Y. Mukaisho K.I. Kageyama S. Kawauchi A. Inoue H. Cryptotanshinone, a novel PDK 4 inhibitor, suppresses bladder cancer cell invasiveness via the mTOR/β-catenin/N-cadherin axis. Int. J. Oncol. 2021 59 1 40 10.3892/ijo.2021.5220 33982789
    [Google Scholar]
  23. Wang T. Yin S. Gu J. Li J. Zhang M. Shan J. Wu X. Li Y. Study on the intervention mechanism of cryptotanshinone on human A2780 ovarian cancer cell line using GC-MS-based cellular metabolomics. Pharmaceuticals 2023 16 6 861 10.3390/ph16060861 37375808
    [Google Scholar]
  24. Park I Yang W Nam S. Cryptotanshinone induces G1 cell cycle arrest and autophagic cell death by activating the AMP-activated protein kinase signal pathway in HepG2 hepatoma. Apoptosis 2014 19 4 615 628 10.1007/s10495‑013‑0929‑0 24173372
    [Google Scholar]
  25. Ke F. Wang Z. Song X. Ma Q. Hu Y. Jiang L. Zhang Y. Liu Y. Zhang Y. Gong W. Cryptotanshinone induces cell cycle arrest and apoptosis through the JAK2/STAT3 and PI3K/Akt/NFkB pathways in cholangiocarcinoma cells. Drug Des. Devel. Ther. 2017 11 1753 1766 10.2147/DDDT.S132488 28670110
    [Google Scholar]
  26. Ashrafizadeh M. Zarrabi A. Orouei S. Saberifar S. Salami S. Hushmandi K. Najafi M. Recent advances and future directions in anti-tumor activity of cryptotanshinone: A mechanistic review. Phytother. Res. 2021 35 1 155 179 10.1002/ptr.6815 33507609
    [Google Scholar]
  27. Dong B. Liang Z. Chen Z. Li B. Zheng L. Yang J. Zhou H. Qu L. Cryptotanshinone suppresses key onco-proliferative and drug-resistant pathways of chronic myeloid leukemia by targeting STAT5 and STAT3 phosphorylation. Sci. China Life Sci. 2018 61 9 999 1009 10.1007/s11427‑018‑9324‑y 30054832
    [Google Scholar]
  28. Cheng R. Huang Y. Fang Y. Wang Q. Yan M. Ge Y. Cryptotanshinone enhances the efficacy of Bcr-Abl tyrosine kinase inhibitors via inhibiting STAT3 and eIF4E signalling pathways in chronic myeloid leukaemia. Pharm. Biol. 2021 59 1 891 901 10.1080/13880209.2021.1944224 34214017
    [Google Scholar]
  29. Chen X Shi C He M. Endoplasmic reticulum stress: Molecular mechanism and therapeutic targets. Signal Transduct Target Ther 2023 8 1 352 10.1038/s41392‑023‑01570‑w 37709773
    [Google Scholar]
  30. Liao H. Liu S. Ma Q. Huang H. Goel A. Torabian P. Mohan C.D. Duan C. Endoplasmic reticulum stress induced autophagy in cancer and its potential interactions with apoptosis and ferroptosis. Biochim. Biophys. Acta Mol. Cell Res. 2025 1872 1 119869 10.1016/j.bbamcr.2024.119869 39490702
    [Google Scholar]
  31. Hetz C. Zhang K. Kaufman R.J. Mechanisms, regulation and functions of the unfolded protein response. Nat. Rev. Mol. Cell Biol. 2020 21 8 421 438 10.1038/s41580‑020‑0250‑z 32457508
    [Google Scholar]
  32. Hughes D. Mallucci G.R. The unfolded protein response in neurodegenerative disorders – therapeutic modulation of the PERK pathway. FEBS J. 2019 286 2 342 355 10.1111/febs.14422 29476642
    [Google Scholar]
  33. Grenier A. Poulain L. Mondesir J. Jacquel A. Bosc C. Stuani L. Mouche S. Larrue C. Sahal A. Birsen R. Ghesquier V. Decroocq J. Mazed F. Lambert M. Andrianteranagna M. Viollet B. Auberger P. Lane A.A. Sujobert P. Bouscary D. Sarry J.E. Tamburini J. AMPK-PERK axis represses oxidative metabolism and enhances apoptotic priming of mitochondria in acute myeloid leukemia. Cell Rep. 2022 38 1 110197 10.1016/j.celrep.2021.110197 34986346
    [Google Scholar]
  34. Philippe C. Jaud M. Féral K. Gay A. Van Den Berghe L. Farce M. Bousquet M. Pyronnet S. Mazzolini L. Rouault-Pierre K. Touriol C. Pivotal role of the endoplasmic reticulum stress-related XBP1s/miR- 22/SIRT1 axis in acute myeloid leukemia apoptosis and response to chemotherapy. Leukemia 2024 38 8 1764 1776 10.1038/s41375‑024‑02321‑8 38909090
    [Google Scholar]
  35. Zhou C Li J Du J. HMGCS1 drives drug-resistance in acute myeloid leukemia through endoplasmic reticulum-UPR-mitochondria axis. Biomed Pharmacother 2021 137 111378 10.1016/j.biopha.2021.111378 33601148
    [Google Scholar]
  36. Egan G. Schimmer A.D. Contribution of metabolic abnormalities to acute myeloid leukemia pathogenesis. Trends Cell Biol. 2023 33 6 455 462 10.1016/j.tcb.2022.11.004 36481232
    [Google Scholar]
  37. Zhou H. Jiang Y. Huang Y. Zhong M. Qin D. Xie C. Pan G. Tan J. Deng M. Zhao H. Zhou Y. Tang Y. Lai Q. Fang Z. Luo Y. Jiang Y. Xu B. Zha J. Therapeutic inhibition of PPARα-HIF1α-PGK1 signaling targets leukemia stem and progenitor cells in acute myeloid leukemia. Cancer Lett. 2023 554 215997 10.1016/j.canlet.2022.215997 36396101
    [Google Scholar]
  38. Xie C. Zhou H. Qin D. Zheng H. Tang Y. Li W. Zhou J. Liu L. Yu X. Duan H. Zhou Y. Li Z. Fang Z. Luo Y. Carter B.Z. Xu B. Zha J. Bcl-2 inhibition combined with PPARα activation synergistically targets leukemic stem cell-like cells in acute myeloid leukemia. Cell Death Dis. 2023 14 8 573 10.1038/s41419‑023‑06075‑6 37644011
    [Google Scholar]
  39. Wang Y. Bin T. Tang J. Xu X.J. Lin C. Lu B. Sun T.T. Construction of an acute myeloid leukemia prognostic model based on m6A-related efferocytosis-related genes. Front. Immunol. 2023 14 1268090 10.3389/fimmu.2023.1268090 38077322
    [Google Scholar]
  40. Senapati J. Kadia T.M. Ravandi F. Maintenance therapy in acute myeloid leukemia: Advances and controversies. Haematologica 2023 108 9 2289 2304 10.3324/haematol.2022.281810 37139599
    [Google Scholar]
  41. Strickland S.A. Vey N. Diagnosis and treatment of therapy-related acute myeloid leukemia. Crit. Rev. Oncol. Hematol. 2022 171 103607 10.1016/j.critrevonc.2022.103607 35101585
    [Google Scholar]
  42. Lv S. Li A. Wu H. Wang X. Observation of clinical efficacy and toxic and side effects of pirarubicin combined with cytarabine on acute myeloid leukemia. Oncol. Lett. 2019 17 3 3411 3417 10.3892/ol.2019.9966 30867778
    [Google Scholar]
  43. Jonas B.A. On the origin of relapse in AML. Sci. Transl. Med. 2017 9 398 eaan8205 10.1126/scitranslmed.aan8205 28701479
    [Google Scholar]
  44. Stelmach P. Trumpp A. Leukemic stem cells and therapy resistance in acute myeloid leukemia. Haematologica 2023 108 2 353 366 10.3324/haematol.2022.280800 36722405
    [Google Scholar]
  45. Chen X. Chen X. Huang Y. Lin J. Wu Y. Chen Y. TCP1 increases drug resistance in acute myeloid leukemia by suppressing autophagy via activating AKT/mTOR signaling. Cell Death Dis. 2021 12 11 1058 10.1038/s41419‑021‑04336‑w 34750375
    [Google Scholar]
  46. Siccardi A.G. Shapiro B.M. Hirota Y. Jacob F. On the process of cellular division in Escherichia coli. J. Mol. Biol. 1971 56 3 475 490 10.1016/0022‑2836(71)90395‑0 4929576
    [Google Scholar]
  47. Li Z Feiyue Z Gaofeng L. Traditional Chinese medicine and lung cancer--From theory to practice. Biomed Pharmacother 2021 137 111381 10.1016/j.biopha.2021.111381 33601147
    [Google Scholar]
  48. Zhao H. He M. Zhang M. Sun Q. Zeng S. Chen L. Yang H. Liu M. Ren S. Meng X. Xu H. Colorectal cancer, gut microbiota and traditional chinese medicine: A systematic review. Am. J. Chin. Med. 2021 49 4 805 828 10.1142/S0192415X21500385 33827382
    [Google Scholar]
  49. Yang X. She X. Zhao Z. Ren J. Wang P. Dong H. Zhao Q. Liu J. In vitro and vivo anti-tumor activity and mechanisms of the new cryptotanshinone derivative 11 against hepatocellular carcinoma. Eur. J. Pharmacol. 2024 971 176522 10.1016/j.ejphar.2024.176522 38522640
    [Google Scholar]
  50. Song H. Jiang L. Yang W. Dai Y. Wang Y. Li Z. Liu P. Chen J. Cryptotanshinone alleviates lipopolysaccharide and cigarette smoke-induced chronic obstructive pulmonary disease in mice via the Keap1/Nrf2 axis. Biomed. Pharmacother. 2023 165 115105 10.1016/j.biopha.2023.115105 37399718
    [Google Scholar]
  51. Luo H. Vong C.T. Chen H. Gao Y. Lyu P. Qiu L. Zhao M. Liu Q. Cheng Z. Zou J. Yao P. Gao C. Wei J. Ung C.O.L. Wang S. Zhong Z. Wang Y. Naturally occurring anti-cancer compounds: Shining from Chinese herbal medicine. Chin. Med. 2019 14 1 48 10.1186/s13020‑019‑0270‑9 31719837
    [Google Scholar]
  52. Wang L. Wang R. Wei G. Zhang R. Zhu Y. Wang Z. Wang S. Du G. Cryptotanshinone alleviates chemotherapy-induced colitis in mice with colon cancer via regulating fecal-bacteria-related lipid metabolism. Pharmacol. Res. 2021 163 105232 10.1016/j.phrs.2020.105232 33027716
    [Google Scholar]
  53. Ge Y. Cheng R. Zhou Y. Shen J. Peng L. Xu X. Dai Q. Liu P. Wang H. Ma X. Jia J. Chen Z. Cryptotanshinone induces cell cycle arrest and apoptosis of multidrug resistant human chronic myeloid leukemia cells by inhibiting the activity of eukaryotic initiation factor 4E. Mol. Cell. Biochem. 2012 368 1-2 17 25 10.1007/s11010‑012‑1338‑3 22614784
    [Google Scholar]
  54. Wu C.F. Seo E.J. Klauck S.M. Efferth T. Cryptotanshinone deregulates unfolded protein response and eukaryotic initiation factor signaling in acute lymphoblastic leukemia cells. Phytomedicine 2016 23 2 174 180 10.1016/j.phymed.2015.12.011 26926179
    [Google Scholar]
  55. Chen X. Cubillos-Ruiz J.R. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat. Rev. Cancer 2021 21 2 71 88 10.1038/s41568‑020‑00312‑2 33214692
    [Google Scholar]
  56. Cubillos-Ruiz J.R. Bettigole S.E. Glimcher L.H. Tumorigenic and immunosuppressive effects of endoplasmic reticulum stress in cancer. Cell 2017 168 4 692 706 10.1016/j.cell.2016.12.004 28187289
    [Google Scholar]
  57. de la Calle C.M. Shee K. Yang H. Lonergan P.E. Nguyen H.G. The endoplasmic reticulum stress response in prostate cancer. Nat. Rev. Urol. 2022 19 12 708 726 10.1038/s41585‑022‑00649‑3 36168057
    [Google Scholar]
  58. Kou J. Shi J. He Y. Hao J. Zhang H. Luo D. Song J. Yan Y. Xie X. Du G. Pang X. Luteolin alleviates cognitive impairment in Alzheimer’s disease mouse model via inhibiting endoplasmic reticulum stress-dependent neuroinflammation. Acta Pharmacol. Sin. 2022 43 4 840 849 10.1038/s41401‑021‑00702‑8 34267346
    [Google Scholar]
  59. Kim C. Kim B. Anti-cancer natural products and their bioactive compounds inducing er stress-mediated apoptosis: A review. Nutrients 2018 10 8 1021 10.3390/nu10081021 30081573
    [Google Scholar]
  60. Hua L. Yang N. Li Y. Huang K. Jiang X. Liu F. Yu Z. Chen J. Lai J. Du J. Zeng H. Metformin sensitizes AML cells to venetoclax through endoplasmic reticulum stress- CHOP pathway. Br. J. Haematol. 2023 202 5 971 984 10.1111/bjh.18968 37409755
    [Google Scholar]
  61. Lee I. Doepner M. Weissenrieder J. Majer A.D. Mercado S. Estell A. Natale C.A. Sung P.J. Foskett J.K. Carroll M.P. Ridky T.W. LNS8801 inhibits acute myeloid leukemia by inducing the production of reactive oxygen species and activating the endoplasmic reticulum stress pathway. Cancer Res. Commun 2023 3 8 1594 1606 10.1158/2767‑9764.CRC‑22‑0478 37599786
    [Google Scholar]
  62. Pan M. Zhou J. Jiao C. Ge J. Bioinformatics analysis of the endoplasmic reticulum stress-related prognostic model and immune cell infiltration in acute myeloid leukemia. Hematology 2023 28 1 2221101 10.1080/16078454.2023.2221101 37294065
    [Google Scholar]
  63. Lin S. Wei C. Wei Y. Fan J. Construction and verification of an endoplasmic reticulum stress-related prognostic model for endometrial cancer based on WGCNA and machine learning algorithms. Front. Oncol. 2024 14 1362891 10.3389/fonc.2024.1362891 38725627
    [Google Scholar]
  64. Park M.N. The therapeutic potential of a strategy to prevent acute myeloid leukemia stem cell reprogramming in older patients. Int. J. Mol. Sci. 2023 24 15 12037 10.3390/ijms241512037 37569414
    [Google Scholar]
  65. Fang K. Du S. Shen D. Xiong Z. Jiang K. Liang D. Wang J. Xu H. Hu L. Zhai X. Jiang Y. Xia Z. Xie C. Jin D. Cheng W. Meng S. Wang Y. SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway. iScience 2022 25 7 104618 10.1016/j.isci.2022.104618 35800779
    [Google Scholar]
  66. Moya I.M. Castaldo S.A. Van den Mooter L. Soheily S. Sansores-Garcia L. Jacobs J. Mannaerts I. Xie J. Verboven E. Hillen H. Algueró-Nadal A. Karaman R. Van Haele M. Kowalczyk W. De Waegeneer M. Verhulst S. Karras P. van Huffel L. Zender L. Marine J.C. Roskams T. Johnson R. Aerts S. van Grunsven L.A. Halder G. Peritumoral activation of the Hippo pathway effectors YAP and TAZ suppresses liver cancer in mice. Science 2019 366 6468 1029 1034 10.1126/science.aaw9886 31754005
    [Google Scholar]
  67. Yan C. Yang H. Su P. Li X. Li Z. Wang D. Zang Y. Wang T. Liu Z. Bao Z. Dong S. Zhuang T. Zhu J. Ding Y. OTUB1 suppresses Hippo signaling via modulating YAP protein in gastric cancer. Oncogene 2022 41 48 5186 5198 10.1038/s41388‑022‑02507‑3 36271031
    [Google Scholar]
  68. Nishina H. Physiological and pathological roles of the Hippo-YAP/TAZ signaling pathway in liver formation, homeostasis, and tumorigenesis. Cancer Sci. 2022 113 6 1900 1908 10.1111/cas.15352 35349740
    [Google Scholar]
  69. Yoshida M. Horiguchi H. Kikuchi S. Iyama S. Ikeda H. Goto A. Kawano Y. Murase K. Takada K. Miyanishi K. Kato J. Kobune M. miR-7977 inhibits the Hippo-YAP signaling pathway in bone marrow mesenchymal stromal cells. PLoS One 2019 14 3 e0213220 10.1371/journal.pone.0213220 30835743
    [Google Scholar]
  70. Wang G. Yu X. Xia J. Sun J. Huang H. Liu Y. MicroRNA-9 restrains the sharp increase and boost apoptosis of human acute myeloid leukemia cells by adjusting the Hippo/YAP signaling pathway. Bioengineered 2021 12 1 2906 2914 10.1080/21655979.2021.1915727 34167441
    [Google Scholar]
  71. Zhou T. Li X. Liu J. Hao J. The Hippo/YAP signaling pathway: The driver of cancer metastasis. Cancer Biol. Med. 2023 20 7 1 7 10.20892/j.issn.2095‑3941.2023.0164 37493303
    [Google Scholar]
  72. Li C Wang Z Wei B. Upregulation of ROBO3 promotes proliferation, migration and adhesion of AML cells and affects the survival of AML patients. Biochem Biophys Res Commun 2023 661 1 9 10.1016/j.bbrc.2023.04.030 37084487
    [Google Scholar]
  73. Tian C. You M.J. Yu Y. Zhu L. Zheng G. Zhang Y. MicroRNA-9 promotes proliferation of leukemia cells in adult CD34-positive acute myeloid leukemia with normal karyotype by downregulation of Hes1. Tumour Biol. 2016 37 6 7461 7471 10.1007/s13277‑015‑4581‑x 26678889
    [Google Scholar]
/content/journals/cmc/10.2174/0109298673348269250611042934
Loading
/content/journals/cmc/10.2174/0109298673348269250611042934
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test